Новости новости нейросети

читайте последние и свежие новости на сайте РЕН ТВ: Руководитель компании по нейросетям вживил в себя три чипа В ЕС допустили появление паники при появлении фейка. Самые свежие новости и события в мире нейросетей. Узнайте о последних разработках, технологических трендах и применении искусственного интеллекта. Новости. Телеграм-канал @news_1tv. Показатели знания и использования текстовых нейросетей у мужчин немного выше, чем у женщин. Сегодня нейросети умеют читать по губам, водить автомобили, придумывать лица несуществующих людей и даже превращать пару мазков в полноценные картины.

нейронные сети

Нейросети – последние новости Главное по теме «Нейросети» – читайте на сайте
Нейросети: IT, ChatGPT, ИИ Теперь же мы специально ищем новости нейросетей, чтобы узнать, насколько удалось продвинуться исследователям ИИ.
Вы находитесь здесь: итоги 2023 года в сфере ИИ Fox News: нейросети смогли создать ИИ-инструменты без помощи человека.

Новости по тегу: Нейросеть

Нейросеть уже заявила о себе на мировом уровне и дала интервью ведущей на телеканале Arab News. По какому принципу нейросеть действует и как сделать ее своим ассистентом в работе? Статьи Посты Новости Авторы Компании.

Каким будет будущее нейросетей в 2024 году

Специалисты будут разрабатывать нейросети, которые фактически превратят простых роботов в адаптивных. #midjourney — нейросеть рисует картинки #chatgpt — искусственный интеллект OpenAI #notcoin — новости про ноткоин монету. При помощи нейросети Midjourney люди создают аватарки для социальных сетей, обложки музыкальных альбомов и многое другое. последние новости, статьи и другие материалы. нейросеть — самые актуальные и последние новости сегодня. Будьте в курсе главных свежих новостных событий дня и последнего часа, фото и видео репортажей на сайте Аргументы и. Для этого корреспондент вводил одинаковые запросы в три нейросети: две российские — от Сбера (Kandinsky 2.1) и «Яндекса» («Шедеврум») — и одну иностранную — Playground AI.

В Подмосковье с помощью нейросети выявили более 3 тыс. мест незаконной торговли

Притвориться человеком: какую опасность может нести нейросеть GPT Здесь вы найдете новости о последних достижениях в области машинного обучения, нейронных сетей, робототехники и других областях, связанных с ИИ.
Нейронные сети "Техно": новости нейросетей.
нейросеть — последние новости сегодня | Аргументы и Факты Новости Искусственного Интеллекта (ИИ), машинное обучение, квантовые компьютеры, нейронные сети и другие научные новости и открытия в сфере Искусственного Интеллекта.

Орудие или оружие: почему нейросети уже не остановить и чем это грозит человечеству

последние новости, статьи и другие материалы. В интерфейсе AI Studio нейросеть сейчас доступна с ограничением в 20 запросов в день. Нейросети используют для анализа снимков с беспилотных летательных аппаратов и камер городского видеонаблюдения. Вспоминаем всё, что случилось в мире нейросетей и искусственного интеллекта за 2023 год, и пытаемся понять, чего от них ждать в ближайшем будущем. Для этого корреспондент вводил одинаковые запросы в три нейросети: две российские — от Сбера (Kandinsky 2.1) и «Яндекса» («Шедеврум») — и одну иностранную — Playground AI.

Телеграм-каналы про нейросети

Главные новости к утру 2 апреля. Новости. Midjourney заблокировала доступ всем сотрудникам конкурирующей Stability AI. В рубрике "Нейросети" публикуем новости и статьи о нейросетях и искусственном интеллекте (AI). Промты для ChatGPT Новости нейросетей.

«Скоро кино будут снимать лично для вас…» Что ожидает нас с развитием нейросети

Нейросети можно было бы поручить предсказание аномалий. Нейронка учится определять, как ведет себя график перед резким ростом или резким падением и предупреждает об аномалиях. Еще в 2016-2017 годах крупные компании рассказывали в докладах о подобной практике. С тех пор это стало проще внедрить. Такая сеть не будет дорогой по ресурсам. На графике ниже представлен пример поиска аномалий в количестве визитов на сайт регионального СМИ. Желтая линия тренда показывает средние значения, а красная и зеленая - допустимый коридор. Нахождение графика в пределах коридора считаем нормой. Выход кривой за пределы коридора - аномалией, требующей повышенного внимания аналитиков. График для поиска аномалий в количестве визитов на сайт регионального СМИ Выявление трендов трафика.

