Новости незатухающие колебания примеры

Возбуждение незатухающих электрических колебаний возможно с помощью других методов, но все они подобны описанному. Другим примером незатухающих колебаний является электромагнитные колебания, которые возникают в радиочастотных колебательных контурах. Автоколебания — незатухающие колебания, которые существуют за счет поступления энергии в систему под ее же управлением. Еще одним примером незатухающих колебаний является колебания вокруг равновесного положения пружины.

Незатухающие колебания. Автоколебания

Свободные незатухающие колебания: понятие, описание, примеры Примеры незатухающих колебаний Незатухающие колебания — это колебания системы, которые продолжаются вечно без потери энергии.
Ликбез: почему периодические колебания затухают Еще одним примером незатухающих колебаний является свободное колебание механической системы с одной степенью свободы.
Ответы : Примеры затухающих и незатухающих колебаний Незатухающими колебаниями называют гармонические колебания с постоянной амплитудой.
Механика - Затухающие и незатухающие колебания. Неинерциальные системы отсчета - YouTube Распространенным примером незатухающих колебаний являются волны переменного тока или напряжения, качающийся маятник в вакууме и т.д.
Затухающие и незатухающие колебания: разница и сравнение Примеры незатухающих колебаний в природе 1. Плазменные колебания: В плазме, которая является четвертым состоянием вещества, происходят незатухающие колебания.

Вынужденные колебания. Резонанс. Автоколебания

Рассмотрим несколько примеров автоколебательных систем. Маятниковые часы В маятниковых часах маятник связан через кинематическую цепь с заводным механизмом. При опускании маятника он получает импульс энергии от пружины, компенсирующий потери. Генератор на электронной лампе В электронных генераторах лампа усиливает колебания контура, восполняя омические потери в нем. Лазер В лазере обратная связь оптического резонатора поддерживает когерентное излучение активной среды. Параметрический резонанс При параметрическом резонансе параметр системы жесткость, емкость меняется периодически. Это приводит к накачке энергии в колебательную систему. Параметрический резонанс в механических системах Если периодически изменять длину маятника или жесткость пружины, можно поддерживать рост амплитуды колебаний. Параметрический резонанс в электрических цепях При модуляции емкости конденсатора в контуре возникает параметрический резонанс. Вынужденные колебания Вынужденные колебания возникают в осцилляторе под действием внешней периодической силы.

Пример - действие переменного тока на якорь в звонке. Практическое применение незатухающих колебаний Незатухающие колебания широко используются в различных областях науки и техники. Рассмотрим некоторые примеры. Радиотехника В радиопередатчиках незатухающие электромагнитные колебания генерируются с помощью электронных генераторов. Они используются для модуляции и передачи радиосигналов. Генераторы колебаний Существуют ламповые, транзисторные, кварцевые и другие типы генераторов для создания высокостабильных колебаний в радиотехнике. Передатчики В передатчиках колебания генератора модулируются информационным сигналом и излучаются антенной в виде радиоволн. Метрология Высокостабильные незатухающие колебания используются в квантовых эталонах частоты и времени. Квантовые стандарты частоты В качестве эталонов применяются атомные часы на основе квантовых переходов в атомах.

Эталоны времени Сверхстабильные генераторы с кварцевым резонатором обеспечивают точность хода эталонных часов. Медицина Незатухающие электрические колебания применяются в электрокардиографии для диагностики сердечной деятельности. Исследования незатухающих колебаний Изучение незатухающих колебаний имеет давнюю историю и продолжается по сей день.

На рис. Рисунок 2. Функциональная схема автоколебательной системы Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом рис. Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей.

На верхнем конце маятника закреплен анкер якорек с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменена пружиной, а маятник — балансиром — маховичком, скрепленным со спиральной пружиной. Балансир совершает крутильные колебания вокруг своей оси.

В этом случае график движения график x t будет иметь такой вид см. График движения x t Второй вариант: заставить тело совершать гармонические колебания с помощью импульса например, толкнуть его. Вспомните, например, как вы раскачиваете качели: либо толкнуть их, либо вывести их из положения равновесия и отпустить. Естественно, можно вывести их из положения равновесия и сообщить некий импульс.

