Новости применение искусственного интеллекта в медицине

Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками. Как искусственный интеллект создает лекарства. ИИ от фирмы Insilico Medicine носит название GENTRL. Как присутствие искусственного интеллекта влияет на современную российскую медицину? Внедрение искусственного интеллекта (ИИ) в медицину открывает новые возможности для диагностики, лечения и исследований.

AI-платформа для анализа медицинских изображений

О том, как технологии улучшают качество оказания медицинской помощи в столице, рассказал в своем блоге Сергей Собянин. Все это, конечно, актуально и по сей день. Но далеко не главное. Главное — современные цифровые технологии реально спасают жизни и радикально повышают качество лечения людей», — написал Мэр Москвы. Убедиться в этом можно на примере внедрения искусственного интеллекта в работу службы лучевой диагностики. Анализируя снимки компьютерной и магнитно-резонансной томографии, маммографии или рентгеновские снимки, нейросети распознают 37 различных заболеваний.

Freepik Но диагностика не единственная сфера медицины, куда сегодня проник ИИ.

Это, например, поиск перспективных молекул для определенных рецепторов, что может предварять открытие новых препаратов», — рассказал «Ведомости. Городу» врач-эксперт Тимур Пестерев. Один из последних примеров — китайская биотехнологическая компания в начале этого года с помощью ИИ придумала лекарство для лечения идиопатического легочного фиброза ИЛФ. Это тяжелое заболевание, сопровождающееся рубцеванием легких, от которого страдают в основном пожилые люди. ИИ исследовал массив данных о фиброзе дыхательных путей с целью найти белок, отвечающий за заболевание. Когда белок был найден, нейросеть приступила к синтезированию молекулы, которая бы эффективно боролась с недугом.

Препарат от ИЛФ прошел первую стадию клинических исследований, и его уже испытали на добровольцах. Столичные алгоритмы По данным Национального центра развития ИИ при правительстве РФ, Россия занимает лидирующие позиции в мире по разработке и внедрению ИИ в здравоохранении. Значительную роль в этом сыграл московский опыт внедрения ИИ в здравоохранение. Как рассказали «Ведомости. Городу» в столичном депздраве, сегодня в Москве реализуются четыре крупнейших проекта использования ИИ в здравоохранении. Компьютерные алгоритмы находят патологии уже по 21 клиническому направлению.

Нейросети помогают врачам определять на снимках лучевых исследований признаки рака легкого, COVID-19, остеопороза позвоночника, аневризмы аорты, ишемической болезни сердца, инсульта, а также рака молочной железы, грыж позвоночника, артроза, плоскостопия и других заболеваний. О совершенно новой области применения ИИ в московском здравоохранении «Ведомости. Городу» рассказала заммэра по вопросам социального развития Анастасия Ракова. Это опасное неврологическое заболевание обычно начинает развиваться в молодом возрасте и со временем может привести к тяжелой инвалидности.

Применение ИИ в клинической медицине ИИ может работать непрерывно, что позволяет обеспечить более эффективное использование медицинского персонала и ресурсов. Системы искусственного интеллекта могут учиться на основе накопленного опыта и становиться все более точными и эффективными с течением времени. Регулярно расширяемые базы данных для обучения моделей ИИ позволяют повышать точность подобных систем. В современной клинической медицине системы искусственного интеллекта находят применение во многих областях. Одной из них является диагностика заболеваний.

Системы ИИ могут анализировать медицинские изображения например, снимки рентгена, МРТ, КТ , выявлять аномалии и помогать врачам в постановке диагноза.

В результате медицинское сообщество договорилось об укрупнении синонимичных значений, о приведении множества понятий к единству. Как повлияли эти технологии на эффективность системы? ИИ уже сегодня — эффективный помощник, избавляющий врача от части рутины. В работе функциональных диагностов взрослых поликлиник Москвы помогает автоматическая расшифровка ЭКГ с предзаполненным заключением. С сервисами записи ЕМИАС интегрирован чат-бот, который «опрашивает» пациента о жалобах на самочувствие до приема, а результаты врач увидит сразу в протоколе осмотра. Наиболее масштабный проект — применение компьютерного зрения в лучевой диагностике. Более 50 ИИ-сервисов по 29 клиническим направлениям обрабатывают в потоковом режиме медицинские снимки, оконтуривают выявленные патологии, проводят рутинные измерения, в том числе сложные, на которые у врача уходит много времени, а также готовят проект заключения.