Тренды трафика уже сейчас можно анализировать в реальном времени, а не постфактум. Когда какая-то новость или сюжет только начинает набирать обороты, это можно не заметить. Журналисты не отслеживают дашборды в реальном времени и заставлять их бесполезно. А начавший вируситься материал в первые минуты или часы жизни может не выделяться на фоне более старых материалов, пока не станет одних из лидеров по просмотрам. С помощью анализа трендов можно будет значительно раньше людей определять лидеров повестки и сразу начинать прокачивать тему, собирая весь трафик. Сейчас потенциальную вирусность материала редакторы определяют интуитивно. Поиск цикличностей. Цикличность может иметь период повторяемости от минуты до дня, месяца или года. Что бы дала цикличность в анализе посещаемости?

Можно использовать ее как шумоподавление, по принципу работы умных наушников. Они записывают в микрофон окружающий звук и вычитают его из того, что передается в динамике. Если вычитать цикличность из посещаемости, то можно видеть реальное изменение глобальных метрик. При этом анализ временных рядов не особо завязан на специфику того, что анализируется. Проценты нагрузки на процессор или проценты переходов из ВК - сеть смотрит на график в целом, анализирует его во времени, находит цикличность, и потом вычитает ее. После этого можно искать аномалии. Работа со звуком. Уже есть готовый проект по работе со звуком. Он позволяет анализировать звук и превращать его в текст.

Проект работает на нейросетях, журналисты им пользуются уже два года. Изначально он появился в качестве помощника по расшифровке голосовых интервью для журналистов. Журналисты получают экономию времени, и можно научно доказать, что разработка стоила повышения экономической эффективности их труда. Обратную конвертацию, создание аудиосообщения из материала уже делают все голосовые помощники.

Владельцы ботнета потратили 9 миллионов долларов на рекламу «За-Трамповых взглядов» и «Анти-китайской пропаганды». В Facebook сказали, что вычислили их по «фону», потому что на нем видны артефакты и следы алгоритмического шума. Вопрос времени, когда фон станет нормальным и придется искать новые способы выявления таких фотографий. Источник Колоризация фотографий С каждым годом качество колоризации становится лучше, на фото ниже новая версия алгоритма DeOldify, пока не выложенная в паблик, но которая уже сейчас выглядит лучше, чем все, что было до этого. Молекулы могут иметь много разных параметров. Чтобы синтезировать и протестировать все потенциально эффективные формулы, фармацевтам элементарно не хватает времени и ресурсов. Цикл создания нового лекарственного препарата может составлять до пяти лет. Но вот это моделирование разных молекул и прогнозирование свойств вещества исходя из устройства молекулы — отличная задача для искусственного интеллекта. Так вот, британский стартап совместно с японской фармацевтической компанией нашёл с помощью ИИ формулу потенциально нового средства от обсессивно-компульсивного расстройства. Скоро в Японии пройдёт первый этап его клинического тестирования. Вы могли видеть об этом заголовки вроде «ИИ создал новое лекарство», но всё немного сложнее. Новое вещество может стать лекарством только после нескольких этапов клинических испытаний — оно должно оказаться эффективным, не токсичным и так далее. То, что удалось сделать с помощью ИИ — по сути, дотестовая оптимизация, то есть лишь начальный этап разработки лекарства. Без ИИ формулы таких лекарств подбирают 2-3 года.

