Российский космический буксир «Зевс».
В РАН заверили, что ядерный буксир «Зевс» не станет оружием против спутников
Создание Россией космических ядерных буксиров равнозначно созданию бензинового двигателя в то время когда все ездили на паровых, и что не мало важно, США как минимум отстаёт от нас лет на 20-30 в создании подобного космического буксира. Буксир «Зевс» разрабатывается в рамках проекта космического комплекса «Нуклон», который будет оснащен ионными двигателями и будет применять для различных целей. Российский перспективный космический ядерный буксир «Зевс» сможет расстреливать спутники потенциальных противников электромагнитными импульсами и лазерами, выяснили журналисты. Ядерный космический буксир «Зевс» создается для исследования Солнечной системы и станет ключевой технологией создания постоянной научно-исследовательской базы на Луне. Вечер с Дмитрием Конаныхиным 179 "Ядерное сердце ядерного буксира ЗЕВС". Российский космический буксир «Зевс».
Россия создаст космический ядерный буксир: он нужен Китаю для создания лунной станции
Ядерный буксир «Зевс» будут использовать в совместном с Китаем проекте международной научной лунной станции, сообщил генеральный директор госкорпорации «Роскосмос» Юрий Борисов на просветительском марафоне «Знание. Космический буксир «Зевс» с ядерной энергоустановкой, который разрабатывается в России, не является ядерным оружием, заявил ведущий научный сотрудник Института космических исследований РАН Натан Эйсмонт. Так он прокомментировал «РИА Новости» сообщения. Оказывается, ядерный космический буксир «Зевс» кое-как продвинулся вперед, прежде чем с деньгами стало туго. На «Зевсе» планируется установка ядерного реактора мощностью от 300 до 1000 киловатт электроэнергии, что обеспечит бесперебойную работу ионных двигателей и снабжение тепловой энергией всей системы буксира в течение длительного времени. Космический буксир «Нуклон» на атомной тяге. На «Зевсе» планируется установка ядерного реактора мощностью от 300 до 1000 киловатт электроэнергии, что обеспечит бесперебойную работу ионных двигателей и снабжение тепловой энергией всей системы буксира в течение длительного времени.
Ядерный буксир "Зевс" в 2030 г.? - Россия снова - первая в космосе?
Задачей многоразового межорбитального буксира ММБ являлась доставка больших грузов различного назначения на высокие околоземные орбиты. Полезная электрическая мощность ЯЭУ составляла 550 кВт. Огневой ресурс ЭРДУ — 16000 часов. Рассматривались проекты трех модификаций МБ «Геркулес»: одноразовый МБ, многоразовый МБ, транспортно-энергетический модуль ТЭМ — для доставки КА на орбиту назначения и последующего длительного питания энергоемкой аппаратуры КА на пониженном уровне мощности. Основное назначение МБ «Геркулес» — доставка тяжелого КА на исходную орбиту и обеспечение его движения перед выполнением задачи. Предусматривался режим ожидания с выключенной ЯЭУ без ограничения времени и многоразовость пуска, в т. После окончания функционирования требовалось обеспечить увод МБ или только ЯЭУ на орбиту высвечивания для спада накопленной активности реактора.
