Новости вязкость крови от чего зависит

То, что простым языком принято называть «густой» кровью, врачам известно как гиперкоагуляция, или повышенная вязкость крови.

Факторы, влияющие на вязкость крови в организме.

Беременность сопровождается снижением вязкости крови, что обусловлено физиологическим увеличением объма крови преимущественно засчет жидкой ее части. От чего зависит ее состояние, о каких болезнях может сигналить «густая» или «жидкая» кровь, рассказали эксперты. Поскольку кровь является неньютоновской жидкостью, то и ее вязкость, зависящая от скорости сдвига, будет различной в разных отделах системы кровообращения. Здоровье - 31 мая 2023 - Новости Новосибирска - В результате кровь сгущается, повышается ее вязкость, изменяются реологические свойства, количество клеток на единицу объема относительно увеличивается. Степень риска возникновения осложнений синдрома повышенной вязкости крови во многом зависит от основной причины его развития.

Чем опасна густая кровь, причины и лечение мужчин, женщин и детей

Центр общественного здоровья и медицинской профилактики Вязкость крови обусловлена внутренним трением при перемещении одних ее частиц по отношению к другим.
Что делать если у человека густая кровь. Причины густой крови | Здоровье человека Показатель вязкости крови говорит о том, сколько прослужат сердце и сосуды.

Какие овощи разжижают кровь и препятствуют образовани тромбов — список из 15 самых эффективных

Это ведет к изменению хим. Повышенную нагрузку печень несет при употреблении продуктов консервированных, копченых, мясных, соленых, сладких. Проживание в районах неблагоприятной экологии и работа на опасном производстве также вредят печени. Нарушен баланс состава крови: клеточной массы больше, чем плазмы. Обезвоживание: при недостаточном потреблении воды ; сильных физических нагрузках при потении кровь сгущается ; плохой усвояемости воды; приеме мочегонных препаратов, напитков, трав; диарее, рвоте. Гиперфункция селезенки, ее избыточная крове разрушительная деятельность. Медики озабочены тем, что тенденция к сгущению крови наблюдается не только у пожилых людей это естественный процесс , но и у молодых.

К слову, 100 лет назад кровь была у молодого поколения более жидкой. Объяснить данный факт можно грязной экологией и огромным количеством химии в продуктах питания. Тяжелая густая кровь с трудом осуществляет свою основную транспортную роль. Нарушается жизнедеятельность всего организма. Признаки густой крови Если вы не в курсе, что ваша кровь сгущается и циркулирует медленно, должны насторожить следующие признаки: Недомогание: ноющая головная боль, головокружения с короткой потерей координации, тошнота, слабость в мышцах и общая, обморочные состояния. Расстройство чувствительности в руках и ногах: онемение, покалывание, жжение, «ползание мурашек» Сухость кожи.

При этом острое течение может осложниться тромбозом сосудов головного мозга и ишемическим инсультом. По каким симптомам можно распознать сгущение крови Синдром сгущения крови всегда предшествует развитию острого тромбоза, но своевременная диагностика и лечение помогают избежать негативных последствий и тяжелых осложнений. Когда увеличивается вязкость крови, вполне возможно, что специфической картины не будет, только общие признаки недомогания: головокружения, чувство тяжести в голове, кратковременные головные боли, заторможенность, быстрая утомляемость, усталость.

От чего зависит ее состояние, о каких болезнях может сигналить «густая» или «жидкая» кровь, рассказали эксперты. Так, если человеку перелить кровь с чужеродными для него антигенами, иммунная система начнет с ними бороться, возникнет реакция отторжения. Антигены присутствуют на поверхности эритроцитов — красных кровяных телец. Когда вы обращаетесь за медицинской помощью, то врач назначает сдать общий анализ крови , чтобы не ошибиться в постановке диагноза.

В состав крови входят плазма и клетки лейкоциты, эритроциты и тромбоциты — их показатели как раз первыми сигнализируют, что с вашим здоровьем что-то не так. В Сети можно встретить такие определения как густая или жидкая кровь. Что они значат и насколько вообще правдивы такие термины? Кирилл Ювченко Врач-хирург, специалист по организации здравоохранения. До определенного предела в этом нет ничего вредного, но потом это вызовет отеки и спровоцирует повышенное давление , — объясняет эксперт. Тогда может наступить повсеместное кровотечение, от которого можно умереть».

Если, например, появились бактерии в сердце, то он через стенку сосуда проникнет в ткань, воду, по ней доплывает до бактерии и съедает ее. В результате образуется гной, который мы называем ревмокардитом, или миокардитом, или миокардиодистрофией, и т. А дальше лейкоцит будет думать, куда ему уйти. Если его ферментная база хороша, т.

Если она не очень, он уйдет напрямую в лимфу, и пойдет через лимфоузлы на выброс — в нос, в рот, в гортань, потовые железы, либо через половые пути. Что еще растворено в крови? В крови растворены клеточные питательные вещества. А в кишечнике огромное количество белков, растворенных и нерастворенных. Белки делятся на 28 аминокислот. У кишечника есть коридор, и у сосуда есть коридор. Эти коридоры совпадают. Как только эти аминокислоты растворились, они через этот коридор по одной проходят в кровь. Итак, в крови растворены 28 аминокислот, 15 минералов. Просто так минералы плавать не могут, иначе они образуют просто залежи железа или меди, они тоже соединены с аминокислотами в конгломератах.

Жирные кислоты — три основные и несколько других, ферменты — 3 тысячи. Все это растворено в крови. Кровь является той питательной средой, из которой клетка берет жизненно важные для нее вещества. Таким образом, вторая функция крови — питательная. Что получается: кровь пришла вместе с эритроцитами и кислородом. Здесь она называется артериальной. Если она уже прошла через орган и набрала углекислый газ, она называется венозной. И артериальный капилляр автоматически превращается в венозный капилляр. Венозная кровь идет к легким, на смену ей становится артериальная. И это называется круговорот крови в организме.

Как круговорот воды в природе. Вот это принципиальная схема работы сердечно-сосудистой системы. Сердце выталкивает кровь, и она идет дальше. Но если на пути крови встретится печень, забитая лямблиями и описторхами, то кровь не поднимется, а скопится внизу. Как следствие: варикозное расширение, тромбофлебит, сосудистые звездочки, геморрой и т. Кровь должна циркулировать беспрепятственно. Так же сердцу необходимо питание. Представьте себе две половинки сердца. Половинка сократилась — кровь ушла. Причем сократилась одномоментно: сердце сжалось, вторая половина в этот момент расширилась — кровь зашла.

Вторая половина сократилась — кровь ушла, первая разжалась — кровь зашла. Все, ничего больше не происходит. Если в крови есть 28 аминокислот, 15 минералов, 12 витаминов, 3 жирные кислоты и 7 ферментов 28-15-12-3-7 , то так и будет. А если кровь идет сгустками, если эритроциты прилипли друг к другу из-за нарушенного кислотно-щелочного равновесия, появляются перебои в работе всей системы. Эритроцит самостоятельно ни к чему не примагничивается, у него своя аура. Как только в крови появляется кислота, аура эритроцита гасится, они начинают слипаться и появляются образования, похожие на монетные столбики. Кто смотрел свою кровь на темнопольном микроскопе, мог их видеть. Вот такая кровь не может переносить кислород. Вот в такой крови жир. Холестерин сворачивается, так же, как в шашлыке с уксусом, и налипает на эритроциты.