В исследовательской работе по сопоставлению потоков объясняется, что это новый метод обучения нейросетей с помощью «непрерывных нормализующих потоков» Conditional Flow Matching — CNF для моделирования сложных распределений данных. По мнению исследователей, использование CFM с оптимальными путями транспортировки приводит к более быстрому обучению, более эффективному отбору образцов и повышению производительности по сравнению с диффузионными путями. Улучшенная типографика в Stable Diffusion 3. Как пояснил Мостак, качественная генерация текстов на изображения стала возможной благодаря использованию диффузионной модели-трансформера и дополнительных кодировщиков текста. С помощью Stable Diffusion 3. Хотя Stable Diffusion 3. В последние месяцы Stability AI также создаст нейросети для создания 3D-изображений и видео. Компания утверждает, что Sora «может создавать реалистичные и фантазийные сцены по текстовым инструкциям». Источник изображения: OpenAI Sora способна создавать «сложные сцены с несколькими персонажами, определенными типами движения и точной детализацией объекта и фона», говорится в блоге OpenAI. Компания также отмечает, что нейросеть может понимать, как объекты «существуют в физическом мире», а также «точно интерпретировать реквизит и генерировать убедительных персонажей, выражающих яркие эмоции». Модель может генерировать видео на основе неподвижного изображения, заполнять недостающие кадры в существующем видео или расширять его. Среди демонстрационных роликов, созданных с помощью Sora и показанных в блоге OpenAI, сцена Калифорнии времен золотой лихорадки, видео, снятое как будто изнутри токийского поезда, и другие. Многие из них имеют некоторые артефакты, указывающие на работу искусственного интеллекта. Например, подозрительно движущийся пол в видеоролике о музее. Сама OpenAI говорит, что модель «может испытывать трудности с точным моделированием физики сложной сцены», но в целом результаты довольно впечатляющие. Пару лет назад именно генераторы текста в изображение, такие как Midjourney, лучше всего демонстрировали способности ИИ превращать слова в изображения. Но в последнее время генеративное видео стало улучшаться заметными темпами: такие компании, как Runway и Pika, продемонстрировали впечатляющие модели преобразования текста в видео, а Lumiere от Google , похоже, станет одним из главных конкурентов OpenAI в этой области. Как и Sora, Lumiere предоставляет пользователям инструменты для преобразования текста в видео, а также позволяет создавать видео из неподвижного изображения. В настоящее время Sora доступна только отдельным тестировщикам, которые оценивают модель на предмет потенциального вреда и рисков. OpenAI также предлагает доступ по запросу отдельным художникам, дизайнерам и кинематографистам, чтобы получить обратную связь. Компания отмечает, что существующая модель может неточно имитировать физику сложной сцены и неправильно интерпретировать некоторые случаи причинно-следственных связей. Ранее в этом месяце OpenAI объявила, что добавляет маркировку в свой инструмент преобразования текста в изображение DALL-E 3, но отмечает, что их можно легко удалить. Как и в случае с другими продуктами на базе ИИ, компании OpenAI придется бороться с последствиями того, что поддельные фотореалистичные видео, созданные ИИ, будут выдавать за настоящие. Больше видео, сгенерированных Sora, можно найти здесь. Сегодня была представлена большая языковая модель Gemini 1. Google ясно дала понять, что хочет использовать Gemini в качестве бизнес-инструмента, персонального помощника и не только. В Gemini 1. Модель Gemini 1. При создании новой модели используется набирающий популярность подход «смесь экспертов» Mixture of Experts — MoE , который подразумевает, что при отправке запроса запускается только часть общей модели, а не вся. Такой подход должен сделать модель более быстрой для пользователя и более эффективной для Google. Но в Gemini 1. Новая версия нейросети имеет огромное контекстное окно, что означает, что она может обрабатывать гораздо более объёмные запросы и просматривать гораздо больше информации одновременно. Ещё он добавил, что исследователи Google тестируют контекстное окно на 10 миллионов токенов — это, например, вся серия «Игры престолов» в одном запросе. В качестве примера Пичаи говорит, что в это контекстное окно можно вместить всю трилогию «Властелин колец». Это кажется слишком специфичным, но, возможно, кто-то в Google проверит, не обнаружит ли Gemini ошибок в преемственности, пытается разобраться в сложной родословной Средиземья. Или ИИ, возможно, сможет понять Тома Бомбадила. Пичаи также считает, что увеличенное контекстное окно будет очень полезно для бизнеса. Глава Google представляет себе, что кинематографисты могут загрузить весь свой фильм и спросить у Gemini, что скажут рецензенты, а компании смогут использовать Gemini для обработки массы финансовых документов. Пока что Gemini 1. Со временем она заменит Gemini 1. Чтобы получить миллион, придется доплатить. Google также тестирует безопасность и этические границы модели, особенно в отношении нового увеличенного контекстного окна. Сейчас Google находится в бешеной гонке за создание лучшего инструмента ИИ, в то время как компании по всему миру пытаются определить свою собственную стратегию ИИ и сотрудничать с OpenAI, Google или кем-то ещё. Пока Gemini выглядит впечатляюще, особенно для тех, кто уже работает в экосистеме Google, компании предстоит еще много работы. В конце концов, говорит Пичаи, все эти 1. Но на данный момент, по его словам, мы всё еще находимся на стадии, когда каждый знает, какой чип находится внутри его телефона, потому что это имеет значение.

