Новости презентация биотехнологии

нология достижения и перспективы развития – 1 061 просмотр, продолжительность: 10:13 мин., нравится: 1. Статья автора «РБК Тренды» в Дзене: Что сегодня происходит в биомедицине и как высокие технологии помогают даже в безнадежных случаях Биотехнологии – сфера науки. Таким чекпойнтом для многих молодых биологов, биотехнологов, предпринимателей стали зимние школы «Современная биология и Биотехнологии будущего». Одним из направлений биотехнологии является селекция – выведение ценных для человека сортов растений или пород животных.

Вертикальные фермы и медицина: столичным школьникам рассказали о современных биотехнологиях

В этом видеоуроке мы обсудим биотехнологию: узнаем, где она используется, рассмотрим ее современное состояние и перспективы на ближайшее ание. Презентация учебника «Биотехнология: основы биотехнологии и медицинской нанобиотехнологии» педагога и депутата ЗСО Елены Бахтенко прошла в ВоГУ. Смотрите онлайн Презентация программы «Клеточная и молекулярная. 43 мин 57 с. Видео от 25 мая 2023 в хорошем качестве, без регистрации в бесплатном видеокаталоге ВКонтакте! Главная» Новости» Конференции по биотехнологии в 2024 году в россии. Discover the magic of the internet at Imgur, a community powered entertainment destination. Lift your spirits with funny jokes, trending memes, entertaining gifs, inspiring stories, viral videos, and so much. Industry expansion has followed such innovation. The global biotechnology market is currently valued at 752.8 Billion — and growing. The development of breakthrough health initiatives from biotech will.

Учёные впервые напечатали на 3D-принтере живые ткани человеческого мозга

Задача Форума — дать возможность для встречи и научных дискуссий специалистам в области разработки фундаментальных основ биотехнологий и специалистам, внедряющим инновационные разработки в клиническую практику, фармацевтические и пищевые производства. Попов и Федерального научного центра пищевых систем им. В работе Форума примут участие российские специалисты и ученые, в том числе 18 членов РАН, а также представители научного сообщества таких стран, как Индия три члена Индийской академии биомедицинских наук, в том числе Вице-президент Академии — профессор Hari S. В рамках Форума будут обсуждаться такие важные направления, как Современные вызовы и перспективные направления развития биотехнологий, Современные подходы в ранней диагностике, лечении и реабилитации пациентов при социально значимых заболеваниях, Применение нанотехнологий и IT технологий в здравоохранении и биомедицине, Возможности разработки и внедрения инновационных биомедицинских технологий на базе Университетской онкологической клиники, Профилактика онкологических заболеваний, Экологическая безопасность в биотехнологии и медицине, Пищевые биотехнологии и стратегии развития пищевых систем, Функциональная и специализированная пищевая продукция и др. В рамках Форума пройдет Третья Международная конференция «Перспективные подходы и технологии в задачах биомедицины и клинической практики» Сопредседатели: академик Ю. Гуляев, научный руководитель ИРЭ им.

Для повышения продуктивности животных нужен полноценный корм.

Микробиологическая промышленность выпускает кормовой белок на базе различных микроорганизмов - бактерий, грибов, дрожжей, водорослей. Как показали промышленные испытания, богатая белками биомасса одноклеточных организмов с высокой эффективностью усваивается сельскохозяйственными животными. Так, 1 т кормовых дрожжей позволяет сэкономить 5-7 т зерна. Долли была зачата из клетки молочной железы овцы, которой уже давно не было в живых, а ее клетки хранились в жидком азоте. Методика, с помощью которой была создана Долли, известна под названием "перенос ядра", то есть из неоплодотворенной яйцеклетки было удалено ядро, а вместо него помещено ядро из соматической клетки. В настоящее время с помощью биосинтеза получают антибиотики, ферменты, аминокислоты, гормоны.

Например, гормоны раньше, как правило, получали из органов и тканей животных. Следовательно, трудно было получить необходимое количество препарата, и он был очень дорог. Так, инсулин, гормон поджелудочной железы, — основное средство лечения при сахарном диабете. Этот гормон надо вводить больным постоянно. Производство его из поджелудочной железы свиньи или крупного рогатого скота сложно и дорого. К тому же молекулы инсулина животных отличаются от молекул инсулина человека, что нередко вызывало аллергические реакции, особенно у детей.

Медицинская генетика в будущем сможет не только предотвращать появление на свет неполноценных детей путем диагностирования генетических заболеваний, но и проводить пересадку генов для решения существующей проблемы. Биотехнология в будущем даст человечеству огромные возможности не только в медицине, но и в других направлениях современных наук. Биотехнологии в современной науке Биотехнологии в современной науке несет огромную пользу. За счет открытия генной инженерии стало возможным выведения новых сортов растений и пород животных, которые принесут пользу сельскому хозяйству. Изучения биотехнологии связано не только лишь с науками биологического направления. В микроэлектронике разработаны ион-селективные транзисторы на основе полевого эффекта HpaI.