И это называется тромб. И от этих тромбов, собственно, умирает каждый четвертый человек на планете. Статистика везде одинаковая. Только у японцев другая статистика. У них люди в некоторых местах, включая наш любимый остров, не умирают от болезней, а перестают жить, потому что кончается энергетический запас. Оказывается, так тоже можно! Итак, сердце может быть идеальным, добрым, ласковым — все зависит от того, какая кровь к нему подойдет. Вы знаете, что сердце сохраняет автоматизм, даже когда отделено от организма. Он взял сердце цыпленка, положил его в чашку, налил туда воду со всем необходимым 28, 3,12,15, 7 , водичку и каждый день ее менял. Сердце жило 35 лет.

Без курицы. Оно не знало, что курицы нет. Питательные вещества подходят — все нормально, мама на месте. Значит, она съела что-то хорошее. Профессор получил Нобелевскую премию, потому что он доказал, что если клетку содержать в нормальных условиях, она может очень долго жить. В природе ни одна курица не дожила до своего 35-летнего юбилея. Какая вязкость крови, какие питательны свойства крови, такая и жизнь. Это абсолютно две взаимосвязанные вещи. Если в крови нет чего-то из необходимого — страдают клетки сердца.

Густая кровь у женщин: причины, лечение и диета

При лечении повышенной вязкости крови особое внимание следует уделить причинам ее возникновения и диагностике. Здоровье - 31 мая 2023 - Новости Новосибирска - Также сдавал кровь на гормоны щитовидной железы (Т3, Т4, ТТГ) -норма. Однако нужно иметь в виду, что мы говорим только об уменьшении вязкости крови до нормального уровня, потому что чрезмерное уменьшение вязкости может привести к тому, что кровь будет плохо сворачиваться. То, что простым языком принято называть «густой» кровью, врачам известно как гиперкоагуляция, или повышенная вязкость крови.

Поделиться публикацией

Зелень Богата на фитонциды, калий, натрий. Самыми полезными в этом плане считаются укроп и петрушка — они ещё содержат витамины Е, К и РР. Диетологи утверждают, что регулярное употребление петрушки также помогает предотвратить фиброз железистой ткани и деградацию костного мозга не редкое явление у людей пенсионного возраста. При этом достаточно съедать всего 5 — 10 грамм петрушки ежедневно, чтобы полностью обеспечить свой организм витамином РР. Красный перец Помогает расширять сосуды, тем самым усиливая эффект усваивания металлов и солей. Вместе с этим незначительно увеличивается процесс всасывания жидкости из стенок толстого кишечника, а ещё нормализуется его микрофлора. Капсаицин, который и придает красному перцу острого вкуса, является сильным раздражителем. При любых заболеваниях желудочно-кишечного тракта его употребление категорически противопоказано. При этом в ней большое содержание калия, натрия, фосфора, фолиевой кислоты. Ещё на каждые 100 грамм огурцов содержится порядка 3 грамм не усваиваемой клетчатки. Спирулина Богата на витамин Е, омега-3 кислоту.

Особенно полезна данная водоросль для работы головного мозга, регулярное употребление спирулины также позволяет нормализовать артериальное давлениеи кровообращение мозга. По сути, такую пользу предоставляют практически все морские водоросли. Горох Особенно полезен в свежем виде. В горошинах содержится огромное количество флавонидов, витаминов группы В, а также органических кислот, которые помогают усваивать углеводы избыточное количество глюкозы в крови также существенно увеличивает вязкость плазмы. Но стоит учесть, что при наличии дисбактериоза от гороха лучше отказаться — он ускоряет размножение всех бактерий желудочно-кишечного тракта, замедляет синтез желчных кислот. Каланхоэ Преимущественно используется в качестве лекарственного растения, но до недавних пор его активно использовали и в кулинарии в качестве приправы к разного рода овощным салатам. Помогает комплексно нормализовать биохимический состав крови, а ещё помогает организму избавляться от токсинов-производных от вирусов полезно будет при восстановлении после затяжного гриппа, к примеру.

Столбцы воды и крови начинают движение, что позволяет сделать выводы о вязкости крови. В процессе проведения исследования вязкости крови с помощью вискозиметра нормой является: от 4,3 до 5,4 деления шкалы — если исследованию подвергалась кровь мужчины; от 3,9 деления шкалы до 4,9 — если анализ проводился для женщины.

Отклонение от данных показателей в сторону увеличения или уменьшения позволяет говорить о повышенной или пониженной вязкости крови. При отсутствии возможности определения вязкости крови с помощью специального оборудования нередко вывод о данном показателе делается на основании показателей гематокрита. Причины отклонения от нормы вязкости крови Отклонения в параметрах крови не возникают спонтанно. Какие причины провоцируют изменение состава крови и, как следствие, увеличение или уменьшение ее вязкости? Увеличение вязкости крови вызывают: Ферментная недостаточность. Данная особенность организма может носить как врожденный характер, так и быть приобретенным заболеванием. При данной патологии организм человека не продуцирует достаточное количество ферментов в пищеварительном тракте. В результате этого расщепление пищи не происходит в полном объеме, и кровь зашлаковывается продуктами распада. Как следствие — склеивание эритроцитов и недостаточное поступление кислорода в ткани.

Низкое качество воды, которую человек пьет. Такая, на первый взгляд, мелочь отрицательно влияет на состав крови, что приводит к повышению вязкости последней. Повышенная нагрузка на печень. Скудное питание, при котором организм не получает достаточного количества витаминов и минеральных элементов, в сочетании с увеличением нагрузки на главный «фильтр» организма приводит к повышению содержания в крови форменных элементов. Отрицательное влияние на печень оказывает, например, длительный прием лекарственных средств, увлечение острыми, копчеными и солеными блюдами, злоупотребление алкоголем. Недостаток жидкости в организме. Обезвоживание может быть спровоцировано, например, интенсивными физическими нагрузками если не потреблять достаточного количества воды , диареей или рвотой. Нехватка жидкости отмечается и при сахарном диабете. Отклонения в работе селезенки также могут нарушить нормальное соотношение клеток крови и плазмы.

Несбалансированное питание чрезмерное потребление углеводов, бобовых или злаков.

Формируется, так называемый, порочный круг нарушенного кровообращения. Густая кровь способствует развитию атеросклероза, а атеросклероз способствует дальнейшему увеличению вязкости крови.

Компенсаторное увеличение силы сердечных сокращений, требуемое для «проталкивания» густой и вязкой крови по неэластичным сосудам, приводит к быстрому истощению миокарда и развитию сердечной недостаточности. Снижение сердечного выброса при сердечной недостаточности приводит к прогрессированию нарушения микроциркуляции и ишемии органов и тканей. Также, усиливается образование тромбов и возрастает риск развития инфаркта, инсульта, тромбоэмболии, ишемии нижних конечностей.

