Новости теория струн кратко и понятно

Что такое теория струн, какие пять основных элементов в нее входят, является ли она теорией всего, какие у нее недостатки в статье на Действительно, теория струн способна объединить квантовую теорию и гравитацию, но сделать это, как оказалось, можно пятью способами. Если традиционно физики пытались обосновать теорию струн с помощью квантовой мезаники, Барс и Рычков исходили из того, что теория струн верна, и, исходя из постулатов этой теории, вывели принцип неопределенности. В своей основе Теория струн отрицает теорию Большого взрыва и утверждает, что Вселенная существовала всегда. Понятно, что с математиче ской точки зрения с гладкими поверхностями работать гораздо лучше и плодотворнее, чем с сингулярными — в этом объяснение успехов математи ческого аппарата теории струн.

Теория струн кратко и понятно

Теория струн. Кратко и понятно. В связи с этим видео возникла ассоциация с фразой из Библии о том, что во время Апокалипсиса "небеса свернутся, как свиток". Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. Теория струн основана на гипотезе[5] о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн на масштабах порядка планковской длины 10−35 м.

Что такое Теория струн и существует ли 10-ое измерение

Теории струн посвящены главы с 18-й и далее. Хокинг С. Теории струн посвящена 10-я глава «Объединение физики». Теория струн и скрытые измерения Вселенной: Пер. Zimmerman Jones, Andrew; Robbins, Daniel. String Theory For Dummies. Дата обращения: 27 апреля 2011 — Сборник состоит из 24 статей, посвящённых вопросам современной квантовой теории поля конформная симметрия критических явлений, факторизованное рассеяние в двумерных теориях, инстантоны и монополи в калибровочных теориях, взаимодействие релятивистских струн и её математическому анализу алгебраическая топология , теория представлений бесконечномерных алгебр Ли , теория квантовых групп и др. Статьи были ранее опубликованы в отечественных и зарубежных периодических изданиях в период 1970—1990 гг. Бринк Л.

Принципы теории суперструн. Бухбиндер И. Дата обращения: 27 апреля 2011 Грин М. Теория суперструн. Грин М. Дата обращения: 27 апреля 2011 Гуков С. Дата обращения: 27 апреля 2011 До Тьен Ф. Дата обращения: 27 апреля 2011 Дубровский В.

Дата обращения: 27 апреля 2011 Макеенко Ю. Дата обращения: 27 апреля 2011 Каку М. Арутюнова, А. Попова, С.

Причем не только частицы-участники, но и частицы-переносчики взаимодействий предстают «на равных» в теории струн. Абсолютно все частицы могут быть описаны через единый объект — струну. Это же самое полное воплощение мечты о единстве мира! Все известные нам частицы и переносчики взаимодействий — колебательные моды с наименьшей энергией. Хотя число различных колебательных мод бесконечно, лишь немногим из них соответствуют малые массы и заряды.

Остальные должны иметь гигантские массы порядка 10-5 грамм — это огромная величина в масштабах микромира! На наших ускорителях родить таких гигантов мы еще долго не сможем. Но они рождались на ранних стадиях Вселенной , когда энергия была в избытке.

То есть пойди история теоретической физики немного по-другому вполне возможно, так и произошло где-нибудь на другой планете или в другой Вселенной , теория Янга-Миллса была бы обычным следствием теории струн. То есть этот факт можно рассматривать как теоретическое а не экспериментальное подтверждение теории струн?

В некотором смысле — да. В такую игру с теорией струн можно играть достаточно долго: из теории струн естественным образом вытекает теория Янга-Миллса, разного рода дискретные симметрии, играющие важную роль в квантовой механике. Теория струн также позволяет объяснить, почему элементарные частицы объединяются в семейство — например, фермионы и бозоны. То есть многое из того, что приходилось добавлять в уравнения вручную, исходя из экспериментальных соображений, в теории струн возникает само собой. Это не является, конечно, доказательством истинности теории, но с математической точки зрения означает, что теория включает в себя все, что мы знали до сих пор.

У квантовой механики есть множество интерпретаций — копенгагенская, многомировая, теория квантовой информации и прочие. У них имеется общий математический аппарат, однако они кардинально различаются в описании того, что представляет собой реальность. Есть ли такие же интерпретации у теории струн? Во-первых и это, конечно, тема для совершенно отдельного и большого разговора, совсем не связанного с темой нашей беседы , я бы не согласился с первой частью вашего утверждения. Различные интерпретации квантовой механики различаются не только на уровне интерпретации, но и на уровне механики, которую они используют.

Точнее, аккуратно определяя квантовую механику в рамках той или иной интерпретации, вы обнаружите, что эти интерпретации либо некорректно определены, либо дают разные теории. Они могут отличаться как предсказаниями, так и в онтологическом смысле — то есть они расходятся в том, что реально, а что — нет. Например, копенгагенская интерпретация не полна — она не говорит, что происходит во время так называемого коллапса волновой функции, вызванного наблюдением. Многомировая интерпретация и теория де Бройля-Бома дают различные уравнения для описания квантового мира. Поскольку теория струн использует квантовую механику, то, с одной стороны, последняя никак не меняется.

С другой стороны, если в квантовой механике есть какие-то вопросы, которые нужно интерпретировать, то они есть и в теории струн. Все эти многомировые и прочие вещи тут присутствуют в полной мере. Сама же теория при этом никаких дополнительных факторов, требующих интерпретации, не привносит. То есть мы имеем дело с квантовомеханическими вопросами и только с ними. Теория всего - гипотетическая объединённая физико-математическая теория, описывающая все известные фундаментальные взаимодействия сильное, слабое, электромагнитное и гравитационное.

Первые три взаимодействия описываются в настоящий момент квантовой механикой, последнее - теорией относительности С другой стороны, в теории струн есть эффект, называемый двойственностью. Его, если угодно, можно считать двоюродным братом вопроса интерпретации. Дело в том, что в теории одна и та же физическая ситуация допускает несколько математических описаний математических интерпретаций, если угодно. В некотором смысле противоположная история. Главное отличие двойственности в том, что это не источник споров или философских диспутов о том, как и что надо понимать, а мощный инструмент для работы.

Расскажу из личного опыта. Некоторое время назад я как раз занимался зеркальной симметрией. Дело в том, что, как уже говорилось выше, дополнительные измерения в теории струн компактифицированы — то есть свернуты особым образом, так что на первый взгляд наш мир видится четырехмерным. Оказывается, возможные формы дополнительных измерений, то есть то, каким образом они свернуты, существуют парами. В каждой паре элементы могут отличаться геометрией, топологией, но при этом дают одну и ту же физическую теорию.

Так как физика одна и та же, то один и тот же эксперимент — скажем, рассеивание частиц — дает информацию о строении сразу двух объектов. Благодаря зеркальной симметрии физикам удается получить информацию о математике, которая стоит за этими объектами. То есть смотрите, пусть мы знаем, что наша теория описывает именно нашу Вселенную. Мы хотим предсказать результаты экспериментов по рассеиванию частиц. Начинаем считать — офигеть, не получается, слишком сложная математика.

Тут мы вспоминаем о зеркальной симметрии и говорим себе: «Стоп! Мы же можем заменить одно пространство на другое, ведь физика, как известно, будет той же самой». Мы так поступаем, и оказывается, что в зеркально-симметричной ситуации тот же эксперимент описывается много проще и мы все можем посчитать. И что, есть примеры, когда эта схема работает? И таких примеров множество.

Другое дело, что мы пока точно не знаем, каким параметрам соответствует именно наша Вселенная. Вот в чем проблема. А как устроены эти симметрии, которые дают в результате два пространства? Исходное и зеркальное пространство связаны через подходящий орбифолд — грубо говоря, фактор многообразия по дискретной группе изометрий. А сама симметрия — это, конечно, просто действие Z2.

Никаких континуальных симметрий, только дискретные. Вы говорите очень интересные вещи о математике. На первый взгляд математические утверждения можно получать только с помощью самой математики. А вы говорите, что можно что-то узнать с помощью эксперимента... Ну это относится даже не к теории струн, а ко всей физике элементарных частиц.

То есть прямо так: строгие математические утверждения можно получать экспериментально? Не понимаю, что вас смущает. Вот есть теория относительности Эйнштейна — математическая теория. Если наблюдать за движениями космических объектов, то можно много что узнать о геодезических свойствах самой метрики, которая фигурирует в уравнении Эйнштейна в поле тяжести массивного тела объекты малой массы движутся по геодезическим — кривым, являющимся решением подходящей системы дифференциальных уравнений — прим. Строгие математические факты.

Так же и в теории элементарных частиц. Вы правы. А приведите примеры, какие факты удается узнать таким образом про компактифицированные пространства? Есть важный геометрический вопрос, касающийся этих компактифицированных пространств — сколькими вариантами в эти пространства можно вложить сферы. Речь здесь идет про вложение голоморфным образом — но это детали, они в данном случае не имеют значения.

До вмешательства физиков математики могли ответить на этот вопрос только в случае, когда число вращения — то есть то, сколько раз такая сфера обмотана вокруг себя самой, — достаточно мало. Один, два или три. Для чисел больше ничего известно не было. В теории струн оказалось, что эти числа связаны с амплитудами рассеивания.

В итоге было установлено, что эти струны, называемые струнами первого типа, подвержены 5 основным типам взаимодействий.

Взаимодействия основаны на способности струны соединять и разделять свои концы. Поскольку концы открытых струн могут объединиться, чтобы образовывать замкнутые, нельзя построить теорию суперструн, не включающую закольцованные струны. Это оказалось важным, так как замкнутые струны обладают свойствами, как полагают физики, которые могли бы описать гравитацию. Другими словами, ученые поняли, что теория суперструн вместо объяснения частиц материи может описывать их поведение и силу тяжести. Через многие годы было обнаружено, что, кроме струн, теории необходимы и другие элементы.

Их можно рассматривать как листы, или браны. Струны могут крепиться к их одной или обеим сторонам. Квантовая гравитация Современная физика имеет два основных научных закона: общую теорию относительности ОТО и квантовую. Они представляют совершенно разные области науки. Квантовая физика изучает мельчайшие природные частицы, а ОТО, как правило, описывает природу в масштабах планет, галактик и вселенной в целом.

Гипотезы, которые пытаются объединить их, называются теориями квантовой гравитации. Наиболее перспективной из них сегодня является струнная. Замкнутые нити соответствуют поведению силы тяжести. В частности, они обладают свойствами гравитона, частицы, переносящей гравитацию между объектами. Объединение сил Теория струн пытается объединить четыре силы — электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию — в одну.

В нашем мире они проявляют себя как четыре различные явления, но струнные теоретики считают, что в ранней Вселенной, когда были невероятно высокие уровни энергии, все эти силы описываются струнами, взаимодействующими друг с другом. Суперсимметрия Все частицы во вселенной можно разделить на два типа: бозоны и фермионы. Теория струн предсказывает, что между ними существует связь, называемая суперсимметрией. При суперсимметрии для каждого бозона должен существовать фермион и для каждого фермиона — бозон. К сожалению, экспериментально существование таких частиц не подтверждено.

Суперсимметрия является математической зависимостью между элементами физических уравнений. Она была обнаружена в другой области физики, а ее применение привело к переименованию в теорию суперсимметричных струн или теория суперструн, популярным языком в середине 1970 годов. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные. Без суперсимметрии уравнения приводят к физическим противоречиям, таким как бесконечные значения и воображаемые энергетические уровни. Поскольку ученые не наблюдали частицы, предсказанные суперсимметрией, она все еще является гипотезой.

Эти частицы могли существовать в ранней вселенной, но так как она остыла, и после Большого взрыва энергия распространилась, эти частицы перешли на низкоэнергетические уровни. Другими словами, струны, вибрировавшие как высокоэнергетические частицы, утратили энергию, что превратило их в элементы с более низкой вибрацией.

Теория струн. Возникновение теории, ее приложения

Теория струн (теория всего). Кратко и понятно. Теория струн в принципе может нам это объяснить, и вывести параметры элементарных частиц и их взаимодействий через фундаментальные физические константы типа скорости света или постоянной Планка.
Теория струн и квантовая механика И тут теория струн очень сильно пригодилась, связала все между собой, а через десятки лет ее постигла участь предшественников.
Теория струн кратко и понятно. Теория струн для чайников. | Наука для всех простыми словами Ученые в качестве объяснения краткой сути теории струн пытались ввести понятие нулевого измерения.
Квантовая теория струн Квантовая теория струн – это фундаментальная теория, которая стремится объединить квантовую механику и общую теорию относительности.

Don't Panic Magazine

  • Для продолжения работы вам необходимо ввести капчу
  • Варианты теории струн
  • Краткая история теории струн
  • Концепция развивается
  • Теория суперструн кратко и понятно
  • Где почитать о теории струн?

Для продолжения работы вам необходимо ввести капчу

  • Don't Panic Magazine
  • Из Википедии — свободной энциклопедии
  • Что не устраивает в Стандартной Модели?
  • Обнаружено новое доказательство теории струн — Странная планета
  • Что такое теория струн?
  • Популярно о теории струн

Краткая история теории струн

Почта Мой МирОдноклассникиВКонтакте Игры Знакомства Новости Поиск Облако VK Combo Все проектыВсе проекты. О чем теория струн? Самое простое и понятное объяснение. Важнейшее значение теории струн для физиков, если излагать кратко: она претендует на роль «теории всего», то есть может объединить в одно целое все физические аспекты существования Вселенной. Самые интересные и оперативные новости из мира высоких технологий.

Теория струн, Мультивселенная

Однако далеко не каждый способ обработки этих дополнительных измерений, также называемый «компактификацией», дает модель с правильными свойствами для описания природы. Для так называемой восьмимерной компактификации модели теории струн, называемой F-теорией, дополнительные измерения должны иметь форму поверхности K3. В новой работе исследователи рассматривали двойственность двух видов теории струн — F-теории и гетеротической — в восьми измерениях. Теории струн быть Команда нашла четыре уникальных способа разрезать поверхности K3 особенно полезным способом, с помощью якобианских эллиптических расслоений — комплексов из нескольких волокон, по форме напоминающих батон или бублик. Исследователи построили явные уравнения для каждого из этих расслоений и показали, что концепции теории струн в реальном физическом мире имеют право на существование. Пример К3 поверхности «Вы можете думать об этом семействе поверхностей как о буханке хлеба, а о каждой фибрации — как о «ломтике» этой буханки», пишут исследователи.

Изучая последовательность «ломтиков», мы можем визуализировать и лучше понять всю буханку. По мнению авторов статьи, важной частью этого исследования является выявление определенных геометрических строительных блоков, называемых «делителями», внутри каждой поверхности K3. Часы кропотливой работы, в результате позволили математикам доказать теоремы каждого из четырех расслоений, а затем протолкнуть каждую теорему через сложные алгебраические формулы.

Представьте себе гитару. Удар по струнам вызывает вибрацию, рождается звук. Зажать на грифе несколько струн — ноты изменятся. Ударить сильнее — звук станет громче.

Представьте себе гитару. Удар по струнам вызывает вибрацию, рождается звук. Зажать на грифе несколько струн — ноты изменятся.

Ударить сильнее — звук станет громче.

Ну, быстрый ответ - нет. Теория Всего - это гипотетическая основа физики, которая полностью описывает и связывает воедино все физические аспекты вселенной. Для достижения этой цели теория струн стала многообещающим кандидатом в Теорию Всего. До сих пор он успешно объяснил многие сложные явления, в том числе черные дыры , которые требуют как квантовой механики, так и общей теории относительности для их изучения. Согласно теории струн, все четыре фундаментальные силы когда-то были единой фундаментальной силой в начале вселенной - через 10—43 секунды после Большого взрыва. Это также дало новые идеи в отношении кварк-глюонной плазмы и дал много результатов, некоторые из которых могут показаться непонятными или абсурдными. Например, теория струн допускает около 10500 вселенных или обширную мультивселенную. Это одна из причин, она столкнулась с многочисленными неудачами в прошлом.

Почему теория струн важна? Хотя теория струн до сих пор не дала каких-либо проверяемых экспериментальных предсказаний, математика в теории струн сработала. И именно поэтому это чрезвычайно полезно. За последние несколько десятилетий теория струн предложила несколько убедительных и достоверных решений. Так что, может быть, история теории струн - это не теория всего, но, конечно, это не отдельная совокупность исследований, проводимых в каком-то неясном уголке науки. Вместо этого он может указать нам правильное направление и помочь нам открыть новые аспекты квантового мира и немного прекрасной математики. Мы еще не знаем, какова истинная природа реальности, но мы будем продолжать копать, пока не узнаем. Доброго времени суток, уважаемое хабрасообщество. После моего долгого отсутствия я решил вновь взяться за перо клавиатуру.

Сегодня мы попробуем проследить эволюцию теории струн до М-теории, и найти ответы на вопросы: что подтолкнуло ученых к развитию данной теории, с какими проблемами им пришлось столкнуться, и над чем сейчас ломают головы лучшие умы человечества. Теория струн На Хабре уже была статья по теории струн. Если вкратце в 1968 году ученые обратили внимание, что математическая функция, которая называется бета-функция Эйлера, идеально описывает свойства частиц, которые участвуют в так называемом сильном взаимодействии — одном из четырёх фундаментальных взаимодействий во Вселенной. Первые же исследования показали, что теория струн достигает значительных успехов в описании наблюдаемых явлений. Одна из мод колебаний струны может быть идентифицирована как гравитон. Другие колебательные моды проявляют свойства фотонов и глюонов. Не без оснований казалось, что теория струн, способна свести все четыре фундаментальных взаимодействия Вселенной к одному — колебанию одномерной струны с соответствующим переносом энергии. При этом теория струн так же позволяет объяснить основные константы микромира с математической точки зрения. Становилось понятно, почему, например, массы элементарных частиц именно такие, какие есть.

Кроме того, теория струн давала надежду на объединение ОТО общая теория относительности и квантовой механики в рамках одной теории. При расчётах выяснилось, что собственные колебания струн способны гасить и уравновешивать квантовые флуктуации и тем самым устранить возмущения на микроскопическом уровне, из-за которых ОТО и квантовую механику никак не удавалось подружить. Однако, при более глубоких исследованиях и проверках теории выявились серьёзные противоречия следствий с экспериментальными данными. Например, в теории струн обязательно присутствовала частица — тахион квадрат массы которой меньше нуля, и движущаяся с скоростью большей скорости света — как одна из колебательных мод струны, что подразумевало под собой нестабильное состояние струны и явно показывало, что теория струн требует модификации. Теория суперструн Суперсимметричные фермионы и сейчас пытаются зарегистрировать в экспериментах на Большом адронном коллайдере, но пока безуспешно. Чтобы были понятны предпосылки дальнейшего развития теории, совершим небольшой экскурс в историю. В далёком 1919 году немецкий математик Калуца прислал Эйнштейну письмо, где изложил свою теорию в которой делал допущение, что на самом деле Вселенная может быть четырёхмерной в пространстве, и в доказательство своих слов приводил свои расчёты, из которых получалось, что при таком условии ОТО замечательно согласовывается с теорией электромагнитного поля Максвелла, чего невозможно достичь в обычной трехмерной Вселенной. Современники высмеяли теорию, вскоре и Эйнштейн, изначально заинтересовавшийся теорией, разочаровался в ней. Ученые в попытке объяснить несоответствия теории струн с квантовой механикой выдвинули предположение, что проблемы в расчётах были из-за того, что струны в нашей теории могут колебаться всего лишь в трёх направлениях, которыми располагает наша Вселенная.

Вот если бы струны могли бы колебаться в четырёх измерениях… С практической точки зрения ни подтвердить, ни опровергнуть экспериментально это на данный момент невозможно, так как речь идёт о таких малых масштабах струн и свернутых измерений, которые недоступны для фиксации современной аппаратурой. Впрочем, работы продолжались, и постепенно ученым удалось вычленить из общей массы гипотез пять более-менее правдоподобных теорий, которые могли бы описать нашу Вселенную. М-теория Введение ещё одного измерения в целом не нарушает связь квантовой теории и ОТО, и более того — снимает очень многие накопившиеся проблемы в теории суперструн. В том числе успешно скрещивает все пять суперструнных теорий в одну-единственную M-теорию, которая на сегодня является без преувеличения высшим достижением физиков в деле познания Вселенной. Согласно M-теории получается, что основа Вселенной — не только одномерные струны. Могут существовать и двухмерные аналоги струн — мембраны, и трёхмерные, и четырёхмерные… Эти конструкции были названы бранами струна — 1-брана, мембрана — 2-брана, и так далее. М-теория оперирует двумерными и пятимерными бранами, но даже базовая теория бран на данный момент все ещё находится в разработке. Существование бран экспериментально не подтверждено — на данном этапе развития теории считается, что браны принципиально ненаблюдаемы. Однако, проблема с конечным видом пространства Калаби-Яу в М-теории всё ещё остается нерешенной — на макроскопических масштабах теория должна сводиться к известной и очень хорошо проверенной физике элементарных частиц.

Но, как выясняется, способов такого сведения существует по меньшей мере 10 100 , а то и 10 500 , а то и вовсе бесконечность. При этом каждая из получившихся четырёхмерных теорий описывает свой собственный мир, который может быть похож на реальность, а может и принципиально отличаться от неё. Всё это из-за того, что свойства частиц считаются способом колебания струн, а возможные способы колебания струн зависят от точной геометрии дополнительных измерений. Существующим приближенным уравнениям удовлетворяет огромное количество разных геометрий. То есть эти уравнения были бы справедливы не только в нашем мире, но и в огромном количестве других миров, а возможно — в любом мире. Будь эти приближенные уравнения окончательными, теорию можно было бы признать нефальсифицируемой по Попперу, то есть ненаучной теорией. А так — нахождение точных уравнений, возможно, всё ещё расставит по своим местам. Теория струн и, в частности, М-теория, сегодня является одним из самых динамично развивающихся направлений современной физики. И хотя часть ученых из-за фундаментальных проблем довольно скептически относится к тому, что данная теория в конце концов приведет к физической теории, описывающей наш реальный мир.

Существенная часть исследователей не оставляет своих надежд и верит, что в один прекрасный день М-теория таки оформится в элегантную и математически изящную Единую теорию всего. Надеюсь, что данная статья не оставила Вас равнодушными, и буду очень рад если Вы решите, что не зря потратили время за чтением. Теория струн — это теория о том, что фундаментальными составляющими Вселенной являются одномерные "струны", а не точечные частицы как это принято наукой. Эти бесконечные струны совершают колебания, которые похожи на движения струн. Согласно науке, если постоянно увеличивать любой предмет под микроскопом, сначала можно увидеть молекулы, которые состоят из атомов, они состоят из электронов и ядер, ядра состоят из протонов и нейтронов, внутри нейтрона мы увидим кварки. Считается, что после этого больше ничего нет. Однако согласно теории струн, внутри этих кварков существуют тончайшие вибрирующие струны. Эта недоказанная теория в физике элементарных частиц объединяет квантовую механику и общую теорию относительности Эйнштейна. Некоторые физики считают, что при объединении квантовой физики и гравитации в одну именно у этой теории больше всего шансов стать "теорией всего" гипотетический фундамент, который объясняет абсолютно все физические явления.

