Новости с точки зрения эволюционного учения бактерии являются

Бактерии делятся бинарным делением клетки. В ходе бинарного деления бактерия делится на две дочерние клетки, являющиеся генетическими копиями материнской. Эволюционное учение. Микоплазмы являются отдельным классом микроорганизмов, отличающимся как от вирусов, так и от бактерий.

Прокариоты: у подножья пирамиды жизни. Интервью с чл.-корр. РАН Е.А. Бонч-Осмоловской

Бактерии делятся бинарным делением клетки. В ходе бинарного деления бактерия делится на две дочерние клетки, являющиеся генетическими копиями материнской. В основе всех эволюционных исследований лежат данные, позволяющие возможно более точно установить, насколько близкими друг к другу являются организмы. Эволюционное учение.

Экологические и биосферные функции бактерий

  • Эволюция бактерий - Evolution of bacteria
  • Задание Учи.ру
  • Развернутый ответ:
  • Бактерии эволюционировали в лаборатории?
  • Другие новости
  • Остались вопросы?

какими организмами являются бактерии с точки зрения эволюции

Бактерии являются древнейшей группой организмов на нашей планете. Например, уникальной чертой бактерий является их способность достаточно легко обмениваться между собой разными генами. Этапы эволюции микроорганизмов кратко | Образовательные документы для учителей, воспитателей, учеников и родителей.

Долгая счастливая фенотипическая эволюция бактерий

Тело первых бактерий имело примитивное строение. Со временем структура микроорганизмов усложнилась, но и сейчас они являются наиболее примитивными одноклеточными организмами. * * * Бактерии являются самыми древними организмами, появившимися около 3,5 млрд. лет назад в архее. Другие бактерии, например, цианобактерии и некоторые пурпурные бактерии, являются автотрофами, то есть получают углерод, фиксируя углекислый газ[86]. Почему бактериальную клетку считают простоорганизованной? Микоплазмы являются отдельным классом микроорганизмов, отличающимся как от вирусов, так и от бактерий. Другие бактерии, например, цианобактерии и некоторые пурпурные бактерии, являются автотрофами, то есть получают углерод, фиксируя углекислый газ[86].

Задания части 2 ЕГЭ по теме «Популяция, дивергенция, изоляция, видообразование»

Термофильный стрептококк — применяется при изготовлении йогурта. Streptococcus pneumoniae вызывает заболевания дыхательных путей. Стафилококки Золотистый стафилококк — возбудитель множества гнойных инфекций. Палочки Bacillus anthracis — возбудитель сибирской язвы. Клостридии Clostridium botulinum — возбудитель ботулизма.

Clostridium tetani столбнячная палочка — возбудитель столбняка. Не окрашиваются по методу Грама Менингококки Neisseria meningitidis — возбудитель менингита. Палочки Escherichia coli кишечная палочка — кишечный симбионт человека, сальмонеллы — возбудители сальмонеллёза, Rhizobium клубеньковые бактерии — симбионты корней бобовых растений, способные усваивать атмосферный азот.

Колесико провернулось на одно деление. Следующий человек, который заразился этой же бактерией, принимал антибиотик уже два дня, следующему пришлось принимать уже недельный курс — и т. О наличии бактерий, устойчивых к пенициллину, было известно еще до того, как он начал широко применяться в клинической практике во время Второй мировой войны. Уже Флеминг понимал, что «человек, который бездумно играет с пенициллином, будет морально ответственным за смерть того, кто умрет от пенициллин-устойчивой инфекции», потому что его нечем будет лечить.

Чего не надо делать? По мысли Флеминга, «не надо использовать пенициллин без установленного диагноза, в недостаточных дозах, в течение малого времени, потому что это именно те условия, в которых вырабатывается устойчивость». И это ровно то, что мы радостно делали все 60 лет после изобретения пенициллина. У нас есть косметика с малыми дозами антибиотиков. Антибиотики свободно продаются в аптеках и используются в животноводстве и птицеводстве. На фермах патогены встречаются с почвенными бактериями. Химическая война в почве происходила всегда, но раньше патогены никогда не встречались с антибиотиками, у них не было этого фактора отбора.