Однако в РКК "Энергия" работы продолжались в рамках небольших НИР Российского космического агентства сейчас — Роскосмос , а также при поддержке Минатом и Миннауки, но главным образом за счет собственных средств. Последнему способствовали сохранившийся до 2002 г. Финансирование внешних организаций стало невозможным, однако отдельные работы все же выполнялись в рамках научно-технического сотрудничества ряда организаций с РКК "Энергия". Результаты сравнительного анализа разработанных ранее проектов ЯЭУ с различными схемами преобразования паротурбинного, газотурбинного и термоэмиссионного тепловой энергии в электрическую показали преимущества ЯЭУ с термоэмиссионным реактором-преобразователем ТРП. Компоновочная схема ЯЭУ для межорбитального буксира "Геркулес" Основные компоненты ЯЭУ ядерного буксира "Геркулес": 1 — Блок генераторов пара цезия и системы удаления газообразных продуктов деления модулей; 2 — Термоэмиссионный реактор-преобразователь модульной схемы; 3 — Многослойная радиационная защита; 5 — Многоканальный МГД-насос с общей магнитной системой всех модулей; 6 — Трубопровод литиевой системы охлаждения на входе в модуль ТРП; 7 — Опорная ферма; 8 — Трубопровод литиевой системы охлаждения на выходе из модуля ТРП; 9 — Теплообменник литий-натрий зоны испарения тепловой трубы; 10 — Силовой преобразовательный блок высоковольтные кабели не показаны ; 11 — Опорное кольцо раздвижная ферма полезной нагрузки не показана ; 12 — Зона конденсации тепловых труб холодильника-излучателя Габариты ЯЭУ выбирались с учетом возможности выведения МБ «Геркулес» на стартовую РБО высотой 500-800 км или в грузовом отсеке ОК "Буран", или посредством РН "Протон". В этом случае максимальный диаметр ЯЭУ должен быть 5,5 м.
Лунные и планетные электростанции Освоение Луны и планет невозможно без создания нового поколения космической энергетики. Использование для планетных электростанций традиционно применяемых в КА солнечных батарей затруднено условиями их эксплуатации, так как на Луне 14 земных суток — день и 14 суток — ночь, поэтому потребуются достаточно тяжелые накопители электроэнергии на основе аккумуляторных батарей или электрохимических накопителей , доставка которых сложна и затратна. На поверхности Марса плотность солнечного излучения более чем в два раза ниже, чем в околоземном космосе, а также наблюдаются мощные пылевые бури. Поэтому ключевой энергетической технологией при освоении Солнечной системы будет ядерная энергетика.
Это - автоматическая миссия. Учитывая, что 2 первые миссии займут 4 года, хватит модуля на 2 такие миссии и работу на маршруте к Луне в течение 2-х лет. Подведём итоги: мы пока опережаем США и других конкурентов в создании этого инновационного проекта, который способен перевернуть все представления о перелётах космических аппаратов внутри Солнечной системы. Выйдя на серию, мы сможем изготавливать ТЭМы уже серийно, снижая их стоимость и развивая их возможности. Ни в к оем случае нельзя прекращать или снижать темп работ в этом направлении - Россия может вернуть себе владение передовыми технологиями в космосе, что и на Земле принесёт результаты. Бонус для дочитавших: видео про наш буксир "Зевс". Смотрите мои публикации, ставьте лайки и подписывайтесь на мой канал, а я постараюсь и далее разбирать с непривычных точек зрения подобные исторические ситуации.
То есть это своего рода паром между двумя берегами, а водное пространство — это космос. Встаёт логичный вопрос, а за счёт чего будет осуществляется такое количество полётов? В классической космонавтике полёт проходит за счёт жидкостного ракетного двигателя ЖРД , который за счёт сжигания химического топлива двигает ракету вперед. На Нуклоне же скорее всего будут применяться двигатели на других принципах — ионные. Суть их работы заключается в том, что тяжелый газ ксенон пропускается через электромагнитную дугу. Путем ионизации он превращается в плазму, которая и создаёт тягу, толкая корабль вперёд. Помимо ионных двигателей есть варианты поставить плазменные или роторные магнито-плазменные двигатели. Но давайте брать за основу ионный вариант, как наиболее испытанный. Ионные двигатели Нуклона Давайте сравним эти две системы. Для этого используем несколько показателей: удельный импульс и тягу двигательной