В арсенале столичных рентгенологов сегодня 6 комплексных сервисов для анализа КТ органов грудной клетки, органов брюшной полости. Такие сервисы в рамках одного исследования выявляют сразу несколько патологий и формируют заключение. Всего в рамках проекта ИИ-сервисы проанализировали уже 12 миллионов лучевых исследований. Более того, если раньше ИИ-решения в медицине рассматривались в первую очередь как системы поддержки принятия врачебных решений, то сегодня мы делаем первые шаги в сторону системной автоматизации производственных процессов. Так, на базе эксперимента технологии ИИ достигли того уровня зрелости, когда мы начинаем «делегировать» искусственному интеллекту отдельные диагностические задачи. В этом году мы запускаем пилотный проект в рамках территориальной программы обязательного медицинского страхования по применению ИИ в автономном режиме, без участия врача — для проекционных методов исследований, флюорографии и рентгенографии органов грудной клетки. ИИ будет сортировать все исследования взрослых пациентов, сделанные в поликлиниках, на те, где достоверно отсутствует патология, и те, где есть признаки заболевания. Для первых ИИ будет самостоятельно формировать заключение в виде электронной медицинской записи в ЭМК, а вторые — направлять на описание врачу.

При этом характерная особенность профилактических исследований, таких как флюорография, — низкая доля исследований с патологическими признаками. Это решение позволит перенаправить время врача на более сложные виды исследований, где действительно требуется врачебная экспертиза. По итогам пилотного проекта мы сможем достоверно оценить безопасность применения автономного ИИ для пациентов. Первыми шагами в развитии персональных ассистентов врача стал диагностический ассистент врачей-терапевтов и врачей общей практики для постановки предварительного диагноза. Сервис был внедрен в 2020 году, на основе анализа жалоб пациента он предлагает топ-3 диагноза. К выбранному диагнозу врачу предлагаются пакетные назначения. Такой «синтез» искусственного и естественного интеллекта. В этом году внедрен диагностический ассистент при постановке заключительного диагноза во взрослых поликлиниках.

Сервис анализирует данные ЭМК пациента за последние два года и сигнализирует врачу, если мнения с ИИ разошлись. В обоих случаях ИИ выступает помощником, окончательное решение остается за врачом. Вся информация, все снимки, загруженные в электронную медицинскую карту пациента, могут стать частью «обучающей программы» для искусственного интеллекта.

Искусственный интеллект идет в медицину: успешные бизнес-решения в отрасли

Все люди совершают ошибки. Поэтому неудивительно, что созданный людьми искусственный интеллект тоже может их совершать. С врачебной ошибкой все ясно — ответственность несет тот, кто совершил неверное действие, а вот с ИИ зона ответственности непонятна. Обеспечение работы искусственного интеллекта связано с применением вычислительных мощностей, которых нет во многих медицинских учреждениях. Также остается открытым вопрос предоставления и хранения личной информации пациента.

Поскольку кибермошенники не дремлют, данный вопрос требует особой проработки. Могу сказать точно, что никакие технологии не смогут заменить человеческого общения. Искусственный интеллект никогда не научится сострадать человеку и морально поддерживать в трудную минуту. Общение врача с пациентами имеет большое значение.

Однажды был случай, когда врач в Калифорнии послал робота в палату к 78-летнему пациенту и его родственникам, чтобы с помощью видеосвязи сообщить им о том, что тот умрет. Конечно же родные пациента, да и сам пациент были в шоке, хотя они и знали, что смерть неминуема. Однако это не означает, что подобные новости можно преподносить таким образом. Искусственный интеллект нельзя научить эмпатии, поэтому он не может работать в одиночку.

На мой взгляд, идеальное будущее медицины и здравоохранении заключается в тандеме ИИ и доктора.

Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера Принять все.

В последние годы мы наблюдаем постоянный венчурного инвестирования в медицинские стартапы, использующие технологии искусственного интеллекта. По данным CB Insights , интерес инвесторов к этому рынку является одним из самых высоких среди всех направлений цифрового здравоохранения.