Теперь же в результате горизонтального переноса генов, когда один вид бактерий может получить ДНК другого, получился биореактор — ровно те условия, которые нужны, чтобы вырастить лекарственно-устойчивый штамм. В результате растет доля заболеваний, вызванных такими бактериями. У этого явления есть и экономическое следствие: разработка антибиотиков становится невыгодной. Затраты на их разработку колоссальные, а время жизни антибиотиков, когда они действительно работают и когда их покупают, не очень большое. В результате количество новых антибиотиков, введенных в клиническую практику, уменьшается год от года. В 1990 году фармкомпаний, которые занимались антибиотиками, было 18, в 2011 году их было уже только четыре. Сегодня существуют штаммы бактерий, обладающие множественной лекарственной устойчивостью.

Терапия как у Антона Павловича Чехова — кумыс и свежий воздух. Дело в том, что классический советский, а теперь и российский курс лечения туберкулеза очень длительный. В России много тюрем и колоний, человек попадает в одну из них, там у него диагностируют заболевание и начинают лечить. Не долечившись, человек выходит на свободу, и у него ни денег нет, ни желания тратить их на лекарства. В результате у нас куча недолеченных людей, тот же самый биореактор, что и в опытах. И это все — классическая эволюция, описанная Дарвином еще 150 лет назад в книге «Происхождение видов», без всяких современных надстроек. Рак как эволюционный процесс Рак на самом деле тоже эволюционная болезнь.

Каждая опухоль неоднородна, разные клоны раковых клеток соревнуются за ресурс, которым является организм человека, заболевшего раком. В разных клонах происходят разные мутации, и быстрее всего делящийся клон становится большинством в опухоли. Это описывается классическими эволюционными построениями. Можно сравнить картинку из обзора 1965 года просто про отбор и изображение из обзора 2006 года про отбор в раке. Прошло 40 лет, но, кроме цвета, они ничем не отличаются. Современные методы позволяют брать образцы из разных участков опухоли, определять последовательность генома клеток и смотреть, какие мутации произошли.

Мы видим изменения скоростей появления, элиминации, дупликации и горизонтального переноса. Самые бурные события происходили в период 3,3—2,85 млрд лет назад это средний архей , который на графике затонирован серым цветом.

График из обсуждаемой статьи в Nature Справа на графике рис. Мы видим, что в истории земной жизни был особый период, когда скорость появления новых генных семейств резко возросла; вслед за этим резко возросла и скорость выпадения генных семейств. Этот период приходится на средний—верхний архей — 3,3—2,85 млрд лет назад. Авторы назвали его «Архейская экспансия генов». После события Архейской экспансии к середине протерозоя появление новых семейств стало совсем незначительным. Когда период бурных инноваций закончился, постепенно всё большее значение стала приобретать дупликация генов; темпы этого процесса постепенно увеличиваются даже и в современности. Роль горизонтальных переносов росла вместе с нововведениями, а с прекращением образования de novo семейств оставалась более или менее постоянной. Всё складывается в логичную схему: после появления жизни на планете организмы начали быстро приспосабливаться к различным экологическим нишам, изобретая для этого необходимые ферменты и реакции.

После накопления достаточного массива ферментативного инструментария всё лишнее быстро вышло из употребления. Зато в дальнейшем удобнее было при необходимости перетасовывать уже имеющийся массив, чем изобретать что-то новое. Отсюда и устойчиво высокая роль горизонтальных переносов. Зато если возникала нужда в освоении новой экологической ниши, надежнее было продублировать уже имеющийся ген и изменить его в угоду новым условиям, чем изобретать новый ген, еще не приспособленный ни к внутренней генной среде, ни к внешней абиотической. Учитывая эту картину, мы можем пересмотреть вопрос, поставленный Г. Заварзиным: Составляет ли эволюция смысл биологии? Заварзин, на основе изучения эволюции микроорганизмов, подводил нас к мысли, что в мире бактерий эволюция в целом не обязательна. Обязательно приспособление к геохимическим обстановкам, встраивание в геохимические круговороты.

Именно это и заставляет микромир меняться. Смысл биологии микромира — это участие в геохимических планетарных циклах, а сама эволюция если она есть вторична. Высказанная Г. Заварзиным мысль исключительна по своей глубине и значимости. Однако она скорее описывает ситуацию после окончания грандиозной Архейской Экспансии. А до и во время нее гены переживали период своей самой бурной эволюции. Что вызвало Архейскую экспансию, какие события привели к столь радикальным переменам генов микробного мира? Конечно, точного ответа на этот вопрос нет.