установки. Если жидкостные двигатели имеют запредельные показатели тяги, но низкую эффективность удельный импульс — отношение тяги к секундному расходу топлива , то с ионными двигателями дело стоит ровно противоположно. Их эффективность зашкаливает, но они не способны выдавать высокую тягу. Более того, лучше ионные двигатели на данный момент не могут поднять даже 1 килограмм в условиях Земли — настолько малы они по мощности. Так зачем же они нужны? Дело в том, что в космосе такие установки могут работать часами, днями и даже годами. И каждую секунду выдавать такой пусть и не большой, но все же импульс. Тем самым, могут разогнать космический корабль до скоростей, неподвластных химическим ракетам. Что же нужно для работы таких двигателей? Ответ прост — газ и электричество, если с газом всё понятно используется ксенон, как самый эффективный вариант , то вопрос электричества решили радикально — воспользовались мирным атомом. На Нуклоне будет стоять ядерный реактор. Его мощность будет составлять от 300 до 1000 киловатт электроэнергии. Такого колоссального количества энергии будет хватать на долгосрочную работу ионных двигателей и на снабжение энергией всей системы буксира. Всё же, я предлагаю сравнить химические и ионные двигатели на нескольких дистанциях: ближней Луна , средней Марс и дальней Юпитер. В качестве объектов сравнения возьмём наш ядерный буксир Нуклон и американскую ракету Starship. Чтобы попасть к естественному спутнику Земли ракете нужно меньше недели а нашему ядерному буксиру понадобятся чудовищные 200 дней 100 дней разгона, 100 дней торможения. В то же время на средней, марсианской дистанции, время полёта практически сравнивается со Старшипом и занимает около одного года против 4-9 месяцев. Но есть один нюанс, Нуклон может за такой же промежуток вернуться обратно на Землю, а вот все экспедиции Старшипа на Марс — это пока билет в один конец, так как детище SpaceX израсходует всё топливо во время полёта, а по итогу совершит мягкую посадку на поверхность Красной планеты. Далее берём Юпитер, до него нашему ракете-носителю лететь не менее 3 лёт, в то же время Нуклон справляется в 2 раза быстрее, добираясь до газового гиганта за 1. И чем дальше от Земли, тем очевиднее это выгода по времени становится. В итоге можно охарактеризовать концепцию ядерного буксира старинной русской поговоркой: «Тише едешь — дальше будешь». Как устроен ядерный планетолёт? Вот он, в разобранном состоянии. КТМ — конструкторско-технологический макет. ОНФ — отсек несущих ферм правый верхний угол. ЭБ — энергоблок по центру. БОС — блок обеспечивающих систем правее ЭБ. Как я уже писал выше, на Нуклоне стоит ядерный реактор. Он — центральная часть всей системы ядерного буксира. От него зависит не только работа двигателей, но и работа всего остального оборудования, включая блок полезной нагрузки. Казалось бы, зачем использовать реактор, если есть старые добрые солнечные батареи? Проблема в том, что самые мощные солнечные панели, находящиеся в космосе, могут вырабатывать лишь порядка 150 киловатт энергии. Эти батареи — на МКС. Почему бы их не поставить на Нуклон? Во-первых, для питания 4 маршевых и 4 маневренных двигателей ИД-500, каждый из которых потребляет по 35 киловатт энергии, этого явно не будет достаточно. Во-вторых, мощность излучения солнца с расстоянием снижается. Поэтому при дальних перелётах выработка энергии будет существенно сокращаться у Нептуна лучи в 900 раз слабее чем у Земли. Именно в силу этих факторов было принято решение разместить на буксире ядерный реактор. Но и у этого решения есть определенные технические сложности. Во-первых, проблема охлаждения реактора. Казалось бы, космос и так холодный, в чем проблема?
Далее сообщается, что подобный космический корабль будет использоваться в качестве постоянно находящегося на орбите космического аппарата, который будет выполнять роль своего рода челнока. Любые земные корабли смогут выходить лишь на орбиту, а затем «Зевс» будет брать их на буксир и доставлять к Луне или любой другой планете Солнечной системы. Например, российские учёные сосчитали, что подобная транспортировка экипажа Землян к Юпитеру займёт всего 45 месяцев и запланирована на 2034 год.
Ядерный буксир "Зевс" в 2030 г.? - Россия снова - первая в космосе?