В 2021 г. Для сравнения, в 2020 г.

Например, ИИ компании Babylon Health предоставляет соответствующую информацию о здоровье на основе симптомов, описанных самим пациентом.

Понятно, что симптомы могут быть описаны неверно или пациент может попытаться ввести ИИ в заблуждение умышленно. Поэтому в компании прямо заявляют, что их компьютерный ассистент не ставит диагноз. Это сделано для того, чтобы свести к минимуму юридическую ответственность компании, но в будущем мы наверняка увидим, как чат-боты будут ставить диагнозы по мере повышения точности их работы.

А на перспективы ИИ в Babylon Health смотрят оптимистично, заявляя, что они уже доказали эффективность своего ИИ в первичной медико-санитарной помощи, а также смогли создать такую систему искусственного интеллекта для медицины, которая не является «черным ящиком». Это отличает их, например, от Alphabet, материнской компании Google, представители которой еще сравнительно недавно заявляли о том, что до сих пор не знают, что конкретно изучают их модели машинного обучения, о чём мы писали в статье, посвященной LLM. И пока сложно сказать, насколько они продвинулись в понимании алгоритмов работы своих программ глубокого обучения.

А вот исследователи из Babylon Health продвинулись совершенно точно. Также современные ИИ решают проблемы приоритизации и медицинской сортировки. Рекомендации на основе глубокого анализа данных поступающих пациентов для обеспечения точной приоритизации и медицинской сортировки ИИ дает очень быстро в режиме реального времени.

Наиболее известные решения для этих целей предлагает Enlitic. ИИ Enlitic Curie сканирует поступающих пациентов, обрабатывая множество клинических данных в том числе учитываются и старые диагностические карты и определяя приоритет на лечение, после чего сразу же направляет больных к наиболее подходящему врачу. Трудно переоценить пользу этих алгоритмов, исключающих из анализа человеческий фактор, ведь после того как они будут усовершенствованы, они помогут спасти тысячи жизней.

Стоит рассказать и о новом алгоритме ИИ, который поможет диагностировать рак легких. Много лет человечество проигрывало борьбу с онкологическими заболеваниями, которые ежегодно убивают около 10 миллионов человек по всему миру. Одной из самых страшных форм онкологии является рак легких, распознавание которого на ранних стадиях и до сих пор является для ученых сложнейшей задачей.

Но весьма вероятно, что справиться с этим человеку поможет искусственный интеллект. Исследователи из Бостонского университета разработали ИИ, который долгое время обучался на полноформатных фотографиях легочных тканей пациентов размеры таких изображений составляют обычно более 1 Гб, что делает их анализ человеком крайне сложным. ИИ на примере фото обучали распознавать аденокарциному легкого, плоскоклеточный рак легкого и соседнюю не раковую ткань.

Результаты обучения оказались положительными: алгоритм смог продемонстрировать более высокую эффективность, чем другие современные методы распознавания патологий на полноформатных слайдах. На данный момент новый алгоритм планируется внедрить в помощь патологоанатомам, однако при успешном внедрении возможности ИИ могут быть расширены, ведь главное — научиться диагностировать опасные заболевания на самых ранних стадиях, пока сохраняются высокие шансы на полноценное излечение. Существуют и компании, специализирующиеся на разработке ИИ-продуктов для ранней диагностики различных заболеваний.

Они позволяют анализировать хронические состояния, используя лабораторные и другие медицинские данные, чтобы выявлять опасные болезни как можно раньше. Так, программное обеспечение от Ezra использует ИИ при анализе МРТ-сканов всего тела, чтобы помочь специалистам в раннем выявлении рака. Их слоган говорит сам за себя: «Мы обнаружили самую большую слабость рака — раннее обнаружение».

SkinVision — компания, занимающаяся диагностикой рака кожи на основе медицинской визуализации, то есть диагностикой по фото. ИИ, разработанный командой SkinVision, позволяет обнаруживать рак кожи на ранней стадии по фотографиям, сделанным на телефон. Умные алгоритмы после исследования очередного фото просигнализируют о том, если с кожей что-то не так.