Задачи и сферы применения нейросетей Помимо уже описанных выше задач по сопоставлению образов, прогнозированию, кластеризации информации или генерации текстов и изображений в стиле различных писателей и художников исключительно в целях развлечения , нейросети также решают и другие задачи, о которых вы, возможно, и не догадывались. Практически в каждом современном флагманском смартфоне сейчас имеется нейрочип, помогающий анализировать и классифицировать множество входящих данных. Камеры телефонов научились применять автоматические настройки и фильтры во время съемки самых разных объектов, понимая, что вы снимаете еду, природу или архитектуру. Поиск по картинкам, по словам или по названиям каких-либо объектов также может использовать простенькую нейросеть. Например, в iOS вы можете найти все фотографии кошек из галереи изображений, просто написав в поиске слово «кошка». Или распознать и скопировать текст с фотографии в смартфонах Google Pixel. Прогресс дошел до такого уровня, что появились нейросетевые чат-боты, способные имитировать общение с некогда живущим или недавно умершим человеком. Они создаются на основе ранее загруженных в нейросеть переписок, заметок или дневников. Кроме того, нейросети активно используются в финансовом секторе, принимая решение о выдаче кредитов потенциальным клиентам банков. Голосовые помощники та же Алиса от «Яндекса» или Siri от Apple используют нейросети для распознавания голосовых команд и обработки запросов. С каждым днем сфера применения нейросетей расширяется, упрощая наше взаимодействие с цифровым миром. Ранее мы рассказывали: Как технологии меняют нашу еду? Преимущества и недостатки нейросетей Очевидно, что само изобретение нейросетей было направлено на то, чтобы приносить как можно больше пользы человечеству. Их основное преимущество перед другими сложными математическими моделями заключается в распознавании более сложных и глубоких закономерностей, позволяющих решать любые поставленные перед ними задачи. При грамотной настройке нейросети способны выдавать пугающе точные результаты, но нейросети бывают и неточными, а их результаты — слишком приблизительными или только отдаленно напоминающими что-то, что вы хотели бы увидеть. Соответственно, нельзя полностью полагаться на результаты работы нейросети, но их можно использовать в качестве дополнительного инструмента решения конкретных задач. Хоть нейросети и можно назвать своего рода искусственным интеллектом, пусть и в зачаточном состоянии, до полноценного ИИ нейросетям еще очень далеко. Это связано с тем, что вычислительные возможности человеческого мозга пока что просто невозможно повторить, так как в теле человека содержится 86 млрд биологических нейронов, а в самых современных нейросетях — не более 10 млрд. Какими бы сложными математическими моделями ни были нейросети в своей основе, до человеческого мозга они пока что недотягивают. Примеры самых полезных и интересных нейронных сетей Нейросетей в интернете великое множество.

Телеграм-каналы про нейросети

Нейросеть показала, как бы выглядели герои повести Кира Булычёва в реальной жизни, и это чистый восторг 18 апреля, 16:00 Нейросеть рисует девушек по именам, и вот какие 10 красоток получились 17 апреля, 14:30 Теперь возбуждают алгоритмы: Впервые в истории на обложке красуется не живая девушка, а сгенерированная нейросетью 4 марта, 11:30 Искусственный интеллект и День всех влюблённых: 25 лучших валентинок на 14 февраля от нейросети 13 февраля, 15:30 Как помириться со своей второй половинкой: 7 советов от Искусственного интеллекта 19 января, 15:30.

