Новости незатухающие колебания примеры

незатухающие колебания, так как амплитуда и, следовательно, полная энергия колебаний не менялись. Свободные колебания могут быть незатухающими только при отсутствии силы трения. Приведи пример вариантов незатухающих колебаний Просмотров 43 Незатухающие колебания — это физический процесс, при котором система продолжает колебаться без потери энергии.

Приведи пример вариантов незатухающих колебаний

Примеры незатухающих колебаний в реальной жизни Незатухающие колебания встречаются во множестве различных систем и ситуаций в реальной жизни. Автоколебательные системы – это системы, в которых могут возникать незатухающие колебания безотносительно внешнего воздействия, а лишь за счет способности самостоятельно регулировать подвод энергии от внешнего источника. Основным примером незатухающих колебаний являются механические колебания в форме маятников.

§ 30. Незатухающие колебания. Автоколебательные системы

Незатухающие колебания создаются такими устройствами, которые сами могут поддерживать свои колебания за счет некоторого постоянного источника энергии. Собственные незатухающие колебания – это, скорее, теоретическое явление. Примерами незатухающих колебаний могут служить колебания маятника или звуковой волны, распространяющейся в открытом пространстве. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника.

Гармонические колебания и их характеристики.

Так между сеткой и катодом образуется переменное напряжение. Это напряжение регулирует энергию, подводится от источника к колебательному контуру. В отрицательный полупериод когда на сетке отрицательный потенциал на катоде - положительный лампа «заперта» и источник тока не работает. Напротив, в положительную полупериод когда на сетке положительный потенциал, на катоде - отрицательный источник Ба создает анодный ток, пополняя энергию колебательного контура, которая расходуется на теплоту и электромагнитное излучение. Благодаря этому в контуре существуют незатухающие колебания. Полупроводниковые генераторы электрических колебаний Кроме генераторов на электронных лампах широко используют полупроводниковые генераторы электрических колебаний - на транзисторах. По структуре они аналогичны рис.

В полевом транзисторе с управляющим p—n-переходом — а мы дальше будем говорить именно о нем — затвор отделен от канала именно таким переходом, для чего область затвора делается противоположного по отношению к каналу типа проводимости. Например, если канал имеет примесную проводимость типа p, то затвор — типа n, и наоборот. Зависимость эта почти такая же, как и у электронной лампы триода. Важно отметить, что управляющее напряжение — запирающее, а значит, ток в цепи управления чрезвычайно мал обычно он составляет несколько наноампер , соответственно мала и мощность управления, что очень хорошо. Для генератора существенны и отклонения от линейности, но об этом позже. Одним словом, дополнительная ЭДС должна быть такой, чтобы скомпенсировать потери энергии в контуре. А как можно повлиять на величину М? Оказывается, она увеличится, если намотать побольше витков в дополнительной катушке или если эту катушку расположить поближе к катушке контура. Нужно сказать, что достаточный для генерации коэффициент М на практике получить довольно просто. Лучше выбрать эту величину с некоторым запасом — при этом получится контур не только без потерь, но даже с подкачкой энергии от внешнего источника с «отрицательными» потерями. При включении генератора амплитуда колебаний сначала будет возрастать, но через некоторое время установится — энергия, поступающая в контур за один период, станет равной потерям энергии за то же время.

С каждым циклом их амплитуда падает вследствие действия сторонних сил, например, трения. Со временем автоколебания затухают. Рассмотрим, какие механические колебания называются затухающими, какими свойствами обладают. Наведём примеры таких явлений в природе, быту, промышленности. Определение и характеристики затухающих колебаний Затухающими называют колебания, энергия которых с течением времени постепенно снижается. Бесконечно длиться такой процесс не может из-за сопротивления — сил трения и прочих явлений, тормозящих движение, препятствующих ему.

Вот почему свободные колебания являются затухающими. Часть внутренней энергии системы, которая не восполняется, уходит на преодоление сопротивления, не компенсируется, и вскоре её энергетический запас падает до ноля. Затраты имеют различный характер, зависящий от условий: преодоление сопротивления воздуха жидкости качающимся на пружине грузом, трение шариков в подшипнике о внутреннее и внешнее кольца. Кроме того, энергетический запас частично расходуется на передачу движения окружающей среде — груз или колеблющийся на нитке шар заставляют молекулы окружающего воздуха перемещаться. Деформация вибрирующей пластины, пружины, растягивание нитки отбирает у контура часть внутренней энергии из-за трения в них самих. Свободные незатухающие колебания или собственные характерны для идеальной системы, где отсутствует трение.

Вынужденные колебания. Резонанс. Автоколебания

В зависимости от того, полезны или вредны колебания, для их усиления или ослабления принимают соответствующие меры. Так, в случае с часовым маятником снижают потери, а с деталями и агрегатами механизмов и устройств используют специальные элементы — демпферы и амортизаторы. Причины колебаний в разных системах Собственные незатухающие колебания — это, скорее, теоретическое явление. В разных системах и причины затухания колебания будут разными. К примеру, в случае с механической это наличие трения, а в случае с электромагнитным контуром — потеря тепла в проводниках, которые формируют систему. Когда будут израсходована вся энергия, запасенная колебательной системой, завершатся и колебания. Амплитуда их движения будет снижаться и стремиться к нулю до тех пор, пока не достигнет этого показателя. Затухающие колебания собственные и присутствующие в системах можно рассматривать с одной и той же позиции — общих качеств.

Дифференциальное уравнение получено с учетом убывания в процессе колебаний колебательной энергии. Уравнение колебаний — это решение дифференциального уравнения. Амплитуда зависит от времени. Частота и период зависят от степени затухания колебаний.

Максвелл, Герц экспериментально обнаружили и описали электромагнитные волны. В настоящее время ведутся работы по созданию сверхстабильных эталонов частоты, по применению незатухающих колебаний в нанотехнологиях. Разрабатываются оптические эталоны частоты на основе лазеров и атомных переходов. Изучаются колебания наномеханических резонаторов, применение их в сенсорике. Дальнейшие исследования незатухающих колебаний позволят расширить возможности науки и техники. Колебания в окружающем мире Незатухающие колебания широко распространены в природе, быту, технике.

Давайте рассмотрим некоторые примеры: Колебания в живой природе. В организмах постоянно происходят колебательные процессы - пульс, дыхание, электрическая активность мозга. Ритмические сокращения сердечной мышцы обеспечивают кровообращение. Вдохи и выдохи создают колебательные движения воздуха в легких. Звуковые колебания. Звук представляет собой упругие волны в воздухе, возникающие при колебаниях источника. Музыкальные инструменты. Струнные, духовые, ударные инструменты создают музыкальные звуки за счет колебаний. Звуки речи образуются колебаниями голосовых связок и резонаторов речевого аппарата. Бытовые колебательные процессы.

Многие привычные вещи в быту работают за счет колебаний. Маятник часов совершает строго периодические колебания. Мобильный телефон. Антенна телефона излучает и принимает радиоволны благодаря электромагнитным колебаниям. Колебания в технических устройствах. Незатухающие колебания лежат в основе работы многих технических систем.

Эта сила называется возвращающей, она всегда направлена к положению равновесия, происхождение ее различно: а для пружинного маятника - сила упругости; б для математического маятника - составляющая сила тяжести. Свободные или собственные колебания - это колебание, происходящие под действием возвращающей силы. Если в системе отсутствуют силы трения, колебания продолжаются бесконечно долго с постоянной амплитудой и называются собственными незатухающими колебаниями.

Свободные незатухающие колебания: понятие, описание, примеры

Примерами незатухающих колебаний могут служить колебания маятника или звуковой волны, распространяющейся в открытом пространстве. Акустические незатухающие колебания Акустические незатухающие колебания — это колебания звуковой волны в среде, которые не теряют энергию и продолжают распространяться на большие расстояния без изменения амплитуды. О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Примеры автоколебаний Незатухающие колебания маятника часов за счёт постоянного действия тяжести заводной гири; Колебания скрипичной струны под воздействием равномерно движущегося смычка. Примеры незатухающих колебаний Незатухающие колебания — это колебания системы, которые продолжаются вечно без потери энергии.