Превращения энергии при колебаниях. Затухающие колебания Свободные колебания могут совершаться за счет первоначального запаса энергии. Вернемся к предыдущим рассуждениям: в первом примере, который мы приводили, это была первоначальная энергия грузика, мы выводили его из положения равновесия, а потом отпускали. А во втором случае этот первоначальный запас энергии — это кинетическая энергия в случае, когда мы толкали грузик. Согласно закону сохранения энергии в обоих случаях сумма кинетической и потенциальной энергий маятника должна оставаться неизменной с течением времени. То есть, какое бы промежуточное значение маятника мы бы ни рассмотрели, в любой из них эта сумма равна начальной энергии маятника см. Иллюстрация закона сохранения энергии Однако на самом деле мы понимаем, что маятников, которые могли бы совершать колебания довольно долго, не существует — это какая-то абстракция.

Учтём, что система маятников незамкнутая, то есть в системе присутствует сила трения. В реальных условиях мы можем взять тяжелый груз, подвесить его на очень длинную и легкую нить или проволоку, закрепить один конец на опоре и получить систему, близкую по своим свойствам к математическому маятнику. Однако нельзя сказать, что механическая энергия такого маятника будет сохраняться — мы прекрасно знаем, что рано или поздно он остановится. В чем же наша недоработка? Ответ прост: в данной системе присутствуют различные виды трения, действие которых приводит к потере на каждом периоде колебаний маятника какой-то части его энергии см. В системе присутствуют различные виды трения Силы трения могут быть внутренними например, в подвесе маятника , а могут быть и внешними например, со стороны окружающего воздуха или другой среды, в которой может находиться маятник. Естественно, что силы трения зависят от свойств среды: в воде колебания будут затухать быстрее, чем в воздухе см.

Затухание в воздухе и воде В итоге амплитуда колебаний будет постепенно уменьшаться, и в конце маятник остановится. На рисунке представлены смещения груза маятника от времени: видно, что амплитуда постепенно уменьшается, стремясь к нулю, такие колебания называются затухающими см. Затухающие колебания — это колебания, которые происходят в незамкнутой системе, то есть колебания, которые происходят в том числе под действием силы трения. Амплитуда таких колебаний постепенно затухает. Большинство колебаний в мире — затухающие, так как в окружающем нас мире, постоянно существуют силы трения. Итак, мы выяснили: в реальности колебания маятников механических систем затухающие, то есть их амплитуда постепенно уменьшается, стремясь к нулю. Что же нам сделать, чтоб колебания не были такими, чтоб амплитуда постоянно поддерживала свое значение?

Для этого нам необходимо разомкнуть систему и подкачивать энергию извне. Таким образом, мы добьемся незатухающих колебаний. Как же разомкнуть систему? Вспомним простой пример из жизни: катание на качелях.

Эта сила называется возвращающей, она всегда направлена к положению равновесия, происхождение ее различно: а для пружинного маятника - сила упругости; б для математического маятника - составляющая сила тяжести. Свободные или собственные колебания - это колебание, происходящие под действием возвращающей силы.

Если в системе отсутствуют силы трения, колебания продолжаются бесконечно долго с постоянной амплитудой и называются собственными незатухающими колебаниями.

Характеристика затухающих колебаний, какие колебания называют затухающими

Примером незатухающих колебаний может быть колебания маятника или электрическое колебание в резонансном контуре. Примером незатухающих колебаний может быть колебания маятника или электрическое колебание в резонансном контуре. Незатухающими колебаниями называют гармонические колебания с постоянной амплитудой. Главная» Новости» Незатухающие колебания примеры. Свободные незатухающие колебания или собственные характерны для идеальной системы, где отсутствует трение. Примеры автоколебаний Незатухающие колебания маятника часов за счёт постоянного действия тяжести заводной гири; Колебания скрипичной струны под воздействием равномерно движущегося смычка.

Затухающие и незатухающие колебания: разница и сравнение

2.5. Вынужденные колебания. Резонанс. Автоколебания Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии.
Явление резонанса Однако незатухающие колебания возможны не только при периодическом внешнем воздействии, но и в некоторых других случаях — в так называемых автоколебательных и параметрических системах.
Вынужденные колебания. Резонанс. Автоколебания Свободные незатухающие колебания или собственные характерны для идеальной системы, где отсутствует трение.