Биотехнология необходима для повышения нефтеотдачи нефтяных пластов. Наиболее развитым направлением является использование биотехнологии в экологии для очистки промышленных и бытовых сточных вод. В развитие биотехнологии внесли свой вклад многие другие дисциплины, именно поэтому биотехнологии стоит отнести к комплексной науке. Еще одной причиной активного изучения и усовершенствования знаний в биотехнологии стал вопрос в недостатке или будущем дефиците социально-экономических потребностей. В мире существуют такие проблемы, как: нехватка пресной или очищенной воды в некоторых странах ; загрязнение окружающей среды различными химическими веществами; дефицит энергетического ресурса; необходимость усовершенствования и получения совершенно новые экологически чистых материалов и продуктов; повышение уровня медицины. Ученые уверенны, что решить эти и многие другие проблемы возможно при помощи биотехнологии.

Основные типовые технологические приемы современной биотехнологии Биотехнологию можно выделить не только как науку, но еще и как сферу практической деятельности человека, которая отвечает за производство разного вида продукции при участии живых организмов или их клеток. Теоретической основой для биотехнологии в свое время стала такая наука, как генетика, это случилось в ХХ веке. А вот практически биотехнология основывалась на микробиологической промышленности. Микробиологическая промышленность в свою очередь получила сильный толчок в развитии после открытия и активного производства антибиотиков. Объектами, с которыми работает биотехнология, являются вирусы, бактерии, различные представители флоры и фауны, грибы, а также органоиды и изолированные клетки. Наглядная биотехнология.

Генная и клеточная инженерия Генетическая и клеточная инженерия в сочетании с биохимией — это основные сферы современной биотехнологии.

Добавим, что ТГУ активно развивает направление биотехнологии. В этом году Томский государственный университет выиграл конкурс крупнейшего фонда - Российской венчурной компании - на право провести всероссийскую акселерационную программу BioTechMed.

Проект включает работу с регионами России, поиск и отбор стартапов. По итогам лучшие команды пройдут обучение и получат возможность найти инвестиции и поддержку и крупного бизнеса.

Биотехнология: изображения без лицензионных платежей

В данном разделе вы найдете много статей и новостей по теме «биотехнологии». Все статьи перед публикацией проверяются, а новости публикуются только на основе статей из. Биотехнологии являются одной из самых быстрорастущих и инновационных отраслей. Антипирены по-прежнему остаются токсичной проблемой жилищ Читать далее. Главная Наука ГЛАВНЫЕ НОВОСТИ Биотехнологии.

Перспективные направления биотехнологии

Слайд 3Биотехнологией часто называют применение генной инженерии в XX—XXI веках Однако, термин относится. Биотехнологии, биоинженерия, биомедицина и смежные области. Антипирены по-прежнему остаются токсичной проблемой жилищ Читать далее. Главная Наука ГЛАВНЫЕ НОВОСТИ Биотехнологии.

Презентация - Биотехнология-наука будущего

Ферментация занимает от нескольких дней до нескольких недель. Затем будущее пиво фильтруется и выдерживается. Выпечка хлеба и мучных изделий Местом, где используется процесс ферментации, являются также пекарни и кондитерские. В пшеничную муку добавляют дрожжи, чтобы взбить тесто. Пекарские дрожжи выделяют много углекислого газа, который раздувает тесто, увеличивая его объем. Для ржаного хлеба нужна закваска, содержащая молочнокислые бактерии.

Его приготовление заключается в том, чтобы подвергнуть муку процессу брожения. Для этого муку смешивают с водой и ставят на несколько дней в теплое место. Приготовленную таким образом закваску добавляют к ржаной муке, чтобы распушить тесто и придать ему отчетливый кислый вкус. Создание антибиотиков Особую роль в лечении смертельных бактериальных заболеваний сыграло промышленное производство природных антибиотиков. Первый антибиотик — пенициллин — был открыт случайно в 1928 году.

Александр Флеминг выращивал очень опасные бактерии стафилококка. Однажды он забыл закрыть ферму для размножения. Вернувшись в лабораторию, он заметил, что на чашке появилась зеленовато-голубая плесень, вокруг которой не было колоний бактерий. Флеминг пришел к выводу, что плесень выделяет бактерицид. Веществом, тормозившим рост бактерий, оказался грибок Penicillium.

Экстракт, выделенный из гриба, назвали пенициллином. Это открытие было прорывом, потому что до появления первого антибиотика любой даже небольшой порез мог привести к необходимости ампутации инфицированной конечности или к смерти, а туберкулез и венерические заболевания наносили огромный урон здоровью. Благодаря возможности производства антибиотиков многие бактериальные заболевания больше не считаются опасными. Горнодобывающая промышленность В горнодобывающей промышленности используются бактерии, обладающие способностью выщелачивать извлекать различные элементы из обедненных руд. Для микроорганизмов, используемых в этих процессах, неорганические соединения, например сульфиды металлов, присутствующие в руде, могут быть источником энергии.