Но авторы предложили свою версию.

Предполагается, что в появлении каких-либо приспособлений имеет место горизонтальный перенос генов — передача генетического материала от одного организма к другому, не являющемуся его потомком. В частности, горизонтальный перенос способствует распространению у бактерий устойчивости к антибиотикам, поскольку «гены устойчивости», появившись у одной бактерии, могут быстро передаваться другим видам. Благодаря своей способности преобразовывать перегной и гумус в безвредные неорганические вещества они незаменимы в круговороте веществ на планете.

Также бактерии выполняют почвообразовательную функцию. Видео по теме Обратите внимание В благоприятных условиях бактерии распространяются очень быстро.

Экологические и биосферные функции бактерий

  • какими организмами являются бактерии с точки зрения эволюции -
  • Прокариоты: у подножья пирамиды жизни. Интервью с чл.-корр. РАН Е.А. Бонч-Осмоловской
  • Эволюция бактерий
  • какими организмами являются бактерии с точки зрения эволюции - Биология »

Остались вопросы?

Слева схематичное строение бактериальной клетки. Справа схематичное строение эукариотической клетки пропорции не соблюдены — эукариотические клетки обычно в 10—20 раз больше бактериальных клеток. Кроме того, бактерии разделяются еще и между собой, и тоже радикальным образом в биохимическом плане. Настолько, что это потребовало разделения всех бактерий на два отдельных домена — эубактерии и архебактерии, несмотря на их морфологическое сходство друг с другом. Различия между тремя только что озвученными группами живых существ настолько радикальны, что сейчас некоторые авторы предлагают вообще разделять всю существующую на Земле жизнь на три разных формы: эубактерии, архебактерии и эукариоты Шаталкин, 2004. Естественно, возникает вопрос, корректно ли переносить те механизмы эволюции, которые мы можем обнаружить у одной формы жизни — на другую форму жизни?

Например, уникальной чертой бактерий является их способность достаточно легко обмениваться между собой разными генами. То есть, осуществлять тот самый горизонтальный перенос генов, который у эукариот напрямую пока еще никто не наблюдал. Зато в мире бактерий горизонтальный перенос является наблюдаемым явлением. Бактерии могут поглощать куски ДНК других бактериальных клеток, например, в ходе процессов коньюгации или трансформации. При этом какие-то отдельные чужие гены вполне могут быть «усвоены» бактерией, поглотившей соответствующую молекулу ДНК, ранее принадлежавшую другой бактерии.

Крайне интригующим обстоятельством здесь является то, что поглощенные гены, в принципе, могут быть вообще не от родственной бактерии, а от какой-нибудь удаленной в таксономическом отношении. Получается, что гены вообще всех видов бактерий, обитающих на каком-нибудь общем участке, в принципе, можно считать единым «генетическим пулом» всех этих бактерий. Особенно те гены, которые находятся в плазмидах, то есть, в тех молекулах ДНК, которыми бактерии обмениваются чаще всего. Стоит ли говорить, что именно в плазмидах, например, нередко сосредоточены гены устойчивости к тем или иным антибиотикам? Но наверное, самой главной отличительной особенностью бактерий является потрясающая численность их «популяций», которую для подавляющего числа эукариотических организмов даже представить себе невозможно.

В одной колонии бактерий может насчитываться миллиарды, десятки или даже сотни миллиардов отдельных особей. Разве можно сравнивать подобную численность с группами каких-нибудь горных горилл Gorilla beringei beringei , которые настолько редки, что занесены в Международную Красную книгу? Корректно ли переносить механизмы эволюции, которые теоретически возможны в отношении миллиардных колоний бактерий — на эволюцию горилл? Но и это еще не всё. Бактерии еще и размножаются очень быстро.