Незатухающие колебания. Автоколебания

Примеры применения: Электроника: Незатухающие колебания используются в радиоэлектронике для создания точных частотных генераторов. Автоколебания — незатухающие колебания, которые существуют за счет поступления энергии в систему под ее же управлением. Незатухающие колебания маятника 3, показанных на рисунке часов, происходят за счёт потенциальной энергии поднятой гири 2. Незатухающие колебания широко используются в различных областях науки и техники. Главная» Новости» Незатухающие колебания примеры. Примеры автоколебаний Незатухающие колебания маятника часов за счёт постоянного действия тяжести заводной гири; Колебания скрипичной струны под воздействием равномерно движущегося смычка.

Свободные незатухающие колебания

Примеры незатухающих колебаний Незатухающие колебания встречаются в различных системах и процессах. Примерами незатухающих колебаний могут служить колебания маятников в. Незатухающие колебания характеризуются постоянством и регулярностью амплитуды, частоты и фазы. Примеры автоколебаний Незатухающие колебания маятника часов за счёт постоянного действия тяжести заводной гири; Колебания скрипичной струны под воздействием равномерно движущегося смычка. Акустические незатухающие колебания Акустические незатухающие колебания — это колебания звуковой волны в среде, которые не теряют энергию и продолжают распространяться на большие расстояния без изменения амплитуды. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника.

Ликбез: почему периодические колебания затухают

При наличии трения колебания идут медленнее:. Периодом затухающих колебаний называется минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении. Для механической системы пружинного маятника имеем: , , для пружинного маятника. Поэтому определение для амплитуды, данное ранее для незатухающих свободных колебаний, для затухающих колебаний надо изменить. При небольших затуханиях амплитудой затухающих колебаний называется наибольшее отклонение от положения равновесия за период. Графики зависимости смещения от времени и амплитуды от времени представлены на Рисунках 3. Рисунок 3.

Электромагнитные затухающие колебания Электромагнитные затухающие колебания возникают в электромагнитной колебательной систему, называемой LCR — контур Рисунок 3. Дифференциальное уравнение получим с помощью второго закона Кирхгофа для замкнутого LCR — контура: сумма падений напряжения на активном сопротивлении R и конденсаторе С равна ЭДС индукции, развиваемой в цепи контура: Падение напряжения: , где I — сила тока в контуре; - на конденсаторе С : , где q — величина заряда на одной из обкладок конденсатора. ЭДС, развиваемая в контуре — это ЭДС индукции, возникающая в катушке индуктивности при изменении тока в ней, а следовательно, и магнитного потока сквозь ее сечение: закон Фарадея. Сила тока определяется как производная от заряда , тогда , и дифференциальное уравнение примет вид:.

Проверить истинность утверждения 3. Для этого необходимо записать формулу, отображающую зависимость между силой, действующей на колеблющееся тело, и координатой этого тела. Затем найти модули силы для указанных значений времени и сравнить их. Проверить истинность утверждения 4. Для этого необходимо дать определение периоду колебаний, установить период колебаний тела и сравнить его со значением, приведенным в утверждении 4. Проверить истинность утверждения 5. Для этого необходимо дать определение частоте колебаний, установить частоту колебаний тела и сравнить его со значением, приведенным в утверждении 5. Записать ответ в виде последовательности цифр, не разделенных знаками препинания и пробелами. Решение: Проверяем истинность утверждения 1, согласно которому в момент времени 1,50 с ускорение груза максимально. Ускорение груза, колеблющегося на горизонтальной пружине, можно выразить из 2 закона Ньютона учитываем, что на тело действует сила упругости : Отсюда ускорение равно: Отношение жесткости пружины к массе груза постоянно, так как эти величины не изменяются. Следовательно, ускорение пропорционально координате колеблющегося тела. И если в момент времени 1,50 с координата тела отклонение от положения равновесия максимальна, то ускорение тоже максимально. Однако в соответствии с данными таблицы, в этот момент времени координата тела равна 0,0 см. Следовательно, утверждение 1 неверно. Проверяем истинность утверждения 2, согласно которому в момент времени 0,50 с кинетическая энергия груза максимальна. Полная механическая энергия тела равна сумме его потенциальной и кинетической энергий: Когда кинетическая энергия груза максимальна, потенциальная энергия равна 0. А потенциальная энергия тела, колеблющегося на пружине, определяется формулой: Потенциальная энергия будет равна 0 только в том случае, если в данный момент времени координата тела равна 0 оно находится в положении равновесия.