С 2022 года Форум проводится при поддержке Отделения нанотехнологий и информационных технологий, Отделения медицинских наук и Отделения сельскохозяйственных наук РАН. Форум посвящен 300-летию Российской академии наук. Задача Форума — дать возможность для встречи и научных дискуссий специалистам в области разработки фундаментальных основ биотехнологий и специалистам, внедряющим инновационные разработки в клиническую практику, фармацевтические и пищевые производства. Попов и Федерального научного центра пищевых систем им. В работе Форума примут участие российские специалисты и ученые, в том числе 18 членов РАН, а также представители научного сообщества таких стран, как Индия три члена Индийской академии биомедицинских наук, в том числе Вице-президент Академии — профессор Hari S.

В рамках Форума будут обсуждаться такие важные направления, как Современные вызовы и перспективные направления развития биотехнологий, Современные подходы в ранней диагностике, лечении и реабилитации пациентов при социально значимых заболеваниях, Применение нанотехнологий и IT технологий в здравоохранении и биомедицине, Возможности разработки и внедрения инновационных биомедицинских технологий на базе Университетской онкологической клиники, Профилактика онкологических заболеваний, Экологическая безопасность в биотехнологии и медицине, Пищевые биотехнологии и стратегии развития пищевых систем, Функциональная и специализированная пищевая продукция и др.

На мероприятии были вручены медали и дипломы победителям конкурсов инновационных разработок, проектов и стартапов. В этом году мероприятие проводится в 17 раз и традиционно было организовано при сотрудничестве трех отделений Российской академии наук: Отделения нанотехнологий и информационных технологий, Отделения медицинских наук и Отделения сельскохозяйственных наук РАН.

На Форуме были представлены достижения в области фундаментальных и прикладных биотехнологических исследований. На площадке РОСБИОТЕХ-2024 прошли пленарные заседания, тематические сессии, круглые столы, выставка-презентация инновационных разработок в области биотехнологий для здравоохранения, пищевой промышленности и сельского хозяйства и награждение научно-исследовательских коллективов за актуальные разработки. Основная цель Форума — предоставить специалистам в фундаментальных и прикладных отраслях биотехнологий, медицины, фармацевтических и пищевых производств возможность презентовать свои исследования, наладить контакты, провести плодотворные научные дискуссии, в том числе для возможности инициирования совместных проектов — междисциплинарных и международных.

На мероприятии встретились учёные и разработчики наукоёмких технологий из России, Индии, Китая, Ирана, Австралии, Кубы и других стран.

Универсальная вакцина против гриппа. В конце 2018 года первая универсальная вакцина против гриппа, разработанная израильской компанией BiondVax, вышла на завершающую фазу клинических испытаний. В основе вакцины — части антигенов, которые «узнают» клетки иммунной системы эпитопов. По словам представителей компании, универсальная вакцина способна защитить как от ежегодного, сезонного гриппа, так и в случае возникновения пандемий. Редактирование генов. Сегодня проводятся эксперименты по редактированию генов в самом теле человека.

В сентябре 2018 года Sangamo Therapeutics из Ричмонда , обнародовали информацию о введении редактирующих гены ферментов пациенту, организм которого не справляется с расщеплением сложных сахаров. Правда, пока установлено, насколько это безопасно для жизни и здоровья пациентов. Компьютеры внутри человека.

Современные биотехнологии и проблемы биоэтики Выполнила студентка VI

Для этого ферменты переводят в нерастворимую форму, закрепляя их на твёрдом носителе. Такие ферменты называют иммобилизованными, а процесс закрепления —иммобилизацией ферментов. Иммобилизованный на природном или синтетическом носителе фермент не смешивается с реагирующими веществами, но катализирует реакцию между ними 6 слайд Аэробная и аэробно биологическая очистка Аэробную с участием кислорода воздуха очистку осуществляют как в естественных условиях — на полях орошения, полях фильтрации, биологических прудах и каналах, так и в искусственных условиях — в аэротенках, биофильтрах и аэрофильтрах. При аэробной очистке «работают» бактерии, которые окисляют органические вещества и способствуют осаждению загрязняющих частиц. Анаэробная биологическая очистка эффективна при больших концентрациях загрязняющих веществ, так как анаэробные бактерии, осуществляющие процессы очистки, не нуждаются в присутствии растворённого в воде кислорода.

Глубокое понимание механизма возникновения заболевания, в который вовлечены нуклеиновые кислоты, дает возможность сконструировать терапевтические нуклеиновые кислоты, восполняющие утраченную функцию либо блокирующие возникшую патологию.

Двуцепочечные молекулы нуклеиновых кислот, ДНК и РНК, формируются благодаря взаимодействию пар нуклеотидов, способных к взаимному узнаванию и образованию комплексов за счет формирования водородных связей. В Новосибирске были созданы и первые препараты ген-направленного действия для избирательной инактивации вирусных и некоторых клеточных РНК. Подобные ген-направленные терапевтические препараты сегодня активно разрабатываются на основе нуклеиновых кислот, их аналогов и конъюгатов антисмысловых олигонуклеотидов, интерферирующих РНК, аптамеров, систем геномного редактирования. Было доказано, что с помощью подобных соединений можно подавить функционирование определенных матричных РНК живой клетки, воздействуя на синтез белков, а также защитить клетки от вирусной инфекции. Так, олигонуклеотиды, комплементарные последовательности матричной РНК, подавляют экспрессию генов на стадии трансляции, т.