В благоприятных условиях у бактерий смена поколений может происходить в течение всего одного часа. Так можно ли сравнивать возможные механизмы эволюции у бактерий, с возможными механизмами эволюции, например, слонов? Если знать, что смена поколений у слонов происходит примерно раз в 17 лет. Итак, с одной стороны у бактерий колоссальная численность особей и фантастическая скорость размножения… а с другой стороны у эукариот , популяции меньшего размера сразу на несколько порядков , с гораздо меньшей скоростью смены поколений. Имеем ли мы право ставить знак равенства между этими двумя формами жизни в отношении их возможных механизмов изменений?

Рассмотрим теоретический пример. Допустим, в окружающей среде бактерий возникло такое изменение, которое убьет всех этих бактерий, если у какой-нибудь бактерии срочно не произойдет одной конкретной точечной мутации, которая защищает от этого катастрофического изменения среды. Частота точечных мутаций у бактерий, допустим, одна на миллиард. Тогда весьма возможно, что в многомиллиардной колонии бактерий сразу же и найдется какой-нибудь один или даже несколько необходимых мутантов, которые окажутся способными выжить в новых условиях. А теперь давайте представим себе, что такое же изменение возникло в среде каких-нибудь слонов.

Если численность отдельных популяций слонов составляет, допустим, 1000 особей, а всего популяций слонов в этом регионе, допустим, тоже тысяча, тогда общая численность всех слонов, попавших под воздействие новой катастрофической «стихии», составит 1 млн.

Благодаря своей способности преобразовывать перегной и гумус в безвредные неорганические вещества они незаменимы в круговороте веществ на планете. Также бактерии выполняют почвообразовательную функцию. Видео по теме Обратите внимание В благоприятных условиях бактерии распространяются очень быстро.

Они могут делиться каждые 20-30 минут. В неблагоприятных условиях бактерии образуют споры, служащие для сохранения вида.

Это преодолевается путем обмена генетической информацией путем трансдукции, трансформации или конъюгации. Это позволяет эволюционировать новым генетическим и физическим приспособлениям, позволяя бактериям адаптироваться к окружающей среде и развиваться. Кроме того, бактерии могут воспроизводиться всего за 20 минут, что позволяет быстро адаптироваться, а это означает, что новые штаммы бактерий могут быстро развиваться. Это стало проблемой для устойчивых к антибиотикам бактерий. Термофильных бактерий из глубоководных источников. Этот организм поедает серу и водород и связывает свой углерод из углекислого газа. Считается, что они являются одними из самых ранних форм жизни. Свидетельства существования этих организмов были обнаружены в австралийской вершине Апекс-Черт возле древних гидротермальных источников.

Предполагают, что они участвуют в образовании клеточных перегородок и репликации ДНК нуклеоидов. На поверхности мембран мезосом находятся ферменты, участвующие в процессе дыхания. Над клеточной стенкой у многих бактерий расположена слизистая капсула, предназначенная для дополнительной защиты бактерии от внешних воздействий. Бактерии размножаются простым делением надвое. После редупликации кольцевой ДНК клетка удлиняется и в ней образуется поперечная перегородка.

В дальнейшем дочерние клетки расходятся или остаются связанными в группы. Значение бактерий Разнообразие биохимических процессов у прокариотов велико: необходимую для жизни энергию различные бактерии получают или окисляя неорганические соединения, или используя для питания готовые органические вещества, или посредством фотосинтеза. Некоторые бактерии являются паразитами животных или растений.

Ученые говорят, что все живое произошло от бактерий. Как это можно объяснить?

Мы поговорим ниже о построение дерева эволюции согласно Дарвину, посмотрим на сколько это справедливо и таки я в итоге дам полное дерево (в рамках имеющейся информации) эволюции бактерий на основании самых консервативных генов тРНК. Клетка археи, поглотившая бактерию и ставшая затем эукариотной клеткой, получила много преимуществ с точки зрения эффективности метаболизма, устойчивости, выживаемости. Форма клеток бактерий может быть.

Задания части 2 ЕГЭ по теме «Популяция, дивергенция, изоляция, видообразование»

Новости Новости. В основе всех эволюционных исследований лежат данные, позволяющие возможно более точно установить, насколько близкими друг к другу являются организмы. Форма клеток бактерий может быть. Сервис вопросов и ответов по учебе для школьников и студентов Студворк №1009166.