Таким образом, пациент сможет вовремя обратиться в клинику за помощью. Медицинская визуализация на основе ИИ также широко используется для диагностики ОРВИ и выявления пациентов, которым требуется клиническая поддержка. Нейросеть научилась отличать родинки от некоторых видов рака кожи Американские ученые создали систему искусственного интеллекта, которая умеет отличать родинки от некоторых видов рака кожи лучше врачей.

Работа исследователей опубликована в журнале Nature. На протяжении последних десятилетий число людей, у которых обнаруживают рак кожи, постоянно увеличивается. По данным Всемирной организации здравоохранения, раком кожи страдает каждый третий онкологический больной, а каждый пятый американец заболеет им в течение жизни.

Это заболевание особенно опасно тем, что злокачественное образование легко не заметить и спутать с родинкой. При этом, если вовремя обратить внимание на опухоль, шансы на выздоровление резко увеличиваются. Пациенты, у которых находят меланому самый распространенный и злокачественный вид опухоли на ранней стадии развития, выживают в 97 процентах случаев, в то время как при поздней диагностике заболевания эта доля сокращается до 14 процентов.

Основным способом первичного выявления рака кожи до сих пор остается визуальный осмотр за которым обычно следует дерматоскопия или биопсия. Чтобы помочь пациентам самостоятельно обнаружить злокачественное образование на ранней стадии, ученые из Стэнфордского университета создали систему искусственного интеллекта, которая анализирует фотографии «подозрительных» родинок. Авторы новой работы использовали сверточную нейросеть Inception v3, которая была ранее разработана компанией Google.

Исследователи удалили ее верхний слой и обучили систему, изначально ориентированную на распознавание различных объектов, определять некоторые виды рака кожи — меланому и карциному. Для этого они использовали 130 тысяч фотографий более двух тысяч различных кожных заболеваний. После того, как программа научилась ставить диагноз, ее работу сравнили с работой двух ведущих дерматологов США.

Анализ показал, что система не только справляется не хуже специалистов, но и превосходит их: нейросеть верно отличала родинки от злокачественной меланомы и карциномы в 72 процентах случаев, в то время как врачи успешно справились с заданием лишь в 66 процентах случаев. Дополнительная проверка нейросети, в которой принял участие уже 21 специалист, также показала, что, чувствительность и специфичность алгоритма которая отражает способность корректно определить доброкачественную и злокачественную опухоль не уступает чувствительности и специфичности дерматологов. В будущем компьютерная программа может быть адаптирована для смартфона или планшета, и позволит любому желающему пройти первичную диагностику рака кожи.

Тем не менее, до этого момента системе будет необходимо пройти еще много дополнительных проверок. Так, по мнению авторов статьи, программа может плохо справляться с определением редких типов карцином и меланом, по каким-либо причинам не окрашенным в черный или коричневый цвет. Недавно американские ученые также создали алгоритм, который успешно справляется с ранней диагностикой меланомы.

В ходе эксперимента система смогла правильно определить меланому в 98 процентах случаев. В то же время специфичность алгоритма оказалась не такой высокой — диагностика доброкачественных образований была проведена верно лишь в 36 процентах случаев.

Чем так хорош искусственный интеллект в медицине?

  • Обзор Российских систем искусственного интеллекта для здравоохранения
  • Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией
  • Искусственный интеллект идет в медицину: успешные бизнес-решения в отрасли
  • Искусственный интеллект для точной диагностики
  • ACHIEVEMENTS AND PROSPECTS OF ARTIFICIAL INTELLIGENCE IN MEDICINE

Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек

Медицинские продукты с применением искусственного интеллекта активно разрабатывают известные компании: Microsoft, Apple, Google, IBM. Применение искусственного интеллекта в медицине уже сегодня позволяет серьезно повысить точность диагностики, облегчить жизнь пациентам с различными заболеваниями, а с развитием технологий сделает реальным появление сверхэффективных персональных. Теперь же искусственный интеллект готов прийти на помощь к профессионалам медицины.