В «Яндексе» называют две причины. Первая заключается в самом принципе работы: модель, лежащая в основе ChatGPT, «читает» последовательность слов и предсказывать на её основе следующее. Затем процесс повторяется, нейросеть предсказывает второе слово и так происходит до тех пор, пока не получится законченный текст. Во время этого стоит задача не дать фактически верный ответ, а ответить так, как бы отвечал человек.

Нейросетям пока можно доверить творческие решения, качество которых не критично, заметил, в свою очередь, Денис Кузнецов. Остальное, по его словам, по-прежнему на себя будет брать человек, чтобы как минимум проверять работу искусственного интеллекта. Тимур Идиатуллов пояснил, что людей сейчас не удается заместить нейросетями, поскольку часто требуется принятие решений, выходящих за рамки простой обработки заявок. Но развитие нейросетевых технологий приведет к смене целого класса профессий, как это произошло, когда появились конвейеры, мануфактуры, станки и компьютеры. Тимур Идиатуллов: «Вероятно, что люди будут вытесняться из некоторых профессий сервисной сферы и торговли в профессии, где требуется больше физической работы, но автоматизация роботизация в которых затруднена.

И, конечно, функции общего контроля и обслуживания оборудования тоже останутся за человеком». Приведет ли развитие нейросетей к восстанию машин? Это фантастический сценарий, успокаивают собеседники НТВ. Нейросети не обладают сознанием и намерениями, пояснил Евгений Бурнаев. Важно только, чтобы искусственный интеллект не использовался самими людьми в радикальных целях. Сергей Смирнов называет восстание машин страшилкой для малообразованных людей. Опасность, по словам эксперта, представляют успешные работы исследователей, у которых нет моральных ограничений. Нейросети — это электронная начинка оружия будущего, полагает специалист. Они могут быть применены в системах летального оружия, автоматизированном производстве фейков, масштабных атаках соцсетей и т. Если даже произойдет что-то , что напоминает восстание машин, это будет локальной ситуацией, говорит Денис Кузнецов.

Глобальный бунт искусственного интеллекта маловероятен.

Новости нейросетей

Мы расскажем вам о новых технологиях, прорывах в исследованиях и практических применениях ИИ, которые меняют мир. Новости 05. Кнопка будет располагаться Новости 31.

Новая модель оказалась настолько лучше конкурентов, что даже спустя девять месяцев после её выхода оставалась в лидерах по многим типам задач. В систему добавили плагины, позволяющие им искать актуальную информацию в интернете и использовать внешние сервисы, и значительно увеличили контекстное окно — до 128 тысяч токенов. Это примерно 100 тысяч английских слов.

GPT-4 также задала тренд на засекречивание информации о внутреннем устройстве проприетарных LLM — OpenAI даже не рассказала о количестве параметров новой модели. Лишь в июле 2023 года в Сети появились неподтверждённые пока данные о том, что GPT-4 построена по особой архитектуре, называемой Mixture of Experts MoE, «модель смешанных экспертов». Она состоит из 16 нейросетей-экспертов с размером по 111 миллиардов параметров каждая. За счёт архитектуры MoE элементы системы работают параллельно и в каждый момент времени ответы даёт лишь один виртуальный «эксперт», снижая вычислительные затраты и увеличивая скорость работы. Читайте также: Основные тренды Можно выделить несколько направлений в развитии языковых моделей, которые сохранятся в ближайшем будущем: Инженеры разрабатывают новые подходы к архитектуре нейросетей для замены Transformer.

Например, GPT-4 использует модель смешанных экспертов, а отечественный проект Fractal GPT — симбиоз графовых моделей и многоагентных систем. Google и другие компании работают над повышением точности ответов LLM, при одновременном снижении их размерности. Так, новая модель PaLM 2, по сообщениям разработчиков , меньше, чем исходная PaLM, но лучше и быстрее справляется с задачами из разных областей. Разработчики языковых моделей ищут новые методы обучения LLM, которые смогли бы уменьшить объём необходимых тренировочных данных и снизить трудоёмкость их разметки. Например, обучают модели на синтетических данных , созданных другой нейросетью.