Задание Учи.ру

Он высказал также тезис ошибочно приписываемый Гарвею , "Omne vivum ex ovo" - Всё живое из яйца". Но и после этого учёные разных стран защищали точку зрения, согласно которой из разлагающегося органического вещества зарождаются микроскопические существа. История роли микроорганизмов в спорном вопросе о возникновении жизни регулярно описывается в большинстве учебников по микробиологии. Поиски экспериментальных доказательств за и против учения о самозарождении жизни были наиболее сильным импульсом, способствующим бактериологическим исследованиям в 18 и 19 столетиях. В 18 веке русский учёный Тереховский и итальянец Лаццаро Спалланцани 1729-1799 показали, что если сосуды, в которых находится жидкость, хорошо прогреть, то в них живых существ не образуется.

Ставились также опыты, при которых в сосуд с обеспложенной жидкостью воздух пропускался через крепкую серную кислоту или через слой стерилизованной ваты. Результаты этих опытов говорили против возможности самопроизвольного зарождения. Французская академия учредила премию тому, кто раз и навсегда покончит с этими спорами, волновавшими весь учёный мир. Луи Пастер провёл серию тщательно продуманных опытов.

Сейчас его колбы с S —образным горлышком являются символом исследования, которое вынесло смертный приговор теории самозарождения. Он первым доказал. Что в воздухе содержатся видимые под микроскопом живые организмы. В 1864 году Пастер доложил Французской академии о своих результатах.

Окончательное решение вопроса стало возможным в 19 веке после открытий Ф. Коном и Р. Кохом устойчивых к нагреванию спор бактерий, работ Листера, Тиндаля. Таким образом, вопрос о возникновении жизни долгое время служил импульсом исследований бактерий и других микроорганизмов.

Возможно, есть несообразие в том, что говоря об экспериментах Пастера как о победе разума над мистицизмом, мы тем не менее, вынуждены вернуться к идее о самопроизвольном зарождении, пусть в её более совершенном, научном понимании, а именно к химической эволюции. Согласно гипотезе химической эволюции, жизнь возникла из неживого вещества, то есть произошла в результате эволюции материи. Это явление, которое нельзя приписать какому-то определённому месту и времени, результат последовательных процессов, действовавших на земле невероятно долго, миллионы лет, и завершившихся образованием современной биосферы. От неорганических соединений - к органическим, от органических — к биологическим: так последовательно совершался процесс зарождения жизни.

Чарлз Дарвин был один из первых, кто рассматривал эту проблему с научной точки зрения.

На второй стадии попыток разъяснения случайного возникновения жизни эволюционистов ждет проблема поважнее, чем аминокислоты — белки. То есть строительный материал жизни, образующийся путем последовательного соединения сотен различных аминокислот.

Утверждение относительно самообразования белка еще нелогичнее и фантастичнее, чем утверждение случайного образования аминокислот. Невозможность соединения аминокислот в определенном порядке для образования белка была вычислена математически на предыдущих страницах с помощью теории вероятностей. Однако самообразование белка в условиях первичной атмосферы Земли невозможно и с точки зрения химии.

Синтез белка невозможен в воде Как уже упоминалось ранее, при синтезе белка между аминокислотами образуется пептидная связь. Во время этого процесса выделяется одна молекула воды. Эта ситуация коренным образом опровергает утверждения эволюционистов о возникновении жизни в океане.

Потому что в химии, согласно принципу «Ле Шателье», реакция, которая образует воду реакция конденсации , не будет завершена в среде, состоящей из воды. Протекание этой реакции в водной среде характеризуется среди химических реакций, как «наименьшая вероятность». Отсюда следует, что океаны, в которых якобы возникла жизнь, отнюдь не подходящая среда для образования аминокислоты и впоследствии — белка.

С другой стороны, они не могут изменить свои суждения перед этими фактами и утверждать, что жизнь возникла на суше. Потому что аминокислоты, предположительно образовавшиеся в ранней атмосфере Земли, могут быть защищены от ультрафиолетовых лучей только в море и океане. На суше же аминокислоты будут разрушены под воздействием ультрафиолетовых лучей.

Принцип Ле Шателье опровергает возникновение жизни в море. А это в свою очередь — еще один тупик в теории эволюции. Очередная безрезультатная попытка: опыт Фокса Оказавшись в безвыходном положении, исследователи-эволюционисты начали придумывать невиданные сценарии по «проблеме воды».