Работа внешней силы, которая обеспечивает колебательную систему энергией, при этом является положительной. Благодаря ей колебания не затухают и могут противодействовать силам трения. Внешняя сила не обязательно должна быть постоянной. С течением времени она может изменяться по разным законам.

Роль заводной пружины, пополняющей энергию колебаний, играет постоянный источник энергии — батарея. Колебательный контур управляет этим источником через цепь обратной связи, содержащую индуктивно связанную с ним катушку включенную в цепь эмиттера. Транзистор здесь играет роль вентиля, открывающего доступ энергии батареи в колебательный контур. Управление этим вентилем осуществляется подаваемым с катушки напряжением к переходу эмиттер—база. Благодаря этому отпирание транзистора происходит в нужные моменты времени, чтобы импульс тока от батареи пополнял энергию колебаний, компенсируя потери на сопротивлении катушки и проводов. Генератор незатухающих электромагнитных колебаний на транзисторе Параметрический резонанс. Еще один способ возбуждения незатухающих колебаний, как отмечалось в начале этого параграфа, заключается в периодическом изменении какого-либо параметра колебательной системы. Пусть в колебательном контуре конденсатор устроен так, что можно изменять его емкость, например сближая или раздвигая пластины, и пусть в контуре уже существуют колебания небольшой амплитуды. В тот момент, когда заряд на пластинах конденсатора максимален, раздвинем мгновенно пластины, немного уменьшив тем самым его емкость. При этом придется совершить некоторую работу, которая пойдет на увеличение электростатической энергии. В момент, когда ток в контуре максимален, а конденсатор полностью разряжен, сблизим пластины до прежнего расстояния. При этом никакой работы не совершается, и электромагнитная энергия контура остается прежней. Еще через четверть периода колебаний, когда заряд снова достигнет максимального значения в противоположной полярности , опять раздвинем пластины, добавив тем самым еще порцию энергии, и т. Таким образом, периодически изменяя емкость конденсатора в нужные моменты времени, можно добиться раскачки электромагнитных колебаний, если добавляемая за период энергия превосходит потери в контуре за то же время. Такой способ возбуждения колебательной системы называется параметрическим возбуждением контура или параметрическим резонансом. В отличие от вынужденных колебаний под действием периодической вынуждающей силы, когда резонанс происходит при совпадении частоты вынуждающей силы с собственной частотой, параметрический резонанс возможен при частоте изменения параметра, вдвое превышающей собственную: Параметрическая раскачка колебаний может также происходить, когда параметр изменяется не только дважды за период собственных колебаний, но и когда он изменяется один раз за период, два раза за три периода, один раз за два периода, и т. Порог параметрического резонанса. Параметрический резонанс представляет собой пороговый эффект, так как он наступает только тогда, когда поступление энергии превосходит потери, т. В линейной колебательной системе при превышении порога происходит неограниченное нарастание амплитуды колебаний. Связано это с тем, что при параметрическом резонансе и потери, и поступление энергии пропорциональны квадрату амплитуды. Этим параметрический резонанс в линейной системе отличается от вынужденных колебаний при силовом воздействии, где поступление энергии пропорционально первой степени амплитуды, а потери — по-прежнему квадрату амплитуды, что приводит, как мы видели, к конечной амплитуде установившихся вынужденных колебаний. При параметрическом резонансе рост амплитуды ограничен только нелинейными свойствами колебательной системы.

Гармонические колебания и их характеристики.

Незатухающие колебания. Автоколебания Колебания бывают незатухающими и затухающими.
Незатухающие колебания. Автоколебательные системы ударь по своему стоячему члену, вот пример колебаний которые затухают.
Характеристика затухающих колебаний, какие колебания называют затухающими ударь по своему стоячему члену, вот пример колебаний которые затухают.
Ответы : Примеры затухающих и незатухающих колебаний Примеры незатухающих колебаний Незатухающие колебания — это колебания системы, которые продолжаются вечно без потери энергии.