Но терапевтические нуклеиновые кислоты могут вмешиваться и в другие молекулярно-биологические процессы, например, исправлять нарушения в процессе сплайсинга при созревании мРНК. Ведутся испытания ряда противовирусных и противовоспалительных препаратов, созданных на основе искусственных аналогов олигонуклеотидов, а некоторые из них уже начинают внедряться в клиническую практику. Ее организатором стал профессор Йельского университета, Нобелевский лауреат С. В лаборатории ведутся исследования физико-химических и биологических свойств новых перспективных искусственных олигонуклеотидов, на основе которых разрабатываются РНК-направленные противобактериальные и противовирусные препараты. В рамках проекта, руководимого С.

Альтманом, было выполнено масштабное систематическое исследование воздействия различных искусственных аналогов олигонуклеотидов на патогенные микроорганизмы: синегнойную палочку, сальмонеллу, золотистый стафилококк, а также вирус гриппа. Были определены гены-мишени, воздействием на которые можно наиболее эффективно подавить эти патогены; проводится оценка технологических и терапевтических характеристик самых действующих аналогов олигонуклеотидов, в том числе проявляющих антибактериальную и противовирусную активность. Эти новые соединения электронейтральны, устойчивы в биологических средах и прочно связываются с РНК- и ДНК-мишенями в широком диапазоне условий. Благодаря спектру уникальных свойств они перспективны для применения в качестве терапевтических агентов, а также могут быть использованы для повышения эффективности средств диагностики, основанных на биочиповых технологиях. Среди коммерческих фирм лидером в создании терапевтических нуклеиновых кислот является американская компания Ionis Pharmaceuticals, Inc.

Препараты Ionis против ряда других заболеваний проходят клинические испытания. Более эффективным является ферментативное разрезание мРНК, спровоцированное связыванием терапевтического олигонуклеотида с мишенью. Этот фермент и сам представляет собой РНК с каталитическими свойствами рибозим. Чрезвычайно мощным средством подавления активности генов оказались не только антисмысловые нуклеотиды, но и двуцепочечные РНК, действующие по механизму РНК-интерференции. Использование этого механизма открывает новые возможности для создания широкого спектра высокоэффективных нетоксичных препаратов для подавления экспрессии практически любых, в том числе вирусных, генов.

Молекулы нуклеиновых кислот, избирательно связывающие определенные вещества, называются аптамерами. На их основе могут быть получены препараты, блокирующие функции любых белков: ферментов, рецепторов или регуляторов активности генов. В настоящее время получены уже тысячи самых разных аптамеров, находящих широкое применение в медицине и технике. Модификации по азотистому основанию придают таким аптамерам дополнительную «белковоподобную» функциональность, что обеспечивает высокую стабильность их комплексам с мишенями. Кроме того, это увеличивает вероятность успешного отбора сомамеров к тем соединениям, к которым подобрать обычные аптамеры не удалось.

Развитие синтетической биологии происходит на базе революционного прорыва в области олигонуклеотидного синтеза. Синтез искусственных генов стал возможным благодаря созданию высокопроизводительных синтезаторов генов, в которых использованы микро- и нанофлюидные системы. Примером развития микрочиповых технологий могут служить американская фирма LC Sciences и немецкая Febit Gmbh. Биочиповый реактор производства LC Sciences с использованием стандартных реагентов для олигонуклеотидного синтеза позволяет одновременно синтезировать 4—8 тыс. Микрочиповый реактор фирмы Febit Gmbh состоит из 8 независимых фрагментов, на каждом из которых одновременно синтезируется до 15 тыс.

И на очереди множество подобных препаратов. Этот сенсор способен «улавливать» молекулы лишь определенных белков, которые необходимо детектировать в образце. В настоящее время по этой схеме конструируются переключаемые биосенсоры к модифицированным белкам крови, служащим маркерами диабета. Новым объектом среди терапевтических нуклеиновых кислот является и сама матричная информационная РНК. При попадании в клетку мРНК действуют в ней как ее собственные.

В результате клетка получает возможность производить белки, которые могут предотвратить или остановить развитие заболевания.

Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом. Правильно подберите наряд, так как одежда докладчика также играет большую роль в восприятии его выступления.

Создание биотехнологического комплекса работы по строительству, которого в настоящее время проводятся в Мичуринском районе по производству безвирусного посадочного материала плодовых, ягодных и декоративных садовых культур с проектной мощностью 14 млн растений в год. Этот комплекс создаст 100 новых высокотехнологичных рабочих мест для профильных специалистов и 30 для технических работников. Подобные мощности будут самыми значительными не только в РФ, но и во всей Восточной Европе.

Сотрудники комплекса будут осуществлять как производственную деятельность, так и заниматься фундаментальными научными исследованиями в области биотехнологии, биохимии, генетики и защиты растений. Сегодня рынок посадочного материала составляет 300 млрд.