Сгущение крови, микротромбообразования и ишемия на фоне сердечной недостаточности способствуют формированию хронической почечной недостаточности. Густая кровь — причины Для того, чтобы ответить на вопрос от чего густеет кровь у человека, необходимо рассмотреть, что влияет на ее вязкость. Основными причинами повышения густоты и вязкости крови являются: нарушение деформационной способности эритроцитов;.

Повышение вязкости как проявление адаптации Подготовка к родам В некоторых случаях сгущение крови происходит в результате процессов, которые носят компенсаторный характер. Например, густая кровь при беременности, когда сама природа пытается предотвратить выкидыш и подготовить женщину к родам, где всегда имеет место некоторая кровопотеря. Чтобы она не стала излишней, вязкость крови повышается. Контроль над течением этого процесса осуществляется с помощью общего анализа крови с расчетом концентрации эритроцитов, уровня гемоглобина и гематокрита. За изменением количества отдельных белков, в частности, фибриногена и других показателей системы свертывания следит коагулограмма , также назначаемая беременным в разные сроки. Однако, если вязкость увеличивается выше допустимых пределов, о чем скажет врач, то, в зависимости от того, насколько показатели превышают нормальные при беременности значения и чем вызвано подобное состояние, женщине будет назначено лечение. Возможно, все обойдется соблюдением диеты с использованием народных средств только по согласованию с врачом!

Ведь она может иметь какую-то врожденную или приобретенную патологию, но рискует с единственной целью — познать счастье материнства. Тромбофилия, лейкозы, варикоз и другие болезни, связанные со сгущением крови, во время беременности могут грозить тромбозами не только микрососудистого русла, но затрагивать и крупные сосуды, что весьма опасно и для матери, и для плода. Новое дыхание У новорожденного ребенка кровь густая и темная, а показатели ее существенно отличаются от таковых у взрослых или даже у детей, перешагнувших годовалый возраст. Это физиологическое явление, которое наступает приблизительно через 12 часов после рождения и проходит спустя некоторое время, поэтому мамочке, увидев устрашающие цифры, впадать в панику не следует. Следовательно, подобные колебания не связаны с патологией. Все объясняется очень просто: у новорожденного ребенка кровь густая, потому что малыш попал в непривычную для него обстановку, к которой ему нужно еще приспособиться, например, адаптироваться к новому способу дыхания. Симптомы и признаки Теперь очевидно, что густая кровь — это синдром, но никак не самостоятельная болезнь, поскольку формируется подобное явление в силу многих обстоятельств, сопровождающих список заболеваний, существенно влияющих на гомеостаз.

Поэтому выявление повышенной вязкости путем лабораторных исследований всегда предполагает поиск основной причины, которая привела к таким нарушениям, то есть, можно сказать, что кровь густая у человека потому, что у него есть серьезный диагноз.

КАКАЯ вязкость КРОВИ, такая и ЖИЗНЬ

Густая кровь – причины и лечение, что делать? При этом количество выпитой воды не влияет на вязкость крови, но увеличивает ее объем.
Что делать если у человека густая кровь. Причины густой крови | Здоровье человека Лечение начинается с терапии основного заболевания, которое привело к повышенной вязкости крови.
Все о сгущении крови И её вязкость в очень большой степени зависит и от температуры тела человека, и от температуры окружающей среды, от которой зависит белковый состав крови.

“У меня густая кровь…”

Поэтому нередко в протокол лечения таких пациентов включают антикоагулянты. Как их правильно принимать и что делать для уменьшения риска возникновения тромбофлебита? Рекомендации дают медики. Кому грозит тромбоз? Однако при ряде патологических условий этот механизм срабатывает не там и не тогда, когда нужно - и это становится катастрофой. Если тромб перекрывает просвет сосуда, замедляется или останавливается кровоток, ткани организма не получают кислорода и питательных веществ, начинается их омертвение. Еще более острая ситуация возникает, когда тромб отрывается от стенки сосуда и с кровотоком попадает в сердце, легкое, мозг.

Это может привести к инфаркту миокарда, почек, легких, инсульту, тромбоэмболии легочной артерии, тромбозу вен ног и даже к смерти. Как выяснилось, при COVID-19 могут возникать микротромбозы, которые приводят к недостаточности одного или нескольких органов. Дело в том, что одна из благоприятных сред для размножения вируса SARS-CoV-2, - это эндотелий, выстилающий внутреннюю поверхность кровеносных сосудов, которая контактирует с кровью.

Она обеспечивается за счет работы белых кровяных клеток — лейкоцитов. Также кровь отвечает за поддержание постоянства внутренней среды, именуемого гомеостазом Синдром повышенной густоты крови: в чем опасность? Синдром повышенной вязкости или же гипервискозность крови приводит к нарушению реологических свойств крови. Снижается скорость перемещения по сосудистому руслу, в результате чего нарушаются все обменные процессы, что оказывает значительное влияние на организм. Повышенная вязкость крови становится причиной развития таких грозных осложнений, как тромбозы и тромбоэмболии.

Тромб — это сформировавшийся кровяной сгусток, который закупоривает сосуд, мешая нормальному току крови. А эмбол — это тот же тромб, отрывающийся от первоначального места образования и перемещающийся по организму. Если эмбол остановится в желудочках, сосудах сердца или головного мозга, это может стать причиной гибели пациента. Удаление тромбов — это очень сложная процедура, которая должна выполняться в первые часы после появления первых симптомов.

Дисфункция эндотелия имеет системный характер, то есть идет поражение во всех артериях. В то же время, она обратима. При коррекции факторов риска, приведших к нарушениям, функция эндотелия нормализуется, что позволяет проводить контроль эффективности терапии. Повлиять на этот показатель можно медикаментозными и немедикаментозными способами. Помимо этого доказано, что черный шоколад снижает аппетит, является антидепрессантом, а также улучшает функцию эндотелия и функцию тромбоцитов, уменьшает спазм в коронарных артериях.

Классическая музыка уряжает ритм сердца, уменьшает аритмию, снижает диастолическое артериальное давление, улучшает мозговой кровоток», — привел данные научных исследований Геннадий Александрович. Однако наиболее выраженных результатов в короткое время можно добиться с помощью методов терапевтического афереза, применение которых уменьшает концентрацию атерогенных липопротеинов, устраняя гипервязкость плазмы крови, улучшает микроциркуляцию крови и функцию эндотелия сосудов, приводит к прекращению или снижению частоты приступов стенокардии у больных с ИБС, повышению толерантности к физической нагрузке и повышению чувствительности к лекарствам. Длительное применение афереза ЛНП и Лп а приводит к прекращению прогрессирования и регрессии атеросклеротического процесса. Улучшается состояние и самочувствие пациентов при постковидном синдроме», — рассказал профессор. Нормальные вязкость и микроциркуляция крови, функция эндотелия и повышенная за счет этого чувствительность к лекарственным препаратам позволяют добиться глобальных целей лечения пациентов: уменьшение стеноза артерий, предотвращение прогрессирования стенозов, профилактика тромбообразования, уменьшение болевого синдрома и, главное, сокращение риска инфаркта миокарда. Свяжитесь с нами.