Способ эксплуатации Полёты на "Зевсе" будут сильно отличаться от полётов на предыдущих аппаратах. Затем будет проведена стыковка и осуществлён облёт Луны и возврат к Земле. Перелёт с околоземной орбиты комплекса на орбиту Луны с полезной нагрузкой до 10 т. В планах "Роскосмоса" - изучить атмосферу, магнитосферу и внутренние источники энергии Юпитера, подлёдные океаны Европы и Ганимеда. Длительность миссии оценивают в 50 месяцев, она завершится в 2034 г.
Да, и чтобы было понятно - о пилотируемом полёте никто не говорит. Это - автоматическая миссия.
Отношения к ядерному оружию он не имеет», — рассказал Эйсмонт. Этими словами Эйсмонт опроверг предположение о том, что слухи о том, что «размещение Россией ядерного оружия в космосе» может быть связано с буксиром «Зевс».
Из документов "Арсенала" следует, что в 2018—2019 годах конструкторское бюро провело научно-исследовательские работы для выяснения способности "Зевса" не только дистанционно зондировать поверхность Земли и околоземное воздушное пространство, но и влиять при помощи электромагнитного излучения на радиоэлектронные средства систем управления, разведки, связи и навигации. Кроме того, рассматриваются и гражданские задачи: обеспечение связи, вещание и ретрансляция, межорбитальная транспортировка грузов, доставка грузов к Луне.
Сроки миссий В 2024 году планируется завершить экспериментальное подтверждение ключевых технологий и разработку концептуальной части проектной документации. После этого начнется воплощение проекта в жизнь — сначала в конструкторских бюро, потом в цехах. В 2030 году должна состояться первая миссия. На данный момент ее параметры рассчитываются научными сотрудниками и экспертами из различных отраслей. Сперва ядерный буксир и модуль полезной нагрузки на ракетах-носителях выведут на околоземную орбиту с космодрома Восточный. Дальше проведут их орбитальную стыковку и осуществят облет Луны и возврат к Земле.
Потом "Зевс" начнет двигаться в сторону Венеры, сделает там гравитационный маневр и отправится к спутникам Юпитера. Миссия будет длиться 50 месяцев, а завершится предположительно в 2034 году. Ранее Рогозин сообщил о сроках создания независимого спутникового интернета в России.
Новые технологии позволят России значительно расширить свою сферу влияния, а также начать добычу полезных ископаемых на других планетах Солнечной системы. Поскольку Россия не стала подписывать Соглашение о деятельности государств на Луне и других небесных телах, международные законы не запрещают ей включать внеземные территории в состав государства, а также размещать на них военные сооружения.
Специалисты отмечают, что технологический прорыв, совершенный российской наукой, может привести к национализации некоторых небесных тел, например, Юпитера.
Россия создаст космический ядерный буксир: он нужен Китаю для создания лунной станции
С такой помпой разрекламированный проект ядерного буксира «Зевс» отменяется, дескать, у Роскосмоса нет на него денег. Разрабатываемый в России космический буксир "Зевс" с ядерной энергоустановкой не имеет отношения к ядерному оружию, заявил РИА Новости ведущий научный сотрудник РИА Новости, 17.02.2024. «Зевс» после старта с Земли подлетит к Луне, там от него отделится один космический аппарат, затем буксир совершит гравитационный маневр у Венеры, где также произойдет отделение аппарата, после чего буксир направится в сторону Юпитера.
Учёный РАН опроверг слухи о российском космическом буксире «Зевс»
Разработанный российскими специалистами космический буксир «Зевс» с ядерной энергоустановкой не является ядерным оружием. Об этом заявил научный сотрудник ИКИ РАН Натан Эйсмонт в интервью агентству РИА Новости. Отношения к ядерному оружию он не имеет", – сказал Эйсмонт РИА Новости. Разработка космического буксира "Зевс" с ядерной энергоустановкой в России не связана с ядерным оружием. Работа над перспективным космическим буксиром на ядерной тяге началась в 2010 году, хотя определенные наработки по данной теме были еще в советский период. Российский космический буксир «Зевс» сможет снимать с орбит объекты, которые определены боевым заданием. Разработка межорбитального буксира "Геркулес" подразумевалась в составе системы "Энергия–Буран".