Биотехнология: изображения без лицензионных платежей

В связи с тем, что бактерии, грибы и вирусы способны эффективно бороться с вредителями сельского и лесного хозяйства, а также с возбудителями и переносчиками заболеваний,… В связи с тем, что бактерии, грибы и вирусы способны эффективно бороться с вредителями сельского и лесного хозяйства, а также с возбудителями и переносчиками заболеваний, их штаммы используют для приготовления биопрепаратов. Преимущество этих биологических методов борьбы состоит в том, что они не только снижают численность паразитов, будучи безвредными для других организмов, но и не загрязняют при этом окружающую среду токсичными соединениями. Клеточная инженерия — метод конструирования клеток нового типа на основе их культивирования на питательной среде, гибридизации и реконструкции Клеточная инженерия — метод конструирования клеток нового типа на основе их культивирования на питательной среде, гибридизации и реконструкции. При этом в клетки вводят новые хромосомы, ядра и другие клеточные структуры. Достижения клеточной инженерии растений, которая позволяет сформировать целое растение, в том числе с измененными свойствами, из отдельной клетки, нашли широкое применение в растениеводстве и селекции. Так, стали возможными соматическая гибридизация, клеточная селекция, гаплоидизация, преодоление нескрещиваемости в культуре и другие приемы. Технологии искусственного оплодотворения , за разработку которых присуждена Технологии искусственного оплодотворения, за разработку которых присуждена Нобелевская премия в области физиологии и медицины в 2010 году, также базируются на методах клеточной инженерии. Генная инженерия — это отрасль молекулярной биологии и генетики, задачей которой является конструирование генетических структур по заранее намеченному плану, создание организмов с новой генетической программой Генная инженерия — это отрасль молекулярной биологии и генетики, задачей которой является конструирование генетических структур по заранее намеченному плану, создание организмов с новой генетической программой. Во многих случаях это сводится к переносу необходимых генов от одного вида живых организмов к другому, зачастую очень далекому по происхождению. Переносу генов предшествует кропотливая работа по выявлению нужного гена в геноме организма - донора вируса, бактерии, растения, животного, гриба и его выделению Переносу генов предшествует кропотливая работа по выявлению нужного гена в геноме организма - донора вируса, бактерии, растения, животного, гриба и его выделению. Это наиболее трудная часть работы, поскольку вместе со структурным геном необходимо перенести и регуляторные.

В качестве векторов чаще всего используют вирусы, плазмиды бактерий, хромосомы митохондрий и пластид, а также искусственно сконструированные молекулы ДНК. Процесс введения вектора новой Процесс введения вектора новой ДНК в клетку-хозяина называется трансформацией. Последний этап работы заключается в размножении организмов-хозяев и отборе тех из них, в которых «прижился» введенный ген. В настоящее время применяют и прямое введение ДНК в клетки эукариот с помощью электрических разрядов, генной пушки и другими способами. Полученные в результате переноса генов организмы называются генетически модифицированными, или трансгенными.

Печать непосредственно на ране представляется наиболее быстрым и доступным способом восстановить ткани пациента.

До сих пор для этого ткани для восстановления выращивались отдельно в стерильных условиях, что требовало времени и затрат. Роботизированный комплекс сразу в процессе операции сканировал рану, создавал её 3D-модель и корректировал заполнение с учётом перемещений тела, например, в процессе дыхания. Ранее комплекс был испытан на животных и показал свою состоятельность. Первая операция на человеке была проведена в Главном Военном Клиническом Госпитале им. Живые клетки для «чернил» принтера брались из костного мозга пациента. Композиция состоит из смеси высокоочищенного концентрированного стерильного раствора коллагена и клеток.

Такая методика проводилась впервые, она особенно актуальна при множественных осколочных ранениях конечностей, когда донорский ресурс ограничен. При обширных ранениях в перспективе мы планируем сканировать тело полностью и замещать все раны таким методом. Это ускорит время их заживления и позволит сократить время пребывания пациентов в стационаре», — подчеркнул травматолог-ортопед 1 квалификационной категории, хирург Владимир Беседин, контролировавший операцию в ГВКГ им. Как отметил директор Института биомедицинской инженерии НИТУ МИСИС Фёдор Сенатов, в скором будущем мы можем ожидать более масштабного внедрения в клиническую практику технологии биопечати in situ непосредственно в рану. Колония живых нейронов обучалась быстрее искусственных моделей с почти таким же результатом. Если отбросить вопрос с этикой, до проблем с которой пока далеко, живые клетки человеческого мозга могут превзойти современные и будущие нейронные сети, работающие на кремниевых чипах, как по производительности, так и по экономическим соображениям.

Источник изображений: Nature Electronics С помощью стволовых клеток учёные вырастили так называемый органоид мозга — объёмную колонию клеток, повторяющих структуру нейронов и их связей в мозге. Это не первый и наверняка не последний эксперимент с живыми клетками, позаимствованными у человека. Ранее органоид мозга, например, научили игре в «Понг», с чем он успешно справился. В таких исследованиях самым сложным бывает донести информацию до «мозга» и считать её. Группа профессора Го Фэня из Университета штата Индиана в Блумингтоне США предложила достаточно простое решение — они вырастили органоид на высокоплотном массиве электродов. Электроды, а это, по сути, компьютерный интерфейс, вносили данные в клетки «мозга» и считывали результат его последующей активности.