Один из знаменитейших среди них Сидней Фокс вывел новую теорию, чтобы решить этот вопрос: аминокислоты, образовавшись в океане, сразу же перенеслись в скалистые места рядом с вулканами. Затем вода в смеси, в состав которой входили и аминокислоты, испарилась под воздействием высокой температуры скалистых мест. В результате «высохшие» аминокислоты могли соединяться для образования белка.

Однако этот «тяжелый» выход из положения никем не был признан. Потому что аминокислоты не смогли бы выдержать температуру, о которой говорил Фокс. Исследования показали, что аминокислоты под воздействием высокой температуры непременно разрушаются.

Но Фокс не сдавался. В «специальных условиях» лаборатории, упрощенные аминокислоты были подогреты в сухой среде и соединены. Аминокислоты были соединены, но получить белок так и не удалось.

Полученное представляло собой соединение простых, беспорядочных звеньев аминокислот и никоим образом не было похоже на белок. Более того, если бы Фокс подвергал аминокислоты постоянной температуре, то даже образовавшиеся бесполезные звенья аминокислот распались бы. Еще одна деталь, обессмысливающая опыт, заключается в том, что Фокс использовал в своем опыте аминокислоты, содержащиеся в живых организмах, а не те, которые в свое время получил Миллер.

Между тем, он должен был отталкиваться именно от результатов опыта Миллера. Но ни Фокс, ни другие не использовали непригодные аминокислоты, полученные Миллером. Опыт Фокса не был воспринят положительно даже среди эволюционистов, так как полученные Фоксом непонятные цепи аминокислот протеиноиды не могли образоваться в естественных условиях.

А белок, являющийся строительным материалом живого, так и не был получен. Вопрос о происхождении белка оставался неразрешенным. В популярном научном журнале 70-х годов «Chemical Engineering News» была опубликована статья относительно опыта Фокса: «Сидней Фокс и другие исследователи, используя специальную технику нагревания, смогли получить соединения аминокислот, называемые «протеиноидами» в условиях, не существовавших на начальном этапе Земли.

Вместе с тем, они никак не похожи на упорядоченные белки живых организмов и представляют собой лишь хаотичные, бессмысленные пятна. Даже если эти молекулы и присутствовали первоначально, то разрушение их впоследствии было неизбежно. Разница между ними подобна разнице между аппаратурой сложной технологии и кучей необработанного металла.

Эта вера абсолютно противоречит науке, ибо все опыты и исследования показали, что материя не обладает подобными способностями. Известный английский астроном и математик сэр Фред Хойль объясняет это на следующем примере: «Если бы внутри материи был бы внутренний принцип, побуждающий ее к образованию жизни, то это можно было бы продемонстрировать в любой лаборатории. Например, какой-нибудь исследователь мог бы использовать для опыта бассейн, который представлял бы собой первичный «бульон».

Можно было бы заполнить этот бассейн всеми видами неживых химических веществ, закачать любые газы и облучить поверхность радиацией любого вида. Проделав этот опыт в течение целого года, проконтролируйте, сколько ферментов из 2000 жизненно необходимых видов смогло образоваться за этот период. Я отвечу вам сразу, чтобы вы не теряли времени на этот опыт.

Вы не обнаружите ничего, может быть, только несколько аминокислот и других элементарных химических веществ». Биолог-эволюционист Эндрю Скотт признает этот факт следующим образом: «Возьмите немного вещества, перемешайте, подогрейте и немного подождите. Это современная версия происхождения жизни.

А такие «основные» силы, как гравитация, электромагнетизм, сильная и слабая ядерные силы довершат начатое вами дело до конца… Интересно, какая же доля этого простого повествования основана на правде и какая — на спекуляции, основанной на предположениях? На самом деле, весь процесс развития от первого химического элемента до живой клетки либо является очень спорным вопросом, либо вовсе окутан мраком. Ультрафиолетовые лучи, достигавшие Земли, неконтролируемые катаклизмы природы, оказывающие разрушительные физические и химические воздействия, явились бы причиной распада протеиноидов.