Ликбез: почему периодические колебания затухают

Такие системы называются автоколебательными, а процесс незатухающих колебаний в таких системах — автоколебаниями. В автоколебательной системе можно выделить три характерных элемента — колебательная система, источник энергии и устройство обратной связи между колебательной системой и источником. В качестве колебательной системы может быть использована любая механическая система, способная совершать собственные затухающие колебания например, маятник настенных часов. Источником энергии может служить энергия деформация пружины или потенциальная энергия груза в поле тяжести. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис. Рисунок 2.

Электромагнитные колебания Это периодические изменения с течением времени электрических и магнитных величин. Электромагнитные колебания можно сравнить с колебаниями маятника. При этом электрической энергии соответствует потенциальная энергия маятника, а магнитной энергии кинетическая. Колебания, происходящие под действием процессов в самом колебательном контуре без внешних воздействий и потерь энергии на теплоту и электромагнитное излучение, называются собственными электромагнитными колебаниями. Частным случаем электромагнитных колебаний являются незатухающие колебания. Незатухающие колебания Колебания, амплитуда которых не убывает со временем, а остается постоянной. Возбуждение незатухающих электрических колебаний Для возбуждения и поддержания незатухающих электрических колебаний к контуру следует все время подводить энергию от внешнего источника, которая компенсировала бы потери энергии на теплоту и электромагнитное излучение.

В анодное круг триода включен последовательно колебательному контуру, батарее Ба, в цепи сетки — катушка Lc, связанная индуктивно с катушкой L колебательного контура. Далее конденсатор разряжается через катушку индуктивности, а в контуре, возникнут синусоидальные электрические колебания. Однако угасающий синусоидальный ток, проходя через катушку L контура, возбуждает в катушке Lc ЭДС индукции. Так между сеткой и катодом образуется переменное напряжение. Это напряжение регулирует энергию, подводится от источника к колебательному контуру. В отрицательный полупериод когда на сетке отрицательный потенциал на катоде - положительный лампа «заперта» и источник тока не работает. Напротив, в положительную полупериод когда на сетке положительный потенциал, на катоде - отрицательный источник Ба создает анодный ток, пополняя энергию колебательного контура, которая расходуется на теплоту и электромагнитное излучение.

Акустический резонанс С исследования именно этого вида резонанса всё и началось! Галилео Галилей в 1602 году исследовал маятники и струны различных музыкальных инструментов. Открытия, сделанные им, позволили сделать ряд выводов и создать новую отрасль физики — учение о звуковых колебаниях. Акустический резонанс — это явление, при котором акустическая система усиливает звуковые волны, частота которых совпадает с одной из ее собственных частот вибрации ее резонансными частотами. Благодаря акустическому резонансу музыкальные инструменты способны работать, воспроизводить звучание особенным образом. Большую роль в этом играет форма инструмента. Звук, который издает струна, попадает внутрь корпуса и вступает там в резонанс со стенками, что в итоге многократно усиливает его. Грушевидная форма гитары, определенная длина флейты, форма барабана не являются результатом случайного выбора — с древних времен, путем проб и экспериментов, именно это строение каждого инструмента было выбрано из-за наилучшего акустического резонанса. Характеристики струны также влияют на этот показатель: акустический резонанс зависит от длины, массы и силы натяжения струны. Формула для расчета частоты резонанса в акустике: где — сила натяжения, — масса единицы длины струны, а m — полная масса струны.

Характеристика затухающих колебаний, какие колебания называют затухающими

При отсутствии трения свободные колебания, близкие к гармоническим, возникают также и в других системах: математический и физический маятники теория этих вопросов не рассматривается рис. Математический маятник - небольшое тело материальная точка , подвешенное на невесомой нити рис. Математический маятник а , физический маятник б Физический маятник - твердое тело, совершающее колебания под действием силы тяжести вокруг неподвижной горизонтальной оси. На рисунке 1. Период колебаний физического маятника описывается формулой где J - момент инерции тела относительно оси, m - масса, h - расстояние между центром тяжести точка С и осью подвеса точка О. Момент инерции - это величина, зависящая от массы тела, его размеров и положения относительно оси вращения. Вычисляется момент инерции по специальным формулам. Гармонические колебