Новости последние новости от ученых в клеточной терапии

Чернов / @ РИА "Новости". Терапия состояла в том, что из эмбриональных плюрипотентных стволовых клеток получают предшественники дофаминергических нейронов, которые имплантируют в головной мозг человека.

Российские ученые разработали технологию клеточной терапии диабета

Замороженные Т-клетки больных раком генетически модифицированы, чтобы атаковать раковые клетки в новых CAR-T-терапиях. Новости науки» Медицина» Ученые назвали главные темы в развитии клеточной терапии. Инновационная лаборатория клеточных технологий, которая открылась в Обнинске на базе Национального медицинского центра радиологии, позволит лечить рак с индивидуальным подходом для каждого пациента. Ученые из Йельского университета (США) разработали новый метод лечения различных типов опухолей с помощью технологии генного редактирования (CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats).

Победа над раком близка: российские ученые разработали новый метод борьбы с онкологией

Однако нехватка донорского материала и необходимость постоянного приема иммуносупрессоров для предотвращения отторжения трансплантата ограничивает такие вмешательства. Теоретически проблему можно решить имплантацией бета-клеток, полученных из индуцированных плюрипотентных стволовых клеток донора, которые затем подвергают направленной дифференцировке в клетки поджелудочной железы. Изначальной была идея каким-то образом изолировать пул таких клеток от тканей организма пациента, чтобы защитить как самого реципиента, так и донорские клетки, которым угрожают иммунные клетки больного. Кроме того, в таком случае имплант при необходимости можно легко удалить из организма. Устройство, получившее рабочее название VC-02, похоже на кусочек пластыря и помещается под кожу пациента. Предполагается, что содержащиеся в нем бета-клетки обеспечат стабильную, физиологически регулируемую подачу инсулина, по сути воссоздавая функции здоровой поджелудочной железы. Пару лет назад такие импланты были успешно опробованы , что доказало принципиальную возможность использовать их для производства инсулина в организме человека.

В новом исследовании его участникам имплантировали сразу несколько устройств, чтобы увеличить количество вырабатываемого инсулина.

Тогда ученые из МФТИ разработали новую технологию клеточной модификации, которая повышает жизнедеятельность фибробластов. По мнению ученых, подобным метод повышает эффективность клеточной терапии, поскольку фибробласты лучше адаптируются в организме пациента.

Теперь метод позволит внедрять в поврежденные ткани здоровые клетки. Татьяна Воробьева.

Фотодинамическая терапия ФДТ считается современным и щадящим методом лечения рака. Она базируется на способности фотосенсибилизаторов, специальных препаратов, проникать в злокачественные опухоли. При воздействии лазера эти препараты запускают реакции, которые высвобождают синглетный кислород и свободные радикалы, уничтожающие опухолевые клетки, не причиняя вреда здоровым тканям. ФДТ-препараты обычно представлены в виде наночастиц, которые проникают в образования и затем активируются рентгеновскими лучами. Однако такое излучение может быть вредным для организма.

Новая технология из Новосибирска предлагает использование наночастиц, активируемых ультрафиолетом вне организма, после чего они поступают в область опухоли. Эти частицы могут действовать до шести часов, оказывая терапевтический эффект.

Эксперты из Института общей и неорганической химии им.

Курнакова РАН, Института элементоорганических соединений им. Несмеянова РАН, Института общей генетики им. Вавилова РАН и Центрального научно-исследовательского института туберкулеза вывели несколько новых соединений магния, отлично показавших себя в подавлении туберкулезной палочки.

Присоединились к коллегам и ученые Уральского федерального университета и Института органического синтеза УрО РАН, установившие, что эффективность в борьбе с туберкулезом и некоторыми другими устойчивыми инфекциями проявляют производные растительного вещества кумарина, применяемого при создании парфюмов и косметики. А исследователи из МГУ им. Ломоносова разработали антиоксидант и антибиотик SkQ1, который уничтожает туберкулезные бактерии не только в свободной форме, но и внутри легочных человеческих клеток — альвеолярных макрофагов.

Битва с диабетом: от препаратов до технологий Декабрь 2023 г. Ученые из Института медицинских исследований Святого Винсента Мельбурн, Австралия выяснили , что лекарство барицитиниб, обычно применяемое в борьбе с ревматоидным артритом, может подавлять прогрессирование у людей диабета и помогать организму вырабатывать собственный инсулин. Успехи были достигнуты и в области контроля диабета.

Например, эксперты Массачусетского технологического института успешно испытали на животных прототип специального имплантата для диабетиков, который производит инсулин и кислород и продолжает успешно справляться со своей функцией даже при накоплении рубцовой ткани. Схожее устройство — «умный пластырь» для введения в организм лекарств при помощи микроигл, который можно будет встроить в специальный браслет или приклеивать на кожу, — предложили для терапии пациентов с диабетом ученые СПбГЭТУ «ЛЭТИ». А разобраться в механизме опасного заболевания ученым и врачам поможет открытие исследователей из Техасского университета в Эль-Пасо, выявивших в мозге человека области, активирующиеся при изменении уровня глюкозы в крови.

Отследить по карте устойчивость к антибиотикам Проблема борьбы с микроорганизмами, устойчивыми к лекарствам, в современном мире обретает все большую актуальность. Чтобы иметь возможность более продуктивно бороться с опасными болезнями, российские эксперты создали карту антимикробной резистентности AMRmap, на основании которой врачи и пациенты могут получать обновляемую и тщательно проверяемую информацию о распространении во всех регионах России штаммов микроорганизмов, на которые не действует терапия. Чтобы ускорить процесс сбора данных, эксперты создали дополнительную систему AMRcloud, в которую информацию об устойчивых штаммах микроорганизмов может загружать любое учреждение, располагающее качественными исследовательскими технологиями.

Восстановить кости… и нервные клетки Не стоят на месте и разнообразные технологии восстановления живых тканей организма. Например, кто из нас не слышал утверждение о том, что нервные клетки не восстанавливаются? Кажется, нейробиологи из США и Швейцарии готовы поспорить с этим мнением — ведь в 2023 г.

Эксперты научились не только активировать рост нейронов в живом организме, но и стимулировать их прорастание через место повреждения и «подключение» к нужным точкам на другой стороне поражения. Применение терапии успешно «поставило на лапки» лабораторных мышей с травмами спинного мозга.

Ученые в РФ создали лекарство от онкологических и аутоиммунных заболеваний

Ученые из Института медицинских исследований Святого Винсента Мельбурн, Австралия выяснили , что лекарство барицитиниб, обычно применяемое в борьбе с ревматоидным артритом, может подавлять прогрессирование у людей диабета и помогать организму вырабатывать собственный инсулин. Успехи были достигнуты и в области контроля диабета. Например, эксперты Массачусетского технологического института успешно испытали на животных прототип специального имплантата для диабетиков, который производит инсулин и кислород и продолжает успешно справляться со своей функцией даже при накоплении рубцовой ткани. Схожее устройство — «умный пластырь» для введения в организм лекарств при помощи микроигл, который можно будет встроить в специальный браслет или приклеивать на кожу, — предложили для терапии пациентов с диабетом ученые СПбГЭТУ «ЛЭТИ». А разобраться в механизме опасного заболевания ученым и врачам поможет открытие исследователей из Техасского университета в Эль-Пасо, выявивших в мозге человека области, активирующиеся при изменении уровня глюкозы в крови. Отследить по карте устойчивость к антибиотикам Проблема борьбы с микроорганизмами, устойчивыми к лекарствам, в современном мире обретает все большую актуальность. Чтобы иметь возможность более продуктивно бороться с опасными болезнями, российские эксперты создали карту антимикробной резистентности AMRmap, на основании которой врачи и пациенты могут получать обновляемую и тщательно проверяемую информацию о распространении во всех регионах России штаммов микроорганизмов, на которые не действует терапия. Чтобы ускорить процесс сбора данных, эксперты создали дополнительную систему AMRcloud, в которую информацию об устойчивых штаммах микроорганизмов может загружать любое учреждение, располагающее качественными исследовательскими технологиями. Восстановить кости… и нервные клетки Не стоят на месте и разнообразные технологии восстановления живых тканей организма. Например, кто из нас не слышал утверждение о том, что нервные клетки не восстанавливаются?

Кажется, нейробиологи из США и Швейцарии готовы поспорить с этим мнением — ведь в 2023 г. Эксперты научились не только активировать рост нейронов в живом организме, но и стимулировать их прорастание через место повреждения и «подключение» к нужным точкам на другой стороне поражения. Применение терапии успешно «поставило на лапки» лабораторных мышей с травмами спинного мозга. Российские ученые создали синтетическую костную ткань, воспроизводящую неоднородную структуру естественной кости. Фото предоставлено пресс-службой ННГУ Много медицинских открытий было сделано в области регенерации костей — в основном они связаны с разнообразными имплантатами, помогающими восстанавливать костную ткань. Испытания на подопытных свиньях показали, что структура искусственного каркаса активно заселялась клетками костной ткани, что позволило успешно восстановить сильно поврежденную кость за пять месяцев. А группа российских исследователей с участием экспертов из Университета Лобачевского ННГУ , Сеченовского университета и Института химической физики им. Семенова РАН и других научных организаций разработала синтетическую костную ткань, полностью воспроизводящую неоднородную структуру естественной кости. Новая технология позволила вдвое ускорить заживление травм у подопытных животных в сравнении с обычными однородными имплантатами.

Препарат уже был успешно испытан на мышах и хорьках. Принцип его действия заключается в нейтрализации в организме белка USAG-1, ограничивающего процесс зубного роста.

На страже организма стоит армия из нескольких эшелонов клеток противоопухолевого иммунитета. Его передовой отряд - натуральные киллеры. Иммунные клетки ежедневно и ежечасно выявляют и уничтожают мутантов. Но некоторые из этих "повстанцев", сбрасывая с себя чужеродные признаки и рядясь в обычные одежды, ускользают от надзора иммунитета. Небольшие группы опухолевых клеток, преодолевшие барьеры иммунной системы, дремлют до поры до времени в укромных местах. Постепенно накапливая силы и воспроизводя многочисленное агрессивное потомство для захвата соседних тканей, а также распространяясь по всем возможным путям коммуникаций кровь, лимфа и т. Его передовой отряд - натуральные киллеры Следовательно, злокачественная опухоль - это враг, которой должен быть уничтожен. Или, по крайней мере, с ним может быть заключено временное перемирие.

Но дружба с захватчиком, пожирающим ресурсы организма, невозможна! Мутации, будучи основой изменчивости, действительно являются движущими силами эволюции. Но только те мутации, которые способствуют выживанию организма, а не губят его, как злокачественная опухоль. Если каждая раковая клетка уникальна, можно ли подобрать под нее и свое оружие? Кирилл Киргизов: Медицинская наука, а в особенности онкология, движется по этому пути. Скажу о детской онкологии, которой посвятил всю свою профессиональную жизнь. Сегодня мы стараемся сделать лечение максимально персонифицированным, фактически персональным. Для ряда опухолей только такой подход становится выигрышным. С этой целью мы определяем, какие мутации несет в себе клетка. К сожалению, не во всех клетках такую мутацию удается найти.

Не для всех мутаций есть свое лекарство. Но сегодня это очень успешный подход. Кирилл Киргизов: Мы стараемся сделать лечение максимально персональным. Ведь наверняка это очень редкая ситуация.

Вслед за этим нужно нарастить необходимое количество CAR-Т-клеток и протестировать их безопасность и работоспособность.

Наконец, готовый CAR-T препарат можно вводить обратно пациенту: уже прямо в его крови это «живое лекарство» будет само размножаться и уничтожать злокачественные клетки. CAR-T терапия рака Booking Health Одним из важнейших условий применения этого «умного лекарства» является, конечно, безопасность для человека — потенциальная польза всегда должна сопоставляться с возможным вредом. Идеальный антиген — мишень для атаки CAR-T-клеток — должен экспрессироваться в достаточном количестве на опухолевых клетках и желательно — только на них. Правда, такое требование едва ли выполнимо — дело в том, что опухолевые клетки очень похожи на нормальные по составу антигенов, поскольку именно от нормальных и происходят. Так что если высокая специфичность недостижима — можно ограничиться требованием, чтобы удаление всех клеток, несущих выбранный антиген, не было для пациента фатальным: ведь если целевые антигены обнаружатся и на здоровых клетках, то атака будет нацелена и на них.

Например, антиген CD19 маркирует все зрелые В-клетки человека: и здоровые, и опухолевые; однако если речь идет о спасении жизни — B-клеточным звеном на время можно и пожертвовать. Трансмембранный и внутриклеточный домены CAR важны для запуска активирующего сигнального каскада в Т-лимфоците. Также, помимо костимуляторного и сигнального доменов могут быть использованы домены, обеспечивающие выживаемость самой CAR-T-клетки, например, запускающие экспрессию цитокинов, необходимых для ее функционирования. К сожалению, опухолевые клетки пытаются избежать гибели, ускользая от CAR-Т — например, снижая экспрессию антигенов или видоизменяя их вследствие мутаций. В результате такого ускользания часть опухолевой популяции выживет, и возникнет рецидив.

Чтобы избежать таких проблем, врачи комбинируют разные варианты терапии в расчете на то, чтобы «прихлопнуть» максимум онкологических бунтовщиков. Вообще, поиск эффективных опухолевых антигенов-мишеней — непростая задача. Но современные технологии, в том числе секвенирование отдельных клеток [5] , приходят на помощь. Есть и другие проблемы, с которыми сталкивается медицинская наука в этой области: например, прямая зависимость «предлеченности» клеток пациента и дальнейшей эффективности полученного из них CAR-T-клеточного продукта, не говоря уже о дороговизне такого лечения. Индустрия производства и рынок CAR-T активно развиваются в этих странах всё это время.

Настало время и для нас! Отрадно, что творческие умы российских ученых талантливо преодолевают различные возникающие препятствия, что приводит к созданию новых технологий — а именно, первого российского CAR-T-клеточного препарата. Интерес и любовь к биологии и иммунологии когда-то привели нас в «Биомолекулу», в которой Полина выступает автором и редактором уже многие годы. Мы поговорили о том, как возникла эта идея, что позволило команде с практически космической скоростью создать работающий препарат в условиях постоянных ограничений и ухода с рынка многих компаний, и о мечтах и реальных планах на ближайшее будущее. Вообще эта идея появилась уже давно.

Еще в 2021 году директор нашего Центра академик В. Какое-то время эта мысль просто бродила, но проект не был в приоритете, в том числе поскольку основная деятельность была направлена на исследование новой коронавирусной инфекции SARS-CoV-2. Кроме того, в центре имени Дмитрия Рогачева были последовательно запущены два клинических исследования анти-CD19 CAR-T-клеточного лекарственного препарата от компании Miltenyi Biotec Германия — производство клеточного продукта проводилось автоматически в закрытом контуре прибора CliniMACS Prodigy, что называется «под ключ». Однако после февраля 2022 года компания Miltenyi Biotec ушла с российского рынка , и стало понятно, что наша страна теперь оторвана от этой технологии и от возможностей производства этого CAR-T-клеточного препарата. Собственно, с этого момента руководство центра поставило задачу создания российского анти-CD19 CAR-T как приоритетную, и мы стали думать, как можно его разработать и производить в отсутствие, пожалуй, самой удобной технологической платформы и расходников к ней.

Наша технологическая линейка собрана из доступных вариантов приборов разных стран Китай, США, Европа , которые позволяют выполнять стадии производства клеточного препарата в закрытом корпусе. Довольно много времени ушло на подбор приборов, расходников, реактивов и условий для производства. Но сейчас всё налажено и работает, как надо. Наш опытно-производственный отдел клеточной терапии работает по стандартам GMP.

Это важно, поскольку одним из основных препятствий на пути клинического внедрения клеточной терапии является плохое распространение и недостаточная эффективность клеток, полученных непосредственно от пациентов. Использование полностью синтетического подхода устраняет значительные препятствия на пути производства этих клеток. Сандро Матошевич, руководитель исследования Исследователи планируют проведение клинических испытаний для терапии пациентов с опухолями головного мозга, в том числе теми, которые не удалось устранить хирургическим путем. Читать далее:.

Белок, созданный для управления иммунной системой

  • Самоуничтожение раковых клеток: ученые из РФ создали новый препарат от онкологии
  • Вакцина от рака: в Петербурге учёные спасают даже умирающих
  • Ученые МФТИ разработали способ повышения эффективности клеточной терапии | 21.10.2022 |
  • Новая технология обращает вспять старение стволовых клеток
  • Похожие новости
  • Лекарство от рака изобретено, но мы мало о нем знаем

Литература

  • Читать также
  • Московские ученые разработали новую технологию терапии рака и атеросклероза
  • Самоуничтожение раковых клеток: ученые из РФ создали новый препарат от онкологии
  • ЧТО СДЕЛАЛА ГРУППА ДЭВИДА СИНКЛЕРА?
  • Что еще почитать
  • 40% успеха

Как первые российские CAR-T-клетки с опухолью боролись

Американские ученые пришли к выводу, что CAR T-клеточная терапия является одним из самых эффективных способов борьбы с раком. Новости науки» Медицина» Ученые назвали главные темы в развитии клеточной терапии. Ученые использовали регуляторные Т-клетки в качестве дополнения к терапии нейронными клетками и уменьшения побочных эффектов хирургической процедуры на моделях грызунов. Vitro Biopharma специализируется на клеточной терапии воспалительных и аутоиммунных заболеваний на основе тканей пуповины. Противораковый иммунитет, нацеленный на резистентные к терапии стволовые клетки лейкемии, активируется низкими дозами доксорубицина /© Mark Miller, Stowers Institute.

ВОССТАНОВИТЕЛЬНАЯ ТЕРАПИЯ БУДУЩЕГО

Вместе с тем, эксперименты показали, что с частотой 0,5–0,67 МГц и длительностью импульса ультразвук может избирательного воздействовать на раковые клетки без вреда для эритроцитов. По последним данным, клеточная терапия занимает 10 % всех клинических исследований в мире. Американские ученые пришли к выводу, что CAR T-клеточная терапия является одним из самых эффективных способов борьбы с раком.

Белок, созданный для управления иммунной системой

  • Московские ученые разработали новую технологию терапии рака и атеросклероза
  • В России представили новый способ эффективного воздействия на солидные опухоли
  • О CAR-T-иммунотерапии
  • Московские ученые разработали новую технологию терапии рака и атеросклероза
  • Самоуничтожение раковых клеток: ученые из РФ создали новый препарат от онкологии
  • Вакцину от рака на базе "старых" клеток создали ученые

В России представили новый способ эффективного воздействия на солидные опухоли

Эти восстановленные Т-клетки эффективно предотвращали образование опухолей и показали себя как более мощная форма ACT. Осталось провести еще много исследований, но прогресс вызывает оптимизм. Материалы новостного характера нельзя приравнивать к назначению врача. Перед принятием решения посоветуйтесь со специалистом.

Мы обнаружили, что можем создавать эти клетки в дозах, подходящих для клинического использования на людях.

Это важно, поскольку одним из основных препятствий на пути клинического внедрения клеточной терапии является плохое распространение и недостаточная эффективность клеток, полученных непосредственно от пациентов. Использование полностью синтетического подхода устраняет значительные препятствия на пути производства этих клеток. Сандро Матошевич, руководитель исследования Исследователи планируют проведение клинических испытаний для терапии пациентов с опухолями головного мозга, в том числе теми, которые не удалось устранить хирургическим путем. Читать далее:.

Мы провели все доклинические исследования как in vitro, так и in vivo с использованием супериммунодефицитных мышей. Исследования in vivo для нашего препарата были проведены в центре Раисы Горбачевой и виварии центра Алмазова в Санкт-Петербурге. Сейчас в Минздрав подана заявка на разрешение официального клинического исследования эффективности, переносимости и безопасности нашего анти-CD19 CAR-T. На каких стадиях? Он направлен против В-клеточного острого лимфобластного лейкоза и различных неходжкинских лимфом. Если говорить о стадиях, то вообще сейчас CAR-T применяют для тех, у кого нет других вариантов, то есть это третья и следующие линии терапии. Но нужно понимать, что эффективность зависит от степени предлечения, поэтому мы сейчас уже понимаем, что эффективнее будет начинать такую терапию с более раннего этапа лечения. Вообще на это влияет довольно много факторов. Поскольку это клеточный препарат, очень многое зависит от его качества, которое, в свою очередь, зависит не только от факторов производства, но и от изначальных показателей клеток пациента, которые должны «превратиться» в CAR-T.

Трендом последнего времени в клеточной терапии является попытка вписать лечение CAR-T-клеточным лекарственным препаратом в общую стратегию лечения каждого конкретного пациента. Какую терапию он получал до CAR-T? Что с ним будет дальше? Скажем, мы хотим просто достичь полной ремиссии и провести трансплантацию аллогенных гемопоэтических стволовых клеток, полностью «перезагрузив» иммунную систему, или же опции трансплантации нет, и пациент надеется выйти в долговременную ремиссию именно благодаря CAR-T. Также мы должны понимать и генетические особенности пациента. Скажем, в случае наличия мутаций в гене опухолевого супрессора р53 пациентам CAR-T-клеточную терапию следует выполнять на более ранних этапах лечения. Поскольку моя лаборатория рис. Рисунок 2А. Коллектив научной лаборатории может выглядеть и так.

Новый год — 2024 в управлении биомедицинских технологий НМИЦ гематологии. Боголюбовой-Кузнецовой Рисунок 2Б. Заместитель заведующего отдела технологического контроля Динара Баракова. Отдел занимается контролем качества производства CAR-T. Рабочий процесс в разгаре… фото Анастасии Замятиной — Можешь объяснить, в чем отличие вашего препарата и вообще CAR-T-препаратов от, например, моноклонального антитела ритуксимаба , тоже направленного на уничтожение В-клеток? Корректно ли вообще говорить о том, что эффективнее? Это, конечно, совсем разные препараты. В то же время, прямых исследований по сравнению эффективности клеточной терапии и терапий с использованием моноклональных антител как моноспецифичных — скажем, ритуксимаба, — так и биспецификов нет. Стоит помнить, что CAR-T — это клеточный препарат, он более комплексно влияет на опухоль, чем антитело.

На данный момент в мировой медицине главенствующее мнение, что биспецифические моноклональные антитела должны применяться в случае рецидива после CAR-T-клеточной терапии, а не а не перед ней. Нюансы строения и применения таких антител разобраны в публикациях: « Разработка биспецифических антител для применения в клинике » [10] и « Биспецифические антитела, их мишени и перспективы применения в современной медицине » [11]. Как вообще организована работа в лаборатории, что позволяет повышать эффективность и скорость?

Этот метод считается более действенным и щадящим для организма, чем, например, химиотерапия, когда при уничтожении раковых клеток могут пострадать и здоровые.

Ученые из специализированного комплекса «Мосмедпарк» разработали способ получения молекул, которые могут выявлять и прицельно уничтожать патологические белки, участвующие в развитии рака и атеросклероза. Молекулы уже подтвердили свою эффективность в экспериментах на клетках, сейчас специалисты начали их тестировать на животных. Разработанные с помощью технологии молекулы фактически выступают мостом, направляющим патологический белок в лизосомы для его разрушения», — рассказал Артем Сиразутдинов, генеральный директор компании «Система-БиоТех». С помощью этой технологии компания получила две молекулы.

И если одна транспортирует белок в лизосомы, из-за чего достигается эффект замедления роста опухолевых клеток, вторая очищает плазму крови от белка, ответственного за развитие атеросклероза. Такая молекула направляет патологический белок в клетки печени, где он уничтожается в лизосомах по тому же принципу.

Индивидуальное лекарство для каждого пациента: российские медики нашли новый способ лечения рака

Ученые из Йельского университета (США) разработали новый метод лечения различных типов опухолей с помощью технологии генного редактирования (CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats). С клеточной терапии не начинают, напротив, клетками заканчивают лечение хронических болезней. Противораковый иммунитет, нацеленный на резистентные к терапии стволовые клетки лейкемии, активируется низкими дозами доксорубицина /© Mark Miller, Stowers Institute. генные нарушения, поэтому эффект от ее применения может быть заметен сразу после начала лечения. Противораковый иммунитет, нацеленный на резистентные к терапии стволовые клетки лейкемии, активируется низкими дозами доксорубицина /© Mark Miller, Stowers Institute. Фотодинамическая терапия (ФДТ) считается современным и щадящим методом лечения рака.

Новый подход к лечению рака нашли новосибирские ученые

Ученые Московского физико-технического института МФТИ , Института биофизики клетки РАН в подмосковном Пущино , МГУ имени Ломоносова и Национального медицинского исследовательского центра акушерства, гинекологии и перинатологии имени Кулакова разработали технологию модификации клеток фибробластов путем присоединения к их поверхности полимерных «рюкзачков» — микроконтейнеров с многофункциональным белком пероксиредоксином. Отмечается, что присоединение пероксиредоксиновых «рюкзачков» значительно увеличивает жизнеспособность фибробластов в условиях окислительного стресса. К тому же, такой способ доставки фибробластов в организм повышает их подвижность и положительно влияет на способность вырабатывать коллаген. По мнению авторов работы, использование данного подхода позволит фибробластам лучше адаптироваться в организме пациента и не даст им погибнуть при трансплантации, что увеличивает эффективность клеточной терапии.