Предел текучести зависит от гематокрита Н и от концентрации фибриногена CF : Для измерения вязкости жидкостей используют специальные приборы - вискозиметры: для измерения кинематической вязкости — капиллярные, для динамической — ротационные. Для неньютоновских жидкостей измеряемая вязкость зависит от геометрии прибора, поэтому для сравнения результатов необходимо убедиться, что все условия измерений совпадают. Наиболее распространены ротационные вискозиметры Брукфилда с системой «цилиндр в цилиндре», но для измерения требуется порядка 7-16 мл жидкости. В настоящее время нет единой методики изучения вязкости крови. Вискозиметр Брукфилда с системой конус-плита — это возможность проникнуть в одну из тайн нашего мира.

Физиологические и физико-химические свойства крови

Вредные привычки курение и алкоголь. При остром он развивается за несколько часов, при хроническом — от пары недель до нескольких лет. При этом острое течение может осложниться тромбозом сосудов головного мозга и ишемическим инсультом.

Не существует рецептов, которые помогли бы очистить сосуды от наличия тромбов или других отложений. Некоторые продукты, такие как шпинат, чеснок, лук, орехи и другие, могут оказывать полезное воздействие на кровеносную систему, но очистить сосуды от тромбов они не смогут. Тем не менее здоровый образ жизни, включающий правильное питание, физическую активность и отказ от вредных привычек, способен улучшить состояние сосудистой стенки и, как следствие, снизить риск образования тромбов. Сколько времени нужно на созревание тромба? Образование тромба происходит от нескольких минут до нескольких часов или даже дней. Время образования тромба зависит от различных факторов.

Например, в артериях малого калибра образование тромбов будет происходить быстрее. Могут усиливать образование тромбов факторы риска: курение, ожирение, генетическая предрасположенность. Всегда ли отрыв тромба означает смерть?

Еще три десятилетия назад впервые было продемонстрировано, что в условиях гипоксии и гиперкапнии эритроциты высвобождают АТФ, которая потенциально может выполнять функцию вазодилататора [ 30 ]. Было высказано предположение, что эритроциты, проходя через регионы с низким напряжением кислорода, стимулируют локальную вазодилатацию, увеличивая приток крови к этому региону. АТФ, связываясь с P2y1 и P2y2 пуринорецепторами эндотелия, вызывает расширение сосудов за счет релаксации гладких миоцитов сосудистой стенки вследствие выработки эндотелиоцитами оксида азота, простациклина или эндотелиального гиперполяризующего фактора [ 156 ]. Роль эритроцитов в этом процессе подтверждена экспериментами Dietrich и соавт.

Количественная оценка высвобождения АТФ эритроцитами подтвердила, что этот процесс осуществляется достаточно быстро, чтобы быть физиологически значимым [ 57 ]. Впоследствии было доказано, что эритроцит выступает не только в качестве регулятора локального кровотока в соответствии с метаболическими потребностями тканей, но и выполняет роль сенсора гипоксии, поскольку количество высвобождаемого АТФ прямо пропорционально степени деоксигенации гемоглобина и регуляция гликолиза дезоксигемоглобином в эритроцитах выступает в качестве начального этапа сигнального пути высвобождения АТФ [ 72 , 58 , 48 ]. Эритроциты выполняют функцию сенсора кислорода в тканях, контролируя сосудистое сопротивление благодаря кислород-зависимому высвобождению АТФ [ 48 , 73 ]. Еще один из механизмов локальной регуляции регионарного кровотока основан на способности эритроцитов захватывать, депонировать и высвобождать оксид азота в том числе и синтезированный самими эритроцитами в зависимости от степени оксигенации гемоглобина, которая напрямую взаимосвязана с метаболической активностью ткани и потреблением ею кислорода [ 129 ]. Jia L. Кроме того, дезоксигемоглобин может восстанавливать нитриты с образованием NO [ 74 ]. Эритроциты человека сами синтезируют NO ферментативным путем, показано наличие у них активной NO-синтазы эндотелиального типа NOS , которая активируется под действием напряжения сдвига [ 148 ], синтезированный эритроцитами NO высвобождается в интравазальное пространство и оказывает влияние на сосудистый тонус [ 43 ].

Экспериментально продемонстрировано, что высвобождение оксида азота эритроцитами под действием напряжения сдвига, по величине соответствующего реальным условиям кровотока в системе микроциркуляции, способно вызвать дилатацию изолированных мелких брыжеечных артерий крысы [ 21 , 149 ]. Известно, что Hb эритроцитов способен депонировать NO [ 17 ], это было основанием для контраргументов в дискуссии о возможности высвобождения оксида азота эритроцитами. Сродство гемоглобина к NO уменьшается в деоксигенированном состоянии, поэтому высвобождение NO из эритроцитов облегчается при деоксигенации, способствуя регуляции вазомоторной функции сосудов [ 135 ]. Кроме того, было продемонстрировано, что анионный обменник белок полосы III на мембране эритроцитов может способствовать экспорту NO синтезированного эритроцитами или высвобождаемого из S-нитрозогемоглобина [ 107 ]. Стоит отметить, что от степени оксигенации гемоглобина в эритроцитах зависит внутриклеточная передача сигналов [ 20 ], действие гормонов и вазоактивных агентов [ 145 ], ионный транспорт [ 31 ] и деформируемость [ 150 ] эритроцитов. Однако бывают ситуации, когда умеренное повышение этих показателей способствует перфузии тканей и снижению сосудистого периферического сопротивления за счет механостимуляции синтеза NO эндотелием, то есть реологические свойства плазмы и крови влияют на величину просвета сосуда, обеспечивая эффективную микроциркуляцию в тканях [ 91 ]. В работе Salazar Vazquez и соавт.

Следует заметить, что таким свойством обладает прирост вязкости, который не выходит за пределы физиологической нормы этого показателя. Это позволило S. Forconi предложить новую гемореологическую парадигму, согласно которой небольшое повышение вязкости крови обладает вазодилататорным эффектом и потенциально улучшает перфузию тканей, вопреки традиционной точке зрения о том, что любое увеличение вязкости крови негативно сказывается на перфузии тканей и может рассматриваться как фактор риска хотя и не самостоятельная патология [ 52 ]. Также большое значение имеет тот факт, что артериолы, резистивные микрососуды, регулирующие кровоток, снабжены сенсорными механизмами, которые контролируют напряжение сдвига на границе сосудистой стенки и регулируют его колебания через изменение активности сократительных элементов стенки сосуда, поддерживая его на постоянном уровне. Хронические нарушения такой регуляции например, в случае патологии приводят к адаптивным изменениям сосудистой стенки и микроангиоархитектоники ангиогенез и ремоделирование сосудов [ 101 , 122 ]. Поскольку воздействие напряжения сдвига на сосудистую стенку передается движущейся по этому сосуду кровью, очевидно, что механика этого взаимодействия будет в значительной степени определяться реологическими свойствами крови. Микрореологические свойства эритроцитов Наряду с вязкостью цельной крови микрореологические свойства эритроцитов вносят определенный вклад в реализацию эффективного микрокровотока [ 33 ].

Эритроциты обладают уникальными механическими свойствами, которые определяют их функционирование в условиях потока. Деформируемость отражает способность к изменению формы под действием внешних сил [ 40 ], это изменение полностью обратимо и при снятии деформирующего воздействия восстановление формы клетки происходит за достаточно короткое время порядка 0. Деформируемость эритроцитов обеспечивает снижение вязкости крови при высоких скоростях сдвига и играет важную роль при пассаже эритроцитов через терминальные сосуды микроциркуляторного русла, диаметр которых сопоставим с размерами клеток крови [ 128 ]. Уникальная форма эритроцитов двояковогнутый диск , отсутствие ядра и органоидов делает возможным вытягивание клетки с более, чем двукратным увеличением линейных размеров без существенного увеличения площади поверхности мембраны [ 99 ]. Считается, что деформируемость определяется вязкостью внутреннего содержимого клетки и вязкоэластическими свойствами мембраны, которые зависят от свойств сети протеинов на внутренней цитоплазматической стороне мембраны [ 100 ]. Модификация функциональных свойств эритроцитов возможна и под воздействием вазоактивных соединений, поскольку на мембране эритроцита имеются рецепторы к целому ряду таких соединений [ 131 , 34 ] и комплекс внутриклеточных сигнальных путей [ 21 , 108 ]. Кроме влияния вазоактивных агентов, участие эритроцитов в модуляции микрокровотока и сосудистого тонуса реализуется посредством жидкостно-механического взаимодействия с сосудистой стенкой [ 25 , 26 , 159 ] и высвобождением ими вазоактивных агентов АТФ [ 48 ] и оксида азота NO [ 73 , 148 ].

Было замечено, что деформируемость эритроцитов оказывает влияние на индуцированное гипоксией высвобождение АТФ: снижение деформируемости способствует уменьшению высвобождения АТФ, а рост деформируемости синхронизирован со стимуляцией этого процесса [ 111 ]. Посредством продукции оксида азота самими эритроцитами или клетками эндотелия под влиянием пристеночного напряжения сдвига, деформация эритроцитов может оказывать влияние на такие жизненно важные функции, как распределение крови, ангиогенез, митохондриальное дыхание и биогенез, потребление глюкозы, кальциевый гомеостаз и контрактильные свойства мышц. Таким образом, все эти функции находятся под регуляторным влиянием реологии крови [ 33 ]. Все попадающие в кровь биологически активные соединения контактируют с эритроцитами и могут оказывать влияние на их функциональные свойства. На сегодняшний день описано влияние более 30-ти различных факторов на микрореологические свойства и функции эритроцитов, есть все основания полагать, что в реальности это количество значительно больше [ 34 ]. В последнее время получены сведения о влиянии на реологические свойства эритроцитов таких соединений, влияние которых ранее не рассматривалось, но регуляторная роль которых в системе кровообращения становится все более очевидной, например, молекул газомедиаторов и циркулирующих в крови липидов. Известно, что циркулирующие в крови липиды связаны с неблагоприятными изменениями реологических свойств эритроцитов.

Повышенный уровень липопротеинов низкой плотности или триглицеридов ассоциирован с ухудшением деформируемости эритроцитов, а липопротеины высокой плотности находятся в прямой взаимосвязи с деформируемостью [ 113 ]. Важнейший регулятор энергетического обмена гормон лептин, синтезируемый адипоцитами жировой ткани, улучшает деформируемость эритроцитов через NO-цГМФ-зависимый механизм [ 143 ], но в то же время повышает агрегацию эритроцитов [ 62 ]. Представлены данные о том, что лептин способен вызывать дилатацию сосудов как посредством NO-зависимых, так и NO-независимых механизмов [ 87 ]. В физиологических условиях лептин вызывает эндотелий-зависимую вазорелакцсацию стимулируя NO и эндотелиальный гиперполяризующий фактор. В то время как у практически здоровых лиц эффект лептина ведет преимущественно к вазодилатации, у пациентов с метаболическим синдромом гиперлептинемия постепенно дисрегулирует контроль кровяного давления посредством ухудшения эндотелиальной функции. По мере развития метаболического синдрома вклад эндотелиального гиперполяризующего фактора в гемодинамический эффект лептина становится неэффективным. Резистентность к вазодилатационному влиянию лептина может вносить вклад в развитие артериальной гипертонии [ 29 ].

Изучение влияния газомедиаторов на микрореологические свойства эритроцитов предпринято относительно недавно. Газомедиаторы — малые липидорастворимые молекулы газов NO, CO, H2S , которые не требуют сложного каскада передачи сигнала для реализации своего регуляторного влияния, они способны легко проникать через клеточную мембрану и непосредственно реализовывать свою биологическую функцию, взаимодействуя с клеточными компонентами [ 102 ]. Благоприятное влияние NO на микрореологические свойства эритроцитов показано Baskurt O. Муравьев А. Эффект оксида азота и сероводорода на деформируемость и агрегатные свойства эритроцитов зависит от уровня обеспеченности кислородом и более выражен у лиц с высокими показателями максимального потребления кислорода [ 3 , 8 ]. Продемонстрировано положительное влияние оксида азота на микрореологические свойства эритроцитов и показатели свертывания крови [ 141 ]. Классическая триада Рудольфа Вирхова, обозначившая ключевые факторы тромбообразования, включает в себя нарушение целостности сосудистой стенки в первую очередь ее эндотелиального слоя , изменения состава и свойств самой крови и скорости кровотока.

Если первые два фактора интенсивно изучались и здесь достигнуты определенные успехи, то исследованию влияния условий течения крови на процесс тромбообразования уделялось недостаточно внимания. Первые исследования в этой области были предприняты в 70-гг. Начальным этапом свертывания крови является первичный тромбоцитарно-сосудистый гемостаз, который играет важную роль как в физиологических условиях, так и при патологии. Нестимулированные тромбоциты циркулируют в виде гладких дискоидных клеток с незначительной метаболической активностью. Такие тромбоциты не вступают в физиологически значимое взаимодействие с другими форменными элементами периферической крови или монослоем эндотелиальных клеток, выстилающим эндоваскулярное пространство. Физиологическая активация тромбоцитов начинается тогда, когда поврежден сосудистый эндотелий и обнажен субэндотелиальный внеклеточный матрикс. При этом происходит быстрая адгезия тромбоцитов к обнаженному субэндотелиальному экстрацеллюлярному матриксу в целях остановки кровотечения и репарации поврежденных тканей.

На следующих этапах первичного гемостаза происходят активация и агрегация тромбоцитов с формированием тромбоцитарной пробки [ 86 ]. В условиях in vivo и адгезия, и агрегация тромбоцитов включает переход от движения в потоке к фиксации на поверхности. В случае адгезии поверхность, к которой прикрепляются тромбоциты, это сосудистая стенка либо окружающие ткани, адгезивными субстратами выступает эндогенный матрикс или мембранные протеины и протеогликаны со связанными компонентами плазмы. В случае агрегации поверхностью является мембрана соседних тромбоцитов, которые уже иммобилизованы в месте формирования тромба и предоставляют мебраносвязанные субстраты, перемещенные из внутренних мест хранения в процессе активации или извлеченные из плазмы. Таким образом, и на процесс адгезии, и на процесс агрегации тромбоцитов оказывают влияние условия течения крови, то есть ее реология [ 49 , 69 ]. Однако использование агрегатометрии тромбоцитов in vitro не позволяет учитывать влияние кровотока, важной переменной, существенно повышающей сложность процесса агрегации тромбоцитов. В агрегометре тромбоциты объединяются в агрегаты в условиях низкосдвигового не ламинарного течения, такие экспериментальные условия не способны адекватно моделировать когезию тромбоцитов на тромбогенной поверхности в реальных условиях циркуляции.

Условия течения крови или ее реологические свойства в месте повреждения сосудистой стенки оказывают существенное влияние на адгезию и агрегацию тромбоцитов. В условиях циркуляции in vivo тромбоциты подвергаются воздействию разных гемодинамических условий: от относительно медленного течения в венулах и крупных венах средние пристеночные скорости сдвига составляют порядка 500 с—1 до мелких артериол, где скорости сдвига могут достигать 5000 с—1. В стенозированных артериях скорости сдвига увеличиваются до 40 000 с—1 [ 118 ]. Тромбоциты обладают уникальной способностью формировать прочные адгезионные контакты при любых сдвиговых условиях течения имеющих место in vivo с последующим формированием тромбоцитарной пробки и в конечном итоге тромба даже при высоких скоростях сдвига [ 59 ]. Стойкая адгезия тромбоцитов включает следующие процессы: прикрепление, роллинг, активацию и адгезию. Субэндотелиальный внеклеточный матрикс содержит ряд адгезивных макромолекул таких как коллаген, фактор фон Виллебранда, ламинин, фибронектин и тромбоспондин, которые служат лигандами для различных мембранных рецепторов тромбоцитов [ 88 ]. Тромбогенный фибриллярный коллаген типа I и III является самым мощным медиатором адгезии тромбоцитов благодаря выраженной способности активировать тромбоциты и высокой аффинности к фактору фон Виллебранда.

Оба эти рецептора действуют синергично, усиливая активность друг друга в целях оптимальной адгезии и активации на коллагене. Первоначальное адгезивное взаимодействие тромбоцитов с внеклеточным матриксом существенно зависит от локальных реологических условий. Циркулирующие тромбоциты и сосудистая стенка разделены слоем плазмы и не могут взаимодействовать если расстояние между ними превышает 100 нм. Межмолекулярные связи могут формироваться при снижении дистанции до 10 нм и менее. Минимальное расстояние зависит от длины молекул, участвующих в адгезии, их конформации и положения реакционных центров [ 69 ]. Формирование связи между мембранным рецептором и адгезивным лигандом при их сближении на достаточное расстояние возможно в том случае, если скорость формирования связи выше относительной скорости движения этих молекул друг относительно друга. Поэтому количество адгезированных клеток уменьшается при увеличении скорости сдвига.

Напряжение сдвига оказывает противоположное влияние на прочность уже образовавшихся адгезивных контактов: при возрастании напряжения сдвига уже сформированные адгезивные контакты могут разрушаться. Различные способы реализации адгезии тромбоцитов при разных условиях течения определяются биомеханическими свойствами разных лиганд-рецепторных пар.

Ангиогенез на уровне микроциркуляции отличается стохастическим характером, при этом формируется микрососудистая сеть с мельчайшими сосудами — капиллярами, диаметр которых сопоставим с размерами клеток крови порядка 5 мкм [ 122 ]. Если системное кровообращение имеет определенную структуру и строение, то на уровне микрокровотока рост и изменения сосудистой сети происходят под управлением локальных тканевых факторов [ 101 , 154 ]. Сократительная активность гладких миоцитов сосудистой стенки обеспечивает поддержание оптимального диаметра сосудов в системе микроциркуляции и сопряжена с их способностью поддерживать сосудистый тонус в течении длительного времени. На мышечный компонент сосудистой стенки непосредственно воздействуют основные тонусформирующие факторы в системе микроциркуляции — нейрогенный, миогенный и эндотелиальный механизмы регуляции просвета сосудов.

В физиологических условиях собственно миогенный компонент регуляции в чистом виде локализован на прекапиллярах и сфинктерах, нейрогенная регуляция затрагивает артериолы и артериоло-венулярные анастомозы, мишенью эндотелиальной регуляции диаметра сосудов являются по большей части более проксимальные сосуды мелкие артерии, крупные артериолы [ 5 ]. Особое место в регуляции тонуса микрососудов наряду с нейрогенной и гормональной регуляцией принадлежит локальной местной регуляции, поскольку именно она способна оперативно управлять кровотоком в соответствии с постоянно изменяющимися потребностями тканей. И это служит дополнительным аргументом в пользу представлений о микроциркуляторно-тканевой системе, где все подчинено решению основной задачи — обеспечению оптимального уровня жизнедеятельности тканевого региона. На уровне обменных сосудов капилляров , не имеющих сократительных элементов, объектами регуляции выступают число функционирующих перфузируемых капилляров, отражающих площадь обменной поверхности, и те процессы обмена, которые реализуются через сосудистую стенку массоперенос растворенных веществ [ 5 ]. Сосуды микроциркуляторного русла почти полностью выстланы эндотелиальными клетками, которые фенестрированы и содержат поры, связь между ними осуществляют различные молекулы, включая кадгерины, а также токопроводящие щелевые контакты, которые обеспечивают восходящую электрическую связь между эндотелиоцитами. Эти эндотелиальные структуры различаются по плотности и морфологии в сосудах различных органов.

Эндотелиоциты в симбиозе с гладкомышечными клетками сосудистой стенки влияют на микрососудистый кровоток преимущественно за счет регуляции сосудистого тонуса артериол и прекапиллярных сфинктеров. Одной из важнейших субклеточных структур эндотелия, опосредующей его функцию, является гликокаликс, присутствующий на люминальной поверхности эндотелия [ 71 , 146 ]. Гликокаликс представляет собой гелеобразный слой толщиной 0. Гликокаликс играет ключевую роль в поддержании гомеостаза сосудов, контролирует проницаемость сосудов и тонус микроциркуляторного русла, предотвращает микрососудистый тромбоз и регулирует адгезию лейкоцитов. Принято считать, что целостность гликокаликса является основной детерминантой сосудистого барьера, однако в исследованиях Guerci P. Гликокаликс отталкивает эритроциты от люминальной поверхности эндотелия, способствуя их дальнейшему продвижению по сосудистому руслу, препятствует адгезии тромбоцитов к сосудистой стенке и ослабляет взаимодействие между тромбоцитами и лейкоцитами [ 4 ].

Число Рейнольдса, отражающее гидродинамический режим движения и степень его турбулентности, в таких сосудах невелико, поэтому течение крови принято считать ламинарным и подчиняющимся закону Стокса, на основании чего в таких условиях можно говорить о параболическом распределении скоростей профиле скоростей в сечении трубки сосуда. Если геометрия сосуда неизменна, движение крови определяется ее суспензионными свойствами. В сосудах с диаметром, значительно превышающем размеры клеточных элементов, кровь рассматривают как континуум с нелинейными реологическими свойствами. При изучении движения крови в стеклянных трубках было продемонстрировано, что кажущаяся вязкость крови значительно снижается при уменьшении диаметра сосуда менее 300 мкм уровень микроциркуляции эффект Фареуса—Линдквиста , а при уменьшении диаметра сосуда до критических для пассажа клеток размеров порядка 3—5 мкм , наблюдается обратный эффект Фареуса—Линдквиста — рост кажущейся вязкости крови, поскольку на этом уровне определяющим фактором становятся клеточные свойства [ 24 , 128 ]. Значения сопротивления кровотоку на уровне микроциркуляции оказались существенно выше в условиях кровотока по сосудистой сети in vivo в сравнении с оценками, полученными в экспериментах in vitro при течении в стеклянных трубках. Логично предположить, что сосудистая стенка, являясь активным участником циркуляции крови, вносит свой вклад в это несоответствие.

В качестве одной из возможных причин несоответствия было названо наличие гликокаликса на поверхности эндотелиальных клеток. Эндотелий, длительное время считавшийся пассивной сосудистой оболочкой, в настоящее время рассматривается в качестве независимой системы, играющей важную роль в процессах тромбоза и тромболизиса, взаимодействия тромбоцитов и лейкоцитов с сосудистой стенкой, в регуляции сосудистого тонуса и пассажа крови [ 146 ]. Эндотелий экранирован от патогенных воздействий эндотелиальным гликокаликсом — гелеобразным отрицательно заряженным слоем, состоящим из сульфатированных гликозаминогликанов и протеогликанов, который выполняет защитную функцию в отношении эндотелиоцитов, уменьшая воздействие на них напряжения сдвига, индуцированного потоком крови [ 71 , 146 ]. Напряжение сдвига — это сила, прикладываемая к верхнему слою ламинарно текущей жидкости, вызывающая смещение нижележащих слоев относительно друг друга в направлении прикладываемой силы [ 112 ]. В случае повышения напряжения сдвига, опосредованного через гликокаликс, эндотелий увеличивает выработку оксида азота, вызывающего вазодилатацию и снижение напряжения сдвига. Под действием напряжения сдвига эндотелиоциты существенно усиливают выработку гиалуроновой кислоты в гликокаликсе, что также уменьшает напряжение сдвига.

Повреждение гликокаликса нарушает эти механизмы и реакцию эндотелия на напряжение сдвига, что может приводить к развитию тромбоза и атеросклероза [ 4 ]. Более 80 лет назад А. Крог предложил модель транспорта кислорода в ткани, которая базировалась на процессе диффузии кислорода в направлении условного цилиндра цилиндра Крога , окружающего каждый капилляр. Эта модель продемонстрировала ограничения диффузии и смогла объяснить почему ткани с высоким уровнем потребления кислорода отличаются высокой плотностью капилляров. Также модель Крога показала, что недостаточно просто доставить к органу адекватное количество кислорода, необходимо еще и распределить его в точном соответствии с его потребностями [ 64 ]. Артериолы, которые контролируют сосудистое сопротивление в микрососудистой сети органа, а, следовательно, и приток крови, также отвечают за регуляцию распределения кислорода в пределах тканевого региона.

Для обеспечения эффективного контроля, ответ микрососудов на изменяющиеся условия , например, повышенная потребность в кислороде, сниженная доставка кислорода должен быть тесно интегрирован в пределах микрососудистого русла. Клеткам эндотелия принадлежит определяющая роль в интеграции локальных стимулирующих сигналов, эта функция реализуется посредством межклеточной коммуникации в микрососудистом эндотелии [ 126 ] или трансдукцией сигнала в ответ на локальное напряжение сдвига, обусловленное изменениями микрокровотока [ 79 , 80 ]. К примеру, если сосудорасширяющий стимул возникает на уровне капиллярной сети, сосудистый эндотелий способствует проведению сигнала к артериолам, снабжающим эти капилляры, вызывая их дилатацию и тем самым увеличивая приток крови к данному региону. Это было подтверждено другими исследователями на разных органах с использованием различных методических подходов [ 47 , 142 ]. Если кислород может перемещаться таким образом из артериол в капилляры, вполне возможно существование кислородного обмена и между капиллярами с различным уровнем кислорода, между артериолами и венулами. Кроме того, количественные оценки микрокровотка продемонстрировали значительную пространственную гетерогенность капиллярной перфузии [ 46 ].

Уникальные реологические свойства эритроцитов, циркулирующих в местах ветвления микрососудов эффект Фареуса и проскальзывание плазмы в точках бифуркации способствуют проявлению достаточно широкого диапазона распределения гематокрита в капиллярах и скоростей движения эритроцитов. Гетерогенность микрососудистого гематокрита, падение сатурации кислорода в прекапиллярной зоне и диффузионный обмен кислорода между микрососудами означают, что кровоток сам по себе не может быть адекватным индикатором адекватной доставки кислорода в ткани [ 46 ]. Это приобретает особое значение в плане регуляции кислородного снабжения, в особенности в условиях патологии и при исследовании доставки кислорода в условиях in vivo. Обмен нутриентов и метаболитов требует наличия проницаемого эндотелиального барьера, контролирующего пассаж биомолекул и жидкости между кровью и интерстициальным пространством. Что касается транспорта кислорода, три типа клеток внутри сосудистой системы гладкомышечные клетки сосудистой стенки, эндотелиоциты и эритроциты выполняют согласованную работу, чтобы обеспечить адекватный транспорт кислорода к месту его потребления [ 21 ]. Соответствие потребности в кислороде и его доставки в скелетные мышцы [ 123 ] и головной мозг [ 51 ] в определенной степени изучено, хотя обсуждение механизмов в основном сосредоточено на регулировании функции кровеносных сосудов, то есть на клетки, составляющие сосудистую стенку: эндотелиоциты и гладкие миоциты.

В последнее время появляется все больше свидетельств того, что эритроциты наряду с транспортной функцией способны выполнять функции детекции гипоксии и локальной регуляции кровотока в соответствии с метаболическими потребностями тканевого микрокрайона, поскольку их свойства зависят от парциального напряжения кислорода. Например, было показано, что свойства эритроцитов претерпевают существенные изменения в ответ на физические нагрузки, которые сказываются на доступности кислорода и на его потреблении тканями [ 42 ]. Гипотеза о том, что эритроциты наряду с эндотелиоцитами и гладкими миоцитами сосудистой стенки выступают в качестве равноправных участников процесса регуляции микрокровотока в соответствии с локальными потребностями тканей выдвинута относительно недавно. Внутриэритроцитарные сигнальные пути регулируют высвобождение кислорода и модифицируют реологические свойства красных клеток крови, а также высвобождение ими вазоактивных соединений в ответ на воздействие специфических лигандов, сигнализирующих о потребности в кислороде посредством активации мембранных рецепторов эритроцитов [ 21 ]. Продолжительность жизни зрелого эритроцита составляет около 120 дней, большую часть из этого времени эритроциты находятся в системе микроциркуляции, где подвергаются значительным биомеханическим и биохимическим стрессовым воздействиям. Уникальная физиология эритроцитов позволяет ему адаптироваться к этим воздействиям и успешно функционировать в сложных условиях циркуляции [ 117 ].