А нахождение аминокислот в воде, чтобы избежать ультрафиолетовых лучей, невозможно согласно принципу Ле Шателье. В свете этих фактов мнение о том, что протеиноиды являются началом жизни, постепенно утеряло силу среди ученых. Чудо-молекула ДНК Как показывает анализ пройденных нами тем, теория эволюции зашла в полный тупик уже на молекулярном уровне.

Эволюционисты не смогли внести ясность в вопрос происхождения аминокислоты. Образование же белка само по себе является загадкой. Плюс ко всему, вопрос не ограничивается аминокислотами и белком; это только начало.

А по существу, настоящим тупиком для эволюционистов является уникальный живой организм, называемый клеткой. Потому что клетка представляет собой не просто массу, состоящую из белков, которые в свою очередь состоят из аминокислот. Напротив, этот живой организм состоит из сотен развитых и настолько запутанных систем, что человек до сих пор не смог разгадать все его секреты.

Что и говорить об этих системах, когда эволюционисты не в силах объяснить происхождения даже структурной единицы белка. Теория эволюции, будучи не в состоянии найти последовательное объяснение происхождению наипростейшей молекулы клетки, оказалась в совершенно новом тупике в результате развития генетики и открытия нуклеиновых кислот, то есть ДНК и РНК. Молекула ДНК, находящаяся в ядре каждой из 100 триллионов клеток человека, содержит в себе уникальный план строения человеческого организма.

Любая информация, касающаяся человека — от внешности до внутренних органов — зашифрована в ДНК. Молекулы, называемые нуклеотидами или же основаниями , выражаются заглавными буквами A, T, Г, Ц. Физические различия между людьми исходят из различных сочетаний этих букв.

Мировая литература не раз обращалась к этим верованиям. В трагедии Шекспира «Антоний и Клеопатра» Лепид говорит Марку Антонию: «Ваши египетские гады заводятся в грязи от лучей вашего египетского солнца. Вот например, крокодил…». Однако подобные идеи не могли долго противостоять развивающейся науке и были опровергнуты следующим опытом итальянского врача Франческо Реди 1626-1697 : он покрыл свежее мясо кисеёй, и через некоторое время личинки мух появились не в мясе, а на поверхности кисеи.

Этим было показано, что червячки образуются не самопроизвольно, а развиваются из яичек, откладываемых мухами. Он высказал также тезис ошибочно приписываемый Гарвею , "Omne vivum ex ovo" - Всё живое из яйца". Но и после этого учёные разных стран защищали точку зрения, согласно которой из разлагающегося органического вещества зарождаются микроскопические существа. История роли микроорганизмов в спорном вопросе о возникновении жизни регулярно описывается в большинстве учебников по микробиологии.

Поиски экспериментальных доказательств за и против учения о самозарождении жизни были наиболее сильным импульсом, способствующим бактериологическим исследованиям в 18 и 19 столетиях. В 18 веке русский учёный Тереховский и итальянец Лаццаро Спалланцани 1729-1799 показали, что если сосуды, в которых находится жидкость, хорошо прогреть, то в них живых существ не образуется. Ставились также опыты, при которых в сосуд с обеспложенной жидкостью воздух пропускался через крепкую серную кислоту или через слой стерилизованной ваты. Результаты этих опытов говорили против возможности самопроизвольного зарождения.

Французская академия учредила премию тому, кто раз и навсегда покончит с этими спорами, волновавшими весь учёный мир. Луи Пастер провёл серию тщательно продуманных опытов. Сейчас его колбы с S —образным горлышком являются символом исследования, которое вынесло смертный приговор теории самозарождения. Он первым доказал.

Что в воздухе содержатся видимые под микроскопом живые организмы. В 1864 году Пастер доложил Французской академии о своих результатах. Окончательное решение вопроса стало возможным в 19 веке после открытий Ф. Коном и Р.

Кохом устойчивых к нагреванию спор бактерий, работ Листера, Тиндаля. Таким образом, вопрос о возникновении жизни долгое время служил импульсом исследований бактерий и других микроорганизмов.