Характеристика затухающих колебаний, какие колебания называют затухающими

Однако угасающий синусоидальный ток, проходя через катушку L контура, возбуждает в катушке Lc ЭДС индукции. Так между сеткой и катодом образуется переменное напряжение. Это напряжение регулирует энергию, подводится от источника к колебательному контуру. В отрицательный полупериод когда на сетке отрицательный потенциал на катоде - положительный лампа «заперта» и источник тока не работает. Напротив, в положительную полупериод когда на сетке положительный потенциал, на катоде - отрицательный источник Ба создает анодный ток, пополняя энергию колебательного контура, которая расходуется на теплоту и электромагнитное излучение. Благодаря этому в контуре существуют незатухающие колебания.

Полупроводниковые генераторы электрических колебаний Кроме генераторов на электронных лампах широко используют полупроводниковые генераторы электрических колебаний - на транзисторах.

Типичный пример релаксационных колебаний Типичными примерами таких систем могут служить генератор пилообразных колебаний на неоновой лампе и гидравлическое устройство, показанное на рис. В сосуд, снабженный сифоном С, с постоянной скоростью натекает вода из крана К. Пока сифон не заполнен водой, уровень воды в сосуде растет со временем по линейному закону. Но как только уровень достигает высоты сифон срабатывает и уровень воды в сосуде падает до значения после чего сосуд снова начинает заполняться водой из крана. Скорость опорожнения сосуда через сифон можно сделать гораздо больше скорости его наполнения через кран так как скорость воды в сифоне зависит от разности уровней Далее описанный процесс будет повторяться периодически.

Зависимости уровня воды А и скорости его изменения от времени показаны в правой части рис. Видно, что колебания уровня воды и скорости не являются синусоидальными. Соответствующая этим колебаниям фазовая диаграмма приведена на рис. Фазовая диаграмма релаксационных колебаний, показанных на рис. Его электрическая схема показана на рис. Неоновая лампа обладает тем свойством, что ток через нее не проходит до тех пор, пока приложенное к лампе напряжение не достигнет определенного значения, называемого напряжением зажигания Если после возникновения тлеющего разряда в лампе напряжение на ней несколько уменьшить, то лампа будет продолжать гореть.

Ток через лампу прекратится лишь тогда, когда напряжение будет уменьшено до определенного значения, называемого напряжением гашения Рис. Генератор пилообразных колебаний на неоновой лампе При замыкании ключа конденсатор С начинает медленно заряжаться через сопротивление Как только напряжение на конденсаторе достигнет значения, равного напряжению зажигания лампы в лампе возникает газовый разряд и конденсатор начинает быстро разряжаться через лампу, так как сопротивление горящей неоновой лампы очень мало. Когда напряжение на конденсаторе уменьшится до значения гашения разряд в лампе прекращается и конденсатор опять начинает заряжаться. Затем все повторяется снова. График зависимости напряжения на конденсаторе от времени приведен на рис. Автоколебания, происходящие в генераторе на неоновой лампе и рассмотренном выше гидравлическом устройстве, носят название релаксационных.

Зависимость напряжения на конденсаторе от времени Для таких колебаний характерно постепенное накопление энергии системой до некоторого значения, а затем быстрое «избавление» от накопленной энергии. Аналогом накопительного бачка в гидравлическом устройстве является конденсатор в генераторе пилообразного напряжения; аналогом сифона является неоновая лампа, а роль крана играет сопротивление Возможные типы автоколебаний не исчерпываются рассмотренными примерами. Форма колебаний не обязательно бывает синусоидальной или пилообразной — она может быть какой угодно. Это относится не только к автоколебаниям, но и ко всем колебаниям вообще, включая и собственные, и вынужденные. Покажите, что в релаксационных колебаниях поступающая за период энергия сравнима одного порядка с полной энергией колебаний.