Тем самым на практике была реализована такая архитектура спайковой импульсной нейросети, как резервуарная. Что происходило в массиве нейронов, учёным было неизвестно, но условно живая модель показала способность к быстрому обучению и расчётам. Свою нейросеть учёные назвали Brainoware. Система прошла двухдневное обучение на наборе из 240 аудиозаписей речи восьми японских мужчин, произносящих гласные звуки. Также система смогла решать уравнения по отображениям Эно примерно с такой же точностью. На это ушло ещё четыре дня обучения.

Более того, решение дифференциальных уравнений проходило с большей точностью, чем в случае искусственной нейронной сети без блока длинной цепи элементов краткосрочной памяти. Мозг Brainoware в «возрасте» 7, 14, 28 дней и через несколько месяцев нижний ряд в увеличенном виде Живой искусственный «мозг» был не такой точный, как искусственные нейронные сети с длинной цепью элементов краткосрочной памяти, но каждая из этих сетей прошла 50 этапов обучения. Для этого раствор армируется волокнами со спорами особых бактерий. Разработка может избавить от дорогостоящих ремонтных работ, что также снизит потребность в стройматериале, производство которого наносит один из тяжёлых уронов окружающей среде. Источник изображения: Drexel University Человечество бесконечно строит и ремонтирует. Бетон стал самым востребованным материалом в этом процессе.

Самовосстанавливающиеся бетонные конструкции помогли бы сэкономить на средствах для ремонта, и это также сократило бы вредные выбросы в атмосферу. Группа физиков, химиков, биологов, материаловедов и строителей из Дрексельского университета нашла возможное решение проблемы. Учёным давно известны бактерии, которые минерализуют добытый из воздуха углерод, превращая его в «камень». Если в трещинах бетона поселить колонии таких бактерий, то они самостоятельно заполнят трещины минералами и сцементируют её края. Исследователи подобрали перспективный для поставленной задачи штамм бактерий Lysinibacillus sphaericus. Оставался вопрос, как сохранить бактерии и активировать их только для случая появления трещин.

Для этого споры бактерий поместили в гидрогель и покрыли всё это полимерной оболочкой. Получилась тончайшая полимерная арматура, которая сама по себе придавала бетону дополнительную прочность. Если в бетоне с полимерной арматурой возникала трещина, то когда она доходила до волокна, внутреннее давление высвобождало гидрогель и споры бактерий. Споры превращались в живых бактерий, которые питались кальцием и поглощали углерод из воздуха, образуя взамен минеральные соединения в виде карбоната кальция. Трещина зарастала с такой скоростью, которая обещает залечивать подобные раны в бетоне за сутки или двое. Разработанный учёными материал пока не годится для коммерческого применения, для этого с ним ещё предстоит много работы.

Однако идея вполне рабочая и может со временем воплотиться в жизнь. Бактерии можно будет даже подселять лишь в трещины, не добавляя изначально в раствор. Ремонт сведётся до прогулки вдоль строений с бутылкой аэрозоля вместо замеса, вёдер с раствором, мастерков и всего вот этого. Ждём видео в интернете, как в домашних условиях вырастить полезных цементирующих бактерий, например, на перловке. Биологический материал включили в стандартный техпроцесс производства чипов, что обещает сделать его использование массовым. Сочетание кремния и биотехнологий позволяет гибридным электронным цепям реагировать одновременно на электрические и биологические сигналы, открывая путь к датчикам здоровья и нейропроцессорам.

Перспективы подобных решений невозможно переоценить. Нейросети, подобные мозгу процессоры, датчики биологических процессов в организме людей — это многое изменит в жизни людей. Произойдёт это не завтра и не послезавтра, но рано или поздно мир станет совершенно иным. Подтолкнут ли к этим изменениям только что представленные гибридные транзисторы, или они канут в небытие, мы пока не знаем. Но на данном этапе разработка демонстрирует ряд интересных свойств, например, способность вписаться в современные техпроцессы выпуска микросхем. Предложенный учёными гибридный процессор в качестве изолятора очевидно, затвора использует материал на основе белка фиброина, входящего в состав шёлковых нитей и, например, паутины.

С пленарными докладами о новых разработках в области пищевых технологий, функционального и специализированного питания выступили профессор Линдси Браун из Университета Гриффита в Австралии и доцент Института пищевых наук Чжэцзянской академии сельскохозяйственных наук Кэ Кэ Чжао, Китай. Академик РАН Владимир Алексеевич Черепенин рассказал о возможности применения мощных ультракоротких электромагнитных импульсов для борьбы с онкологическими заболеваниями, в том числе с карциномой. Уже внедрённой в клиническую практику инфракрасной термографии посвятил свой доклад ведущий научный сотрудник Института радиотехники и электроники им. Котельникова Михаил Иванович Щербаков.