На основе локальной концентрации этих веществ бактерия определяет плотность клеток-сородичей вокруг себя чувство кворума. За счёт чувства кворума бактерии могут координировать экспрессию генов и начинают выделять и улавливать аутоиндукторы [en] или феромоны , концентрация которых повышается по мере роста популяции [135]. Основная статья: Систематика бактерий Филогенетическое древо, построенное на основании анализа рРНК , показывает разделение бактерий, архей и эукариот Бактерий можно классифицировать на основе строения клетки, метаболизма, а также различий в химическом составе клеток наличия или отсутствия некоторых жирных кислот , пигментов , антигенов, хинонов [97]. В то время как перечисленные характеристики подходят для выделения штаммов, непонятно, можно ли их использовать для разделения видов бактерий. Дело в том, что у большинства бактерий нет отличительных структур, а из-за широко распространённого горизонтального переноса генов родственные виды могут сильно отличаться по морфологии и метаболизму [136]. В связи с этим в настоящее время современная классификация базируется на молекулярной филогенетике. К числу её методов относят определение GC-состава генома, гибридизация геномов, а также секвенирование генов, которые не подверглись интенсивному горизонтальному переносу, такие как гены рРНК [137].

Релевантная классификация бактерий публикуется «Международным журналом систематической бактериологии» англ. International Journal of Systematic Bacteriology [138] и руководством по систематической бактериологии Берджи англ. Международный комитет систематики прокариот [en] англ. International Committee on Systematics of Prokaryotes регулирует международные правила именования таксонов бактерий и определение их рангов согласно правилам Международного кодекса номенклатуры прокариот [en] англ. International Code of Nomenclature of Prokaryotes [139]. Термин «бактерии» традиционно применяли по отношению к микроскопическим одноклеточным прокариотам. Однако данные молекулярной филогенетики свидетельствуют о том, что в действительности прокариоты подразделяются на два независимых домена, которые первоначально получили названия эубактерии лат. Eubacteria и архебактерии лат. Archaebacteria , но в настоящее время называются бактерии и археи [15].

Эти два домена, наряду с доменом эукариоты, составляют основу трёхдоменной системы , которая является наиболее популярной системой классификации живых организмов [140]. Археи и эукариоты состоят в более близком родстве, чем каждый из этих доменов к бактериям. Впрочем, высказывается мнение, что археи и эукариоты произошли от грамположительных бактерий [141]. Поскольку количество отсеквенированных последовательностей бактериальных геномов очень быстро растёт, классификация бактерий постоянно меняется [3] [142]. В медицине идентификация бактерий имеет огромное значение, поскольку от неё зависит схема лечения. По этой причине ещё до эры молекулярной биологии учёные активно разрабатывали методы, позволяющие быстро идентифицировать патогенные бактерии. В 1884 году Ганс Кристиан Грам предложил метод дифференциального окрашивания бактерий на основе строения их клеточной стенки [62]. При окрашивании по Граму грамположительные бактерии с толстым слоем пептидогликана имеют фиолетовый цвет, а грамотрицательные бактерии с тонким слоем пептидогликана окрашены в розовый. Комбинируя окрашивание по Граму и морфотипы , выделяют четыре основные группы бактерий: грамположительные кокки, грамположительные бациллы, грамотрицательные кокки, грамотрицательные бациллы.

Однако для идентификации некоторых бактерий больше подходят другие методы окрашивания. Например, микобактерии и бактерии рода Nocardia не обесцвечиваются кислотами [en] после окрашивания по Цилю — Нильсену [143]. Некоторых бактерий можно идентифицировать по их росту на специфических средах и при помощи других методов, например, серологии [144]. Методы культивирования бактерий [en] разработаны так, чтобы способствовать росту определённых бактерий, но подавлять рост других бактерий из того же образца. Часто эти методы разрабатываются специально для определённых образцов, откуда берутся микробы. Например, для идентификации возбудителя пневмонии для дальнейшего культивирования берут образец мокроты , для идентификации возбудителя диареи для выращивания на селективной среде берут образец стула , причём во всех случаях рост непатогенных бактерий будет подавляться. Образцы, которые в норме стерильны например, кровь , моча , спинномозговая жидкость , культивируются в условиях, подходящих для роста любых микроорганизмов [97] [145]. После изоляции патогенного микроорганизма можно изучать его морфологию, особенности роста например, аэробный или анаэробный рост , характер гемолиза [en] , а также окрашивать его разными методами. Как и для классификации бактерий, молекулярные методы всё чаще применяют и для их идентификации.

Похожие новости:

Оцените статью
Добавить комментарий