Однако есть и другие учёные, которые думают, что она является почти псевдонаукой, поскольку её практически невозможно проверить экспериментальным путём. Теория суперструн Теория суперструн — это сокращение от "суперсимметричная теория струн"; это ещё одна версия теории струн, которая для моделирования гравитации: учитывает фермионы частица с полуцелым значением спина , учитывает бозоны частица с целым значением спина , включает суперсимметрию связь между фермионами и бозонами. Теория струн — это общее название всей области. Главное теоретическое отличие между теорией струн и теорией суперструн заключается в существовании суперсимметрии. Варианты теории струн Вместо одной теории, которая объясняет всё во Вселенной, на данный момент существуют целых пять теорий струн. Различия между этими теориями очень сложны математически. Теория струн тип I: включает открытые и замкнутые струны; содержит форму симметрии, которая математически является группой симметрии O 32. Теория струн тип IIA: открытые струны этого типа прикреплены к структурам D-браны с нечётным числом измерений; замкнутые струны где модели колебаний симметричны перемещаются независимо вправо и влево по замкнутой струне. Теория струн тип IIB: открытые струны прикреплены к структурам D-бранам с чётным числом измерений; у замкнутых струн модели колебаний асимметричны зависит от того, перемещаются ли они влево или вправо по струне.

Теория струн тип HO англ: "Эйч О", полное название "Гетеротическая теория струн O 32 " : форма гетеротической теории струн; содержит только замкнутые струны, у которых правосторонние колебания напоминают струны типа II, а левосторонние напоминают бозонные струны. Теория струн тип HE англ. Группа симметрии отличается от предыдущей теории типа HO. Этот тип также имеет важные математические различия в отношении группы симметрии. Дополнительные измерения Теории струн требуются дополнительные измерения: говорится о добавлении по меньшей мере 6 измерений к 4 известным всего 10 измерений. В ней также предусмотрены способы связать большие дополнительные измерения с малыми. Мы знаем три измерения, что нас окружают — те, которые определяют длину, ширину и глубину всех объектов оси x, y и z соответственно. Четвёртое измерение — это время, оно определяет свойства всей известной материи в любой заданной точке.

Струны Вселенной: суть теории

  • Популярные материалы
  • «Что такое теория струн простыми словами (насколько это возможно)?» — Яндекс Кью
  • Обнаружено новое доказательство теории струн
  • Теория суперструн кратко и понятно
  • Комментарии

Теория струн, или Теория всего

Симфония вселенной: теория струн для начинающих | Futurist - будущее уже здесь После того, как плавная и предсказуемая Общая теория относительности оказалась в неразрешимом конфликте с плутоватой квантовой механикой, лучшие умы человечества, начиная с Эйнштейна, принялись формулировать новую теорию.
Теория струн кратко и понятно Теория струн может и не станет теорией всего, но это хотя бы теория чего-то.

Теория струн, или Теория всего

Стромиджер и Вафа, струнные теоретики, с помощью теории струн смогли отыскать микроскопические компоненты чёрных дыр экстремального типа. Теория струн для чайников, предполагает объединение идей квантовой механики и теории относительности, представляя элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами. Первый вариант теории струн назвали бозонным, так как он описывал струнную природу бозонов, ответственных за взаимодействия материи, и не касался фермионов, из которых материя состоит.

Теория струн для чайников

Ответы : Объясните кратко, понятно что такое Теория Струн? Заметьте, что теория струн совсем не противоречит, а скорее дополняет Стандартную модель, в основу которой заложена теория строения атома Бора, критикуемая в начале этой статьи.
Теория струн на пальцах: что стоит за самой неоднозначной теорией мироздания - Теория струн основана на гипотезе[5] о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн на масштабах порядка планковской длины 10−35 м.

Теория струн, или Теория всего

Эту теорию вспоминают в контексте теории струн, потому что она очень естественно возникает из ее уравнений. Теория струн основана на гипотезе[5] о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн на масштабах порядка планковской длины 10−35 м. Действительно, теория струн способна объединить квантовую теорию и гравитацию, но сделать это, как оказалось, можно пятью способами. Эту теорию вспоминают в контексте теории струн, потому что она очень естественно возникает из ее уравнений. Так, начал вырисовываться фундаментальный физический принцип, получивший прекрасное название Теория всего или Теория струн, которая стала воплощением мечты всех физиков по объединению двух противоречащих друг другу ОТО и квантовой механики.

Похожие новости:

Оцените статью
Добавить комментарий