Об инновационных разработках биоматериалов на основе коллагена для неудовлетворенных биомедицинских потребностей, например для применения в кардиохирургии коллагеновой мембраны, рассказал Б. В рамках Форума прошла выставка инновационных продуктов для здоровьесбережения, а также состоялось награждение научно-исследовательских коллективов дипломами и медалями в номинациях «Конкурс молодых ученых, аспирантов и студентов» и «Конкурс инновационных разработок и проектов в области биотехнологий».

В номинациях «Конкурс молодых ученых, изобретателей, аспирантов и студентов» и «Конкурс инновационных разработок и проектов в области биотехнологий» золотые медали и дипломы получили представители РГАУ-МСХА им. Тимирязева за исследования, которые проводятся ими в ходе деятельности НЦМУ «Агротехнологии будущего»: Метод создания генетически редактированных растений путем доставки целевых биомолекул через пыльцевые зерна Авторы Л. Хрусталева, Мардини Мажд, А. Молочные продукты с антиоксидантами Авторы В. Янковская, Н. Дунченко, М.

Биотехнологии – медицине будущего

Привлечены партнеры из ERA-Net EuroTransBio (ETB). (эффективный инструмент финансирования малых предприятий, работающих в области современных биотехнологий). Фон для презентации по биотехнологии Открыть оригинал. Найдите нужное среди 340 529 стоковых фото, картинок и изображений роялти-фри на тему «биотехнологии» на iStock. Фон для презентации по биотехнологии Открыть оригинал.

Биотехнологии – медицине будущего

Привлечены партнеры из ERA-Net EuroTransBio (ETB). (эффективный инструмент финансирования малых предприятий, работающих в области современных биотехнологий). На площадке РОСБИОТЕХ-2024 прошли пленарные заседания, тематические сессии, круглые столы, выставка-презентация инновационных разработок в области биотехнологий для. Биотехнология – это промышленное использование биологических процессов и систем на основе выращивания высокоэффективных форм микроорганизмов.

Презентация к исследовательской работе «Зеленые биотехнологии»

На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.