Нейросети учатся искать актуальную информацию в интернете и обращаться к внешним сервисам. Чаще всего для этого используют систему плагинов, по аналогии с решением, используемым в ChatGPT. Компании увеличивают длину контекстного окна для повышения точности ответов. GPT-4 и Claude 100K способны воспринимать более 100 тысяч токенов за раз. На подходе технологии с ещё более внушительными параметрами — до 1—2 миллионов токенов.

Инженеры работают над уменьшением числа галлюцинаций и токсичного вывода в моделях. Нейросети учатся понимать промпты на локальных языках и отвечать на них. Сегодня существующие модели охватывают лишь сотню языков из более чем 7000 известных. В 2023 году для формирования набора данных для 1100 неохваченных ранее языков запущен проект Massively Multilingual Speech MMS. IT-гиганты повышают секретность в отношении своих проприетарных моделей.

Теперь отчёты о выходе новых версий нейросетей больше похожи на рекламные брошюры с описанием возможностей, а не на техническую документацию. Китай становится альтернативным центром развития генеративного ИИ, способным бросить вызов американским компаниям. К 2023 году в этой стране разработали более 130 LLM. Читайте также: Стремительный тигр, мудрый дракон: проекты и перспективы Китая в гонке генеративного ИИ Чего ждать в 2024 году Лидеры IT-индустрии продолжат скрывать подробности о внутреннем устройстве и параметрах обучения своих моделей. Связано это с тем, что именно они, а не только внушительный размер LLM, теперь являются конкурентными преимуществами.

Самое ожидаемое событие 2024 года — выход языковой модели следующего поколения от компании OpenAI. Ходят слухи, что GPT-5 сможет достичь уровня AGI по ряду ключевых показателей, что может привести к непредсказуемым последствиям для отрасли ИИ и всего человечества. Читайте также: Новый уровень искусственного интеллекта: что такое AGI, когда он появится и каким будет В любом случае нейросети следующего года станут более эффективными, то есть будут работать лучше при тех же или даже меньших размерах. Они смогут за один проход понимать тексты, сопоставимые по объёму с романами Льва Толстого, на лету считывать новости из интернета, решать сложные задачи за счёт обращения к внешним сервисам и быстро учиться на актуальных данных, в том числе синтезированных. Мы ждём от них умения общаться с пользователями на их родных языках, включая редкие местные наречия.

Обучали YaLM по тому же принципу, как и все нейросети, которые относятся к языковым моделям. Вначале базовая модель обрабатывает огромный массив текстов и учится восстанавливать пропущенные слова на основе полученных данных. Это самый долгий этап обучения, замечает Крайнов. Зато после этого базовую модель можно дообучить на другие специфические задачи. В 2022 году в открытом доступе также появилась модель YaLM 100B на 100 млрд, которая умеет генерировать тексты на русском и английском языках. Это самые мощные суперкомпьютеры в России и Восточной Европе. У нас очень сильная команда разработчиков и экспертов в области машинного обучения, которая постоянно расширяется", — поделился собеседник "ДП". ИИ повсюду Дмитрий Иванков, эксперт Центра искусственного интеллекта СКБ "Контур", отмечает, что есть ещё множество российских нейросетей, на которые стоит обратить внимание. Это приложение для генерации изображений, которое после выпуска, а также благодаря хорошему продвижению попало в топ—чарт российского App Store. При этом обучение модели всё ещё продолжается для бета—версии было использовано 240 млн примеров картинок из 500 млн доступных компании.

И разработчики обещают в дальнейшем поэтапно улучшать качество получаемых изображений.

Сюжет Прогнозы «Новые Известия» уже не раз за последнее время посвящали свои материалы крайне актуальной теме нейросетей и их возрастающему влиянию на нашу жизнь. Напомним, что в России уже защищен первый диплом, написанный нейросетью, а в книжных магазинах появляются романы ее авторства. Вот что у него получилось: Значительная часть интернета превратится в «пустошь» — место, где весь контент создан нейросетями на базе существующего контента: нейронки «отрерайтят» сайты, статьи, картинки, и даже видео и книги.