Есть ли место для применения этих клеток в практике? Кирилл Киргизов: Да, конечно! Было показано, что данные клетки могут не только бороться с опухолевыми клетками, но и потенцировать, то есть заставлять весь организм бороться с опухолью. На животных моделях, а затем и в практике, было показано, что такие клетки способны эффективно бороться с заболеванием. Возможно ли их произвести? Михаил Киселевский: В настоящее время в нашей стране создаются производственные площадки для получения клеточных продуктов в условиях, отвечающих всем современным требованиям. А если клетки еще дополнительно обучить? Кирилл Киргизов: Вы говорите абсолютно верно.

Сегодня мы можем "воспитать" в собственных клетках организма, а иногда и в клетках донора, специальные характеристики, которые помогут бороться с опухолью. Это значит, что клетка станет химерой - организм будет воспринимать ее своей. Но при этом она будет смертоносна для опухоли. Причем в лаборатории Михаила Валентиновича проводятся работы, позволяющие сделать клетки борцами не только с лейкозом как во многих центрах , но и с так называемыми сОлидными опухолями. Так называют опухоли, развившиеся не из клеток кроветворной системы. Эти опухоли могут быть доброкачественными и злокачественными. Но чаще подразумевают именно злокачественные опухоли. Это очень сложно, так как помимо задачи уничтожить опухолевые клетки необходимо реализовать задачу по проникновению в саму опухоль.

Насколько это реально? Михаил Киселевский: Вполне реально. Подобные лимфоциты-химеры, нацеленные на конкретные опухолевые клетки, уже созданы и с успехом используются в лечении лейкозов. Сейчас решается задача создания генетически модифицированных лимфоцитов с химерным рецептором для лечения сОлидных опухолей. Проведенные исследования на опухолевых клетках и лабораторных животных с опухолями показали перспективность данного направления. И значит, современные, даже самые фантастичные теории могут быть реализованы.

Известно, что производить его будет российская компания, а это значит, что лекарство станет доступно для всех пациентов, которые в нем нуждаются", — сообщил корреспондент.

Болезнь Бехтерева — это хроническое заболевание, при котором лимфоциты атакуют хрящевую ткань, принимая ее за инородное тело. Происходит поражение суставов грудной клетки, таза и позвоночника. Существующие лекарства не различают больные ткани от здоровых, поэтому их применение малоэффективно. Часто требуется операция, но даже после нее пациенты испытывают сильную боль, которая сковывает движения. Пирогова Минздрава России Алеся Клименко. Действие нового препарата направлено на устранение причины заболевания. Он точечно уничтожает Т-лимфоциты, атакующие клетки организма.

Терапия создается для каждого человека индивидуально, учитывая особенности его организма. Если все пойдет по плану, то иммунная система пациента «перезагрузится» и сможет бороться с ВИЧ без лекарств. Второй — несколько дней назад. Как сообщают исследователи, у обоих добровольцев нет каких-либо побочных эффектов, они чувствуют себя хорошо.

Всего ученые планируют опробовать новую методику на 9 пациентах. Еще столько же смогут присоединиться к расширенной когорте.

Вакцину от рака на базе "старых" клеток создали ученые

Ученые подтвердили эффективность такой терапии на мышах [5], где им удалось помочь грызунам, страдающим от фиброза печени. Терапия стволовыми клетками (ТСК) использует самообновляющиеся и дифференцирующиеся способности стволовых клеток, создавая новые возможности для лечения пациентов. К тому же перед началом Т‑клеточной терапии нужна небольшая химиотерапия, чтобы Т‑клеткам было место размножаться в крови пациента и собственные лейкоциты не конкурировали с Т‑клетками за еду. На начальных этапах развития клеточной терапии в практике чаще всего использовали эмбриональные стволовые клетки.

Похожие новости:

Оцените статью
Добавить комментарий