Комплексный анализ работы сервисов ИИ в медицине провели в Москве

Перейти к источнику Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Авторы отмечают, что существует ряд условий, необходимых для дальнейшего развития ИИ в сфере здравоохранения: совершенствование нормативного регулирования, разработка единых стандартов по распоряжению биомедицинскими данными, их контролю и определению границ использования ИИ, этических норм; создание общедоступных датасетов, репрезентативных, релевантных и корректно структурированных медицинских данных, необходимых для обучения моделей, которые должны быть разработаны совместно с экспертным сообществом; стимулирование спроса со стороны государственных органов и медицинских организаций в виде грантов и субсидий на использование ИИ-продуктов и сбора данных для общего пользования внутри медицинских организаций; разработка ускоренных процедур сертификации и регистрации или решений на основе ИИ в медицине с четко определенной процедурой, сроками, алгоритмами для тестирования и апробации систем. Документы pdf16.

Чем так хорош искусственный интеллект в медицине? Технологии ИИ проникают во все сферы деятельности человека, в числе которых и медицина со здравоохранением. К примеру, не так давно Министерство здравоохранения РФ вместе с Ростехом создали первую версию федеральной платформы ИИ для здравоохранения. С ее помощью ИТ-разработчики смогут получать доступ к обезличенным медицинским данным жителей России из медицинских карт. Главная цель этого проекта заключается в том, чтобы объединить обезличенные медицинские данные в верифицированные датасеты наборы данных , а также дать отечественным ИТ-компаниям площадку для разработки и тестирования сервисов ИИ в сфере здравоохранения. Компаниям нужен доступ к структурированным данным для разработки алгоритмов, которые смогут стать основой систем поддержки врачебных решений. Появление подобных сервисов поможет усовершенствовать систему здравоохранения. Врачам нужно на постоянной основе обновлять информацию о последних исследованиях в медицине.

Они не способны это делать с такой же скоростью, что и искусственный интеллект, так как врач не может одновременно и лечить людей, и отдыхать, и обновлять информацию, а еще и держать ее в голове. Искусственный интеллект может регулярно обновлять данные об исследованиях и хранить всю полученную информацию. Внедрение такой технологии облегчит жизнь медикам и поможет спасти чьи-то жизни. Так, суперкомпьютер IBM Watson, изучив 20 млн статей о раке, помог выявить редкую форму лейкемии у 60-летней пациентки с неверным диагнозом. С помощью ИИ можно распознавать симптомы возникновения злокачественных новообразований, диагностировать нарушение работы головного мозга, туберкулез, нарушения зрения. Примером работы программы выступает сервис Ada.

В это же время Н. Винер создал свои основополагающие работы по кибернетике. Ляпунова начал свою работу семинар «Автоматы и мышление». В этом семинаре принимали участие крупнейшие физиологи, лингвисты, психологи, математики. Считается, что именно в это время родился искусственный интеллект в России. В то время, как она была разработана для применения в органической химии, она послужила основой для последующей системы MYCIN [4] , которая считается одним из наиболее значимых ранних применений искусственного интеллекта в медицине.