Поисковики из инструментов непосредственно поиска по вебу «Вот тебе список сайтов по запросу, а дальше ты сам» превратятся в сервис ответов на вопросы «Ты прямо спроси, что тебе надо, а я сам изучу все эти сайты и статьи, создав для тебя выборку важного». Сложные интерфейсы вымрут. Вместо того, чтобы накликивать фильтры и пересматривать выдачу авиабилетов, можно просто написать: «Самый дешевый билет в Сан-Франциско, вылетаем с 15 по 20 марта, обратно примерно через 2 недели, и чтобы не дольше одной пересадки. И вылет утром.

Летим строго арабскими авиакомпаниями. И еще так, чтобы в бизнес апгрейднутся можно было максимум за 600 долларов». И так — вообще всё и везде. Лично я жду интерфейс, основанный на эмодзи.

Фантастика пугала нас историями про роботов, которые причинят людям вред а фантасты даже описывали это в законах робототехники. Но никто не пугал нас тем, что машины могут нам врать, причем ни мы, ни машины, об этом не догадываемся. Думаю, это будет важным направлением работы — как сделать так, чтобы нейронки говорили только правду, при этом не теряя в мощности своей работы. В ближайшем будущем использование нейросетей будет не просто возможной частью работы, она станет просто обязательной как «уверенное владение ПК».

Я доживу до времени, когда нейронки будут ходить на встречи с людьми и другими нейронками , добывая для своих хозяев конспекты разговоров.

Что такое нейросети: на что способны, как работают и кому нужны

Google и другие компании работают над повышением точности ответов LLM, при одновременном снижении их размерности. Так, новая модель PaLM 2, по сообщениям разработчиков , меньше, чем исходная PaLM, но лучше и быстрее справляется с задачами из разных областей. Разработчики языковых моделей ищут новые методы обучения LLM, которые смогли бы уменьшить объём необходимых тренировочных данных и снизить трудоёмкость их разметки. Например, обучают модели на синтетических данных , созданных другой нейросетью. Нейросети учатся искать актуальную информацию в интернете и обращаться к внешним сервисам. Чаще всего для этого используют систему плагинов, по аналогии с решением, используемым в ChatGPT. Компании увеличивают длину контекстного окна для повышения точности ответов. GPT-4 и Claude 100K способны воспринимать более 100 тысяч токенов за раз. На подходе технологии с ещё более внушительными параметрами — до 1—2 миллионов токенов. Инженеры работают над уменьшением числа галлюцинаций и токсичного вывода в моделях.

Нейросети учатся понимать промпты на локальных языках и отвечать на них. Сегодня существующие модели охватывают лишь сотню языков из более чем 7000 известных. В 2023 году для формирования набора данных для 1100 неохваченных ранее языков запущен проект Massively Multilingual Speech MMS. IT-гиганты повышают секретность в отношении своих проприетарных моделей. Теперь отчёты о выходе новых версий нейросетей больше похожи на рекламные брошюры с описанием возможностей, а не на техническую документацию. Китай становится альтернативным центром развития генеративного ИИ, способным бросить вызов американским компаниям. К 2023 году в этой стране разработали более 130 LLM. Читайте также: Стремительный тигр, мудрый дракон: проекты и перспективы Китая в гонке генеративного ИИ Чего ждать в 2024 году Лидеры IT-индустрии продолжат скрывать подробности о внутреннем устройстве и параметрах обучения своих моделей. Связано это с тем, что именно они, а не только внушительный размер LLM, теперь являются конкурентными преимуществами.

Самое ожидаемое событие 2024 года — выход языковой модели следующего поколения от компании OpenAI. Ходят слухи, что GPT-5 сможет достичь уровня AGI по ряду ключевых показателей, что может привести к непредсказуемым последствиям для отрасли ИИ и всего человечества. Читайте также: Новый уровень искусственного интеллекта: что такое AGI, когда он появится и каким будет В любом случае нейросети следующего года станут более эффективными, то есть будут работать лучше при тех же или даже меньших размерах. Они смогут за один проход понимать тексты, сопоставимые по объёму с романами Льва Толстого, на лету считывать новости из интернета, решать сложные задачи за счёт обращения к внешним сервисам и быстро учиться на актуальных данных, в том числе синтезированных. Мы ждём от них умения общаться с пользователями на их родных языках, включая редкие местные наречия. И конечно, будем следить за нейросетями из Китая, эффективность и качество работы которых продолжат расти, догоняя лучшие западные аналоги. При этом LLM ближайшего будущего, скорее всего, будут более стабильны, безопасны и, возможно, скучны. Они не станут генерировать бред и обсуждать скользкие темы. А взлом с помощью джейлбрейк-промптов постепенно станет невозможным.