В системной и легочной микроциркуляции эритроциты подвергаются высокоамплитудным деформациям, в результате чего происходят биофизические и биохимические изменения, ведущие к элиминации красных клеток крови из циркуляции ретикулоэндотелиальной системой. Была выдвинута гипотеза о том, что многократные механические воздействия пассаж через микроканалы с применением методов микрофлюидики могут моделировать ускоренное старение. Эксперименты по искусственной ригидификации эритроцитов свидетельствуют о значительном ухудшении перфузии тканей при снижении деформируемости эритроцитов. В реальных условиях кровотока модификация деформируемости эритроцитов менее значима, поскольку они все же сохраняют некоторую хотя и сниженную способность к деформации и нарушения микрокровотока имеют место лишь в сосудах самого мелкого калибра, более крупные сосуды такие эритроциты проходят. Поэтому кроме видимых overtly реологических нарушений как например, при серповидноклеточной анемии, когда эритроциты необратимо ригидифицированы , можно говорить и о скрытых covertly нарушениях реологии крови, которые не приводят к окклюзии сосудов, но ухудшают перфузию тканей [ 19 ]. Деформируемость эритроцитов может изменяться обратимо, либо необратимо, последнее ведет к эриптозу [ 34 ].

Высказывается мнение, что некоторые воздействия приводят к обратимым изменениям деформируемости эритроцитов, и таким образом включены в физиологическую регуляцию, в то время как другие влияния вызывают необратимые изменения деформируемости красных клеток крови, что выступает в качестве начального этапа эриптоза, то есть программируемой гибели эритроцитов. Например, процесс ригидификации эритроцитов при физических нагрузках — это скорее всего обратимый физиологический механизм, а изменения красных клеток крови в условиях патологии в условиях воспаления, при диабете 2 типа, серповидноклеточной анемии и т. Важную роль в обеспечении деформируемости эритроцитов играют и физико-химические свойства среды, окружающей клетку термические воздействия, рН, осмолярность, белки плазмы крови и оксидативный стресс. Однако на деформируемость эритроцитов и эриптоз способны оказать влияние еще и многие другие факторы. Это позволяет предположить, что определенные гомеостатические регуляторные циклы адаптируют жесткость эритроцитов к физиологическим условиям с целью оптимизации доставки кислорода в ткани в соответствии с их потребностью. Эритроциты отличаются высокой устойчивостью и обладают способностью к восстановлению, если изменяются условия окружения или прекращается действие стрессорных факторов, однако как в любых физиологических или молекулярных сигнальных путях, наступает точка невозврата, после которой восстановление становится невозможным.

Результатом воздействий, которые необратимо повреждают красные клетки крови, становится полная их деструкция и удаление из кровотока. Клиренс ригидных эритроцитов в селезенке — это основной регулятор деформационных свойств эритроцитов [ 34 ]. В основе процесса транспорта кислорода эритроцитами, движущимися в системе микроциркуляции, лежат два базовых механизма — конвекция транспортирующих кислород эритроцитов и диффузия кислорода из красных клеток крови к митохондриям клеток тканей [ 61 ]. Первый компонент кислородного транспорта в ткани определяется потоковыми свойствами эритроцитов в крови флакс , а диффузионная составляющая может быть охарактеризована плотностью функционирующих капилляров [ 27 ]. Уровень активности метаболизма ткани и, соответственно, потребления ею кислорода является основным фактором, определяющим диффузию кислорода из крови в ткань. Действие кислорода как регуляторного фактора может быть как прямым, так и непрямым.

Прямое воздействие осуществляется на сосудистую стенку, которая содержит сенсор кислорода, реагирующий на парциальное напряжение кислорода в периартериолярном пространстве. Непрямое действие реализуется через вторичные метаболиты и пусковым сигналом служит тканевой или конечный капиллярный уровень напряжения кислорода. Сенсоры локализуются в тканевых митохондриях, эндотелии капилляров или стенке венул. В качестве уникального мобильного сенсора кислорода, как показано исследованиями последних лет, способны выступать и эритроциты [ 48 , 74 ]. Поскольку в системе микроциркуляции прямой механизм требует значительного падения периартериолярного напряжения кислорода, в физиологических условиях, по всей видимости, преобладает непрямой механизм регуляции. Кроме основной функции эритрона транспорта кислорода от легких к тканям , в настоящее время доказано его активное участие в регуляции сосудистого тонуса вазорегуляция , что лежит в основе оптимизации регионарного кровотока с целью обеспечения доступности кислорода в легких и его потребления на периферии.

В случае недостаточного поступления кислорода регуляция его доставки обеспечивается варьированием кровотока, а не содержанием кислорода, поскольку содержание кислорода относительно фиксированная величина, в то время как показатели кровотока могут изменяться в диапазоне нескольких порядков. Таким образом, объемный кровоток и его распределение — это физиологические параметры, которые наиболее активно регулируются для поддержания соответствия между доставкой кислорода и потребности в нем. Система обратной связи, ответственная за регуляцию доставки кислорода в тканевые регионы, должна быть способна контролировать и при необходимости регулировать поступление кислорода в ткани на уровне микроциркуляции. Еще три десятилетия назад впервые было продемонстрировано, что в условиях гипоксии и гиперкапнии эритроциты высвобождают АТФ, которая потенциально может выполнять функцию вазодилататора [ 30 ]. Было высказано предположение, что эритроциты, проходя через регионы с низким напряжением кислорода, стимулируют локальную вазодилатацию, увеличивая приток крови к этому региону. АТФ, связываясь с P2y1 и P2y2 пуринорецепторами эндотелия, вызывает расширение сосудов за счет релаксации гладких миоцитов сосудистой стенки вследствие выработки эндотелиоцитами оксида азота, простациклина или эндотелиального гиперполяризующего фактора [ 156 ].

Роль эритроцитов в этом процессе подтверждена экспериментами Dietrich и соавт.

Густая кровь: симптомы, которые нельзя игнорировать!

В зависимости от состояния, вызывающего синдром повышенной вязкости, вы можете получать различные виды терапии, плазмообмен или даже химиотерапию. Вязкость крови измеряется прибором вискозиметром, сравнивающим скорость движения крови по отношению к дистиллированной воде при одинаковой температуре и объеме. На вязкость крови оказывают влияние нарушение функции печени, повреждение сосудов, слипание эритроцитов и тромбоцитов, а также дисбаланс плазмы и клеточной массы крови. Повышает вязкость крови нормальный питьевой режим, отказ от приема длительных горячих ванн, своевременное снижение температуры при различных заболеваниях. То, что простым языком принято называть «густой» кровью, врачам известно как гиперкоагуляция, или повышенная вязкость крови.

Предрасположенность к повышенной свертываемости крови F5, F2

Врач о густой крови: разбор причин, течение синдрома, принципы терапии и вспомогательные средства Результаты анализа вязкости крови выражаются в единицах скорости секунд; чем выше значение, тем более густая кровь.
Измерение вязкости цельной крови. Микровискозиметр Lovis 2000 M/ME Вязкость крови зависит от соотношения плазмы и форменных элементов.
Факторы, влияющие на вязкость крови в организме. От показателей вязкости крови зависят все процессы, протекающие в клетках нашего организма.
Густая кровь - что это? сосуд вязкость крови От чего зависит “текучесть” (реологические свойства) крови?

Похожие новости:

Оцените статью
Добавить комментарий