Рассмотрим их подробнее. Автоколебания При автоколебаниях энергия поступает от внешнего источника и пополняет потери осциллятора за счет обратной связи. Пример - маятниковые часы. Параметрический резонанс При параметрическом резонансе параметр осциллятора периодически изменяется, вызывая рост амплитуды колебаний. Вынужденные колебания Вынужденные колебания возникают под действием внешней периодической силы, компенсирующей потери энергии. Автоколебания Автоколебания обеспечивают поддержание незатухающих колебаний за счет обратной связи в системе. Рассмотрим несколько примеров автоколебательных систем. Маятниковые часы В маятниковых часах маятник связан через кинематическую цепь с заводным механизмом. При опускании маятника он получает импульс энергии от пружины, компенсирующий потери. Генератор на электронной лампе В электронных генераторах лампа усиливает колебания контура, восполняя омические потери в нем. Лазер В лазере обратная связь оптического резонатора поддерживает когерентное излучение активной среды. Параметрический резонанс При параметрическом резонансе параметр системы жесткость, емкость меняется периодически. Это приводит к накачке энергии в колебательную систему. Параметрический резонанс в механических системах Если периодически изменять длину маятника или жесткость пружины, можно поддерживать рост амплитуды колебаний. Параметрический резонанс в электрических цепях При модуляции емкости конденсатора в контуре возникает параметрический резонанс. Вынужденные колебания Вынужденные колебания возникают в осцилляторе под действием внешней периодической силы. Пример - действие переменного тока на якорь в звонке. Практическое применение незатухающих колебаний Незатухающие колебания широко используются в различных областях науки и техники. Рассмотрим некоторые примеры. Радиотехника В радиопередатчиках незатухающие электромагнитные колебания генерируются с помощью электронных генераторов. Они используются для модуляции и передачи радиосигналов. Генераторы колебаний Существуют ламповые, транзисторные, кварцевые и другие типы генераторов для создания высокостабильных колебаний в радиотехнике.

Физический маятник Физический маятник представляет собой твердое тело, подвешенное на оси вращения. Торсионный маятник Торсионный маятник - стержень, подвешенный в середине на оси. Он совершает затухающие крутильные колебания. Период зависит от жесткости стержня на кручение. Маятник Максвелла Маятник Максвелла состоит из стержня, подвешенного на нитях. Он демонстрирует механический аналог молекулярного хаоса при определенной частоте внешнего воздействия. Получение незатухающих колебаний Существует несколько способов получения незатухающих колебаний в осцилляторах. Рассмотрим их подробнее. Автоколебания При автоколебаниях энергия поступает от внешнего источника и пополняет потери осциллятора за счет обратной связи. Пример - маятниковые часы. Параметрический резонанс При параметрическом резонансе параметр осциллятора периодически изменяется, вызывая рост амплитуды колебаний. Вынужденные колебания Вынужденные колебания возникают под действием внешней периодической силы, компенсирующей потери энергии. Автоколебания Автоколебания обеспечивают поддержание незатухающих колебаний за счет обратной связи в системе. Рассмотрим несколько примеров автоколебательных систем. Маятниковые часы В маятниковых часах маятник связан через кинематическую цепь с заводным механизмом. При опускании маятника он получает импульс энергии от пружины, компенсирующий потери. Генератор на электронной лампе В электронных генераторах лампа усиливает колебания контура, восполняя омические потери в нем. Лазер В лазере обратная связь оптического резонатора поддерживает когерентное излучение активной среды. Параметрический резонанс При параметрическом резонансе параметр системы жесткость, емкость меняется периодически. Это приводит к накачке энергии в колебательную систему. Параметрический резонанс в механических системах Если периодически изменять длину маятника или жесткость пружины, можно поддерживать рост амплитуды колебаний. Параметрический резонанс в электрических цепях При модуляции емкости конденсатора в контуре возникает параметрический резонанс.

Похожие новости:

Оцените статью
Добавить комментарий