При обширных ранениях в перспективе мы планируем сканировать тело полностью и замещать все раны таким методом. Это ускорит время их заживления и позволит сократить время пребывания пациентов в стационаре», — подчеркнул травматолог-ортопед 1 квалификационной категории, хирург Владимир Беседин, контролировавший операцию в ГВКГ им. Как отметил директор Института биомедицинской инженерии НИТУ МИСИС Фёдор Сенатов, в скором будущем мы можем ожидать более масштабного внедрения в клиническую практику технологии биопечати in situ непосредственно в рану. Колония живых нейронов обучалась быстрее искусственных моделей с почти таким же результатом. Если отбросить вопрос с этикой, до проблем с которой пока далеко, живые клетки человеческого мозга могут превзойти современные и будущие нейронные сети, работающие на кремниевых чипах, как по производительности, так и по экономическим соображениям. Источник изображений: Nature Electronics С помощью стволовых клеток учёные вырастили так называемый органоид мозга — объёмную колонию клеток, повторяющих структуру нейронов и их связей в мозге. Это не первый и наверняка не последний эксперимент с живыми клетками, позаимствованными у человека. Ранее органоид мозга, например, научили игре в «Понг», с чем он успешно справился. В таких исследованиях самым сложным бывает донести информацию до «мозга» и считать её. Группа профессора Го Фэня из Университета штата Индиана в Блумингтоне США предложила достаточно простое решение — они вырастили органоид на высокоплотном массиве электродов. Электроды, а это, по сути, компьютерный интерфейс, вносили данные в клетки «мозга» и считывали результат его последующей активности. Тем самым на практике была реализована такая архитектура спайковой импульсной нейросети, как резервуарная. Что происходило в массиве нейронов, учёным было неизвестно, но условно живая модель показала способность к быстрому обучению и расчётам. Свою нейросеть учёные назвали Brainoware. Система прошла двухдневное обучение на наборе из 240 аудиозаписей речи восьми японских мужчин, произносящих гласные звуки. Также система смогла решать уравнения по отображениям Эно примерно с такой же точностью. На это ушло ещё четыре дня обучения. Более того, решение дифференциальных уравнений проходило с большей точностью, чем в случае искусственной нейронной сети без блока длинной цепи элементов краткосрочной памяти. Мозг Brainoware в «возрасте» 7, 14, 28 дней и через несколько месяцев нижний ряд в увеличенном виде Живой искусственный «мозг» был не такой точный, как искусственные нейронные сети с длинной цепью элементов краткосрочной памяти, но каждая из этих сетей прошла 50 этапов обучения. Для этого раствор армируется волокнами со спорами особых бактерий. Разработка может избавить от дорогостоящих ремонтных работ, что также снизит потребность в стройматериале, производство которого наносит один из тяжёлых уронов окружающей среде. Источник изображения: Drexel University Человечество бесконечно строит и ремонтирует. Бетон стал самым востребованным материалом в этом процессе. Самовосстанавливающиеся бетонные конструкции помогли бы сэкономить на средствах для ремонта, и это также сократило бы вредные выбросы в атмосферу. Группа физиков, химиков, биологов, материаловедов и строителей из Дрексельского университета нашла возможное решение проблемы. Учёным давно известны бактерии, которые минерализуют добытый из воздуха углерод, превращая его в «камень». Если в трещинах бетона поселить колонии таких бактерий, то они самостоятельно заполнят трещины минералами и сцементируют её края. Исследователи подобрали перспективный для поставленной задачи штамм бактерий Lysinibacillus sphaericus. Оставался вопрос, как сохранить бактерии и активировать их только для случая появления трещин. Для этого споры бактерий поместили в гидрогель и покрыли всё это полимерной оболочкой. Получилась тончайшая полимерная арматура, которая сама по себе придавала бетону дополнительную прочность. Если в бетоне с полимерной арматурой возникала трещина, то когда она доходила до волокна, внутреннее давление высвобождало гидрогель и споры бактерий. Споры превращались в живых бактерий, которые питались кальцием и поглощали углерод из воздуха, образуя взамен минеральные соединения в виде карбоната кальция. Трещина зарастала с такой скоростью, которая обещает залечивать подобные раны в бетоне за сутки или двое. Разработанный учёными материал пока не годится для коммерческого применения, для этого с ним ещё предстоит много работы. Однако идея вполне рабочая и может со временем воплотиться в жизнь. Бактерии можно будет даже подселять лишь в трещины, не добавляя изначально в раствор. Ремонт сведётся до прогулки вдоль строений с бутылкой аэрозоля вместо замеса, вёдер с раствором, мастерков и всего вот этого. Ждём видео в интернете, как в домашних условиях вырастить полезных цементирующих бактерий, например, на перловке. Биологический материал включили в стандартный техпроцесс производства чипов, что обещает сделать его использование массовым. Сочетание кремния и биотехнологий позволяет гибридным электронным цепям реагировать одновременно на электрические и биологические сигналы, открывая путь к датчикам здоровья и нейропроцессорам. Перспективы подобных решений невозможно переоценить. Нейросети, подобные мозгу процессоры, датчики биологических процессов в организме людей — это многое изменит в жизни людей. Произойдёт это не завтра и не послезавтра, но рано или поздно мир станет совершенно иным. Подтолкнут ли к этим изменениям только что представленные гибридные транзисторы, или они канут в небытие, мы пока не знаем. Но на данном этапе разработка демонстрирует ряд интересных свойств, например, способность вписаться в современные техпроцессы выпуска микросхем. Предложенный учёными гибридный процессор в качестве изолятора очевидно, затвора использует материал на основе белка фиброина, входящего в состав шёлковых нитей и, например, паутины. Этот белок показал хорошую восприимчивость в процессе регулировки его ионной проводимости электронными импульсами и биомаркерами. По сути, мы имеем дело с чем-то сильно напоминающим, как работает ячейка памяти ReRAM: насыщение ионами рабочего слоя меняет там сопротивление. Тем самым гибридный транзистор на основе шёлка вполне перекрывает область применения резистивной памяти или мемристора, как назвала его компания HP, и даже выходит за его пределы, поскольку заходит в сферу биологии. На основе предложенного решения исследователи создали датчик дыхания, чутко реагирующий на влажность. Здоровье человека — это та сфера, которая может стать благодатной почвой для множества перспективных начинаний, и «транзистор из шёлка» вполне может стать одним из них. Разработчики университета восполнили этот пробел, который поможет лечить обширные повреждения тканей без дорогостоящего оборудования. Технология проверена на животных и доказала свою эффективность. Источник изображений: НИТУ «МИСИС» Традиционно ткани для пересадки на обширные повреждённые участки кожи выращиваются «в пробирке» — на чашках Петри с последующей адаптацией, что требует громоздкого и дорогостоящего оборудования.

Слайд 6 Молекулярная биотехнология использует достижения многих областей науки и позволяет создавать широкий ассортимент коммерческих продуктов и методов. Н А Д Е Ж Д Ы: возможность точной диагностики, профилактики и лечения множества инфекционных и генетических заболеваний значительное повышение урожайности сельскохозяйственных культур путем создания растений, устойчивых к вредителям, грибковым и вирусным инфекциям и вредным воздействиям окружающей среды создание микроорганизмов, продуцирующие различные химические соединения, антибиотики, полимеры, аминокислоты, ферменты создание пород сельскохозяйственных и других животных с улучшенными наследуемыми признаками переработка, отходов, загрязняющих окружающую среду О П А С Е Н И Я: не будут ли организмы, полученные методом генной инженерии, оказывать вредное воздействие на другие живые организмы или окружающую среду? О П А С Е Н И Я: не будут ли организмы, полученные методом генной инженерии, оказывать вредное воздействие на другие живые организмы или окружающую среду?

Содержание курса отличается от традиционного... Советы как сделать хороший доклад презентации или проекта Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться где это уместно. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.

Похожие новости:

Оцените статью
Добавить комментарий