Ведутся также работы по созданию системы TeleMD, которая должна позволить онкологам связываться с коллегами для консультаций и своевременного выявления раковых клеток. Регулирование сферы на законодательном уровне Искусственный интеллект в медицине в России, как впрочем и в остальном мире, представляет собой абсолютно новое решение, требующее самого пристального внимания со стороны не только инвесторов, врачей и пациентов, но и законодателей. Пока данная сфера никак не регламентируется законодательством, а ведь в будущем ИИ может серьезно влиять на работу медицинских учреждений. При этом не стоит забывать, что стопроцентно точные и достоверные результаты машины показывают далеко не всегда: есть вероятность возникновения ошибок, поэтому так важно, чтобы была правовая база, в деталях регламентирующая особенности данной сферы. Работы в этом направлении уже ведутся. К примеру, в стране обсуждается возможность создания специального государственного агентства по робототехнике и введения поста профильного премьера, чтобы специалисты могли курировать сферу в целом. Проблемы внедрения ИИ в здравоохранении: за и против Искусственный интеллект и интернет вещей в здравоохранении — очень перспективные области, внедрение и развитие которых имеет преимущества и недостатки. Повышение эффективности диагностики ИИ работает на основе огромных объемов данных, благодаря чему существенно увеличивается точность и эффективность постановки диагнозов. Чтобы изучить несколько миллионов медицинских карт, специалисту нужны годы, а компьютер справляется с этим за короткое время. Сокращение рутинных задач врачей Искусственный интеллект может взять на себя все задачи, которые отвлекают медицинский персонал от основной работы — спасения человеческого здоровья и жизни. Программы могут подбирать палаты, искать доступное оборудование, следить за исправностью медтехники и т. Уменьшение количества врачебных ошибок ИИ уже сегодня часто показывает более высокую точность при постановке диагнозов и выполнении других работ, чем врач. Если же доктор и ИИ будут работать вместе, то вероятность ошибок сводится практически к уровню статистической погрешности. Инвестиции в ИИ в медицине сегодня чрезвычайно важны — они дают возможность развивать сферу, а в перспективе и полностью изменить весь облик здравоохранения в мире, сделать его более надежным, эффективным, комфортным и безопасным для человека. Однако в настоящее время не все идет гладко. У внедрения систем искусственного интеллекта в медицинскую сферу есть проблемы и недостатки, о которых нельзя забывать. Можно выделить несколько препятствий для ИИ в медицине. Проблемы используемых медицинских данных Для обучения ИИ используются уже имеющиеся медицинские карты пациентов, информация в которых может быть неполной, содержать всевозможные неточности и ошибки. Кроме того, в документах нет такой важной информации о больных, как особенности и условия их жизни, их привычки в том числе вредные и т. И сегодня отсутствуют эффективные механизмы сбора этих данных. Естественно, если использовать для обучения машин информацию, заведомо содержащую неточности и даже ошибки, качество работы систем будет снижаться. Непрозрачный алгоритм принятия решений Системы искусственного интеллекта работают по принципу «черного ящика»: оператор не может посмотреть, почему программа приняла именно такое решение, а не какое-то другое. Практически невозможно определить, по каким причинам ИИ неверно решил задачу. Стоимость Создание и внедрение систем искусственного интеллекта требует серьезного финансирования. Высокая стоимость связана во многом с необходимостью обучать программу, настраивать ее под данные, накопленные в конкретном медицинском учреждении. Кроме того, она требует специального обслуживания, для которого потребуется квалифицированная и мотивированная команда. Безопасность Чтобы ИИ работал качественно и быстро, ему требуются серьезные вычислительные мощности, которых может просто не быть в обычном медучреждении. Если же вынести компьютерную сеть за пределы одного учреждения, существенно увеличивается вероятность вмешательства в ее работу злоумышленников и хакеров. А любое проникновение в работу ИИ в медицинской сфере может стать причиной принятия системой неправильных решений, от которых напрямую зависит здоровье и жизни людей.

Для чего в российских регионах используют ИИ в медицине

Роман Душкин: «Медицина — это область доверия» Ученые из Сколковского института наук и технологий (Сколтех) занимаются применением методов машинного обучения и искусственного интеллекта в медицине.
Вас вылечит… искусственный интеллект. Как ИИ-решения применяются в медицине | Аргументы и Факты Применение искусственного интеллекта в медицине сегодня становится естественным для многих стран.
Обзор Российских систем искусственного интеллекта для здравоохранения Использование искусственного интеллекта в медицине во всем мире вызывает активный интерес и надежду на успехи в лечении.

Вас вылечит… искусственный интеллект. Как ИИ-решения применяются в медицине

Кроме того, искусственный интеллект помогает врачам-терапевтам поликлиник в постановке диагноза и формировании перечня необходимых исследований. Вот лишь некоторые возможности применения технологий искусственного интеллекта (ИИ) в здравоохранении. Искусственный интеллект (ИИ) помогает врачам ставить верный диагноз и назначать нужные исследования.

Какие есть препятствия на пути внедрения ИИ в медицину?

  • Искусственный интеллект создал новое лекарство всего за 21 день
  • Что такое CRISPR?
  • Искусственный интеллект в сфере здравоохранения — Википедия
  • Читайте также

Искусственный интеллект в медицине — не конкурент, но помощник

Как работает анализ медицинских изображений? А врач, когда работает с этим исследованием, уже использует результаты работы искусственного интеллекта, - рассказал "РГ" коммерческий директор компании Цельс Артем Капнинский. И мы эту работу делаем не для того, чтобы заменить его, а чтобы ему помочь. Когда врач работает вместе с искусственным интеллектом, это минимизирует возможность ошибки. До 50 процентов уменьшается время на интерпретацию исследования, и до 15-20 процентов повышается качество - выявление онкологических и других заболеваний на ранних стадиях".