Виктор Носко генеральный директор компании «Аватар Машина», создатель чат-бота-психолога « Сабина Ai », соавтор проекта FractalGPT — Думаю, что в больших языковых моделях в мировом масштабе наступила эпоха стагнации: теперь новые эмерджентные свойства не будут возникать с ростом числа параметров. А совершенствование свойств, которые уже проявились, замедлится. При этом новая нейросеть от Google — Gemini, анонсированная с помпой как конкурент GPT-4, не показала существенного превосходства над ней и не оправдала ожиданий пользователей. Ситуацию подпортил и их фейл с пиаром в виде смонтированного демонстрационного ролика. До сих пор российские учёные отставали от зарубежных примерно на один год по мощности моделей и на два года по уровню научных исследований.

Нейросети, как подчеркнул эксперт, не обладают самосознанием, чтобы действовать «сколько-нибудь самостоятельно». Денис Кузнецов: «Они в принципе не могут отрастить ноги и убежать в интернет. Их могут перенести в интернет люди, чтобы они там работали при тех же условиях получения последовательности данных и выдачи последовательности данных. Поэтому текущее поколение нейронных сетей может работать только как инструменты». При этом нейросети могут вести себя не так, как задумано, и стать причиной настоящей трагедии. Так, в Бельгии мужчина покончил с собой после двух месяцев общения с чат-ботом по имени Элиза на основе открытой языковой модели GPT-J. Эта история показывает, что для пользования нейросетями нужно определенное понимание принципов их работы, говорит Денис Кузнецов. Общество, по его словам, еще не привыкло к таким инструментам. На непредсказуемость результатов работы с нейросетями обратил внимание и руководитель образовательной программы «Киберфизические системы» кафедра «СМАРТ-технологии» Московского политеха Тимур Идиатуллов. Он считает, что пока нейронным сетям нельзя доверять решение важных задач, поскольку современные языковые модели запредельно сложны с точки зрения числа параметров. Тимур Идиатуллов: «Например, сеть ChatGPT содержит 175 миллиардов параметров, которые определяют ее работу, и не существует инструмента, который позволил бы нам отследить, как сеть пришла к тому или иному решению». Могут ли нейросети оставить людей без работы? В этом вопросе среди экспертов нет единого мнения. Сергей Смирнов полагает, что от моделей уровня GPT-4 пострадают только распространители фейков. А те, кто реально занят созданием чего-то нового, получат хороший инструмент для проверки идей и проведения расчетов на доступном сервере. Нейросетям во многих случаях нужен человек-контроллер , отметил специалист.

Поклонники королевской семьи с тревогой следят за ситуацией, о которой сейчас ходит много слухов и домыслов. Кейт, прежде бывшая предметом неусыпного внимания британских папарацци, пропала с радаров еще в конце 2023 года.

В пресс-службе рассказали, что проект по созданию модели ИИ в сфере обнаружения фактов несанкционированной уличной торговли работает при помощи камер системы видеонаблюдения «Безопасный регион». Также предусмотрен роботизированный механизм направления уведомлений и задач муниципалитетам. В планах увеличить группировку камер и автоматизировать процесс выставления штрафов.

Искусственный интеллект

Читайте последние новости на тему в ленте новостей на сайте РИА Новости. На странице вы найдете все свежие новости по теме. Новости и обзорные материалы о технологиях искусственного интеллекта: от умного дома до распознавания речи. В мире есть много успешных примеров использования алгоритмов в журналистике — например, в некоторых региональных изданиях США нейросети пишут новости про землетрясения, а.

Похожие новости:

Оцените статью
Добавить комментарий