Один из самых активных регионов в плане использования ИИ для анализа медицинских изображений - город Москва. Научная база столицы включает более 10,5 миллиона исследований, проанализированных с помощью сервисов искусственного интеллекта, рассказал директор Центра диагностики и телемедицины, главный внештатный специалист по лучевой и инструментальной диагностике департамента здравоохранения Москвы Юрий Васильев. Врач-рентгенолог большую часть времени что-то пишет, а не смотрит на изображение, а должно быть наоборот", - сказал он. Пока искусственный интеллект применяется в основном для анализа медицинских изображений и электронных медицинских карт Есть и другие технологии ИИ, помогающие повысить эффективность системы здравоохранения.

Например, голосовые сервисы ввода данных устной речи - врач может наговаривать то, что он видит, а данные записываются в медицинскую карту уже в виде текстового сообщения. Сервисы видеоаналитики могут следить за состоянием пациентов с ограничениями по движению, например, в реанимации и при необходимости послать сообщение на пост.

Today, artificial intelligence helps in the diagnosis of diseases and the appointment of optimal treatment.

This article discusses promising areas of artificial intelligence in medicine, implemented on the basis of neural networks. Achievements and prospects of artificial intelligence in medicine Достижения и перспективы искусственного интеллекта в медицине Myasnyankina O. Scientific adviser: Ph.

Мяснянкина О. Научный руководитель: к. The introduction of systems based on artificial intelligence is one of the key trends in modern healthcare.

Keywords: artificial intelligence, machine learning, neural network. Внедрение систем на базе искусственного интеллекта - один из ключевых трендов современного здравоохранения. Сегодня искусственный интеллект помогает в диагностике болезней и назначении оптимального лечения.

В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей. Ключевые слова: искусственный интеллект, машинное обучение, нейронная сеть. Рецензент: Гладских Наталья Александровна - Кандидат технических наук, ассистент кафедры медицинской информатики и статистики.

ВГМУ им. Бурденко В современном мире информационные технологии затрагивают почти каждую сферу деятельности человека. И медицина тому не исключение.

Говорит заместитель руководителя Федеральной службы по надзору в сфере здравоохранения Дмитрий Павлюков: «Нам нужно понимать, насколько вообще несет в себе риски этот продукт и как его дальше регулировать. Мы вывели на рынок 11 программных продуктов с искусственным интеллектом. Почти все они были зарегистрированы в Росздравнадзоре в 2021 году. На сегодня не было ни одного неблагоприятного события, связанного с их применением. Но вместе с тем, так как мы относим эти программные продукты к высокому классу риска, до февраля 2022 года все производители должны предоставить подробные отчеты об их применении в медицинской практике, чтобы мы могли аккумулировать данные и понять, как развивается эта технология». Здравоохранение — лидер по применению искусственного интеллекта Эксперт по искусственному интеллекту «Центрального научно-исследовательского института организации и информатизации здравоохранения» Минздрава России Александр Гусев отмечает: «Сейчас сфера искусственного интеллекта является мировым рекордсменом в мире по размеру инвестиций, вливаемых в программные продукты с использованием технологий ИИ, и по количеству сделок. Здравоохранение — это та отрасль, где инвесторы имеют максимальные надежды на то, что эти продукты будут востребованы и популярны». По словам А.

Это абсолютный рекорд по сравнению с другими отраслями. А по размеру привлеченных средств у здравоохранения второе место — 2,766 млрд. Впереди только транспорт и логистика. Но, несмотря на эти рекорды, с прошлого года все острее становится дискуссия о доверии и ответственном отношении всех участников сферы ИИ. Слишком много спекуляций. Большая часть ни к чему плохому не привела, однако 18 процентов причинили вред разной степени тяжести, в том числе были зафиксированы 4 смертельных случая. Будет доказанная безопасность, будет и доверие. Стандарты — залог доверия По мнению Дмитрия Павлюкова, которое он высказал на форуме, в условиях формирования доверия ключевую роль играет стандартизация в области применения ИИ.

Как отмечает его председатель Сергей Гарбук, в области здравоохранения стандартизация ИИ наиболее актуальна.

Отрабатываются механизмы сбора обратной связи о работе сервисов на базе ИИ. Следующее, что мы сделаем, — продумаем, как мотивировать врачей на работу с ИИ-решениями», — объяснил Андрей Дорофеев.

Для выбора обоснованного подхода к этому вопросу он предлагает рассмотреть три различных уровня зрелости ИИ-систем: «Первый уровень — это новые идеи и разработки, требующие апробации на предмет востребованности рынком. Такие решения еще не прошли необходимые клинические испытания. Источником финансирования для них могут быть собственные средства разработчиков, инвесторов или институтов развития.

Второй уровень — это технологически зрелые компании, имеющие регистрационное удостоверение медицинского изделия Росздравнадзора на свою ИИ-систему. Такие решения уже полностью готовы к внедрению, но пока не имеют убедительных доказательств клинической или экономической эффективности. Их оптимально финансировать за счет целевых программ, как это, например, реализуется в рамках московского эксперимента.

Третий уровень — это продукты, успешно прошедшие проспективные контролируемые клинические исследования. Решения, по которым собрана обширная доказательная база их клинической или экономической эффективности. При «погружении» таких систем в клинические рекомендации появится возможность оплачивать их применение из средств ОМС.

Пока таких продуктов на рынке России нет». Наконец, немаловажной проблемой является доверие к ИИ со стороны практического здравоохранения — о ней говорили Борис Зингерман, Антон Владзимирский и Александр Гусев. Без формирования доверия невозможно будет ожидать массового применения врачами систем на основе ИИ.

Для ее решения необходима продуманная стратегия, включающая обеспечение прозрачности создания и валидации ИИ-систем, развитие доступа к качественным наборам данных, а также публикацию научных работ в этой сфере.

Подписка на дайджест

  • «Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине
  • Первое в истории ИИ-лекарство
  • Искусственный интеллект в медицине. Настоящее и будущее | Образовательная социальная сеть
  • «Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине
  • Искусственный интеллект в медицине: применение и перспективы

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ

Как искусственный интеллект создает лекарства. ИИ от фирмы Insilico Medicine носит название GENTRL. На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России. Начались клинические испытания первого лекарства, целиком разработанного искусственным интеллектом (ИИ), сообщает CNBC. Искусственный интеллект в медицине: применение, технологии, вызовы, перспективы практического внедрения. Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов. искусственный интеллект в медицине, искусственный интеллект. Рост применения КТ приводит к выявлению большого количества очагов и округлых образований в легких.

Нейросеть для медиков: искусственный интеллект научился ставить диагнозы

Кроме того, искусственный интеллект помогает врачам-терапевтам поликлиник в постановке диагноза и формировании перечня необходимых исследований. Несмотря на то, что искусственный интеллект сегодня является одной из основополагающих технологий в здравоохранении и персонализированной медицине, в профессиональной среде возникает вопрос: а так ли умен ИИ и какие риски связаны с его применением? Однако внедрение искусственного интеллекта в медицину сопряжено с некоторыми рисками и ограничениями. Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств.

Искусственный интеллект идет в медицину: успешные бизнес-решения в отрасли

Возможности нейросетей и искусственного интеллекта активно тестируют в самых разных отраслях медицины: от диагностики и профилактики болезней до вирусологии и генетики. На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России. Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования. ИИ может быть недостоверным в своих заключениях, кроме того, использование искусственного интеллекта в медицине может противоречить установленным этическим нормам и нарушать конфиденциальность пациентов. Преимущества применения нейросетей в медицине очевидны – возможность обрабатывать большие массивы данных в короткие сроки, а также точность диагностики. Сегодня искусственный интеллект позволяет выявить опасные заболевания на самых ранних этапах, создавать оптимальные схемы терапии, сводить к минимуму вероятность ошибок в лабораторной диагностике и даже делать хирургические операции.

Похожие новости:

Оцените статью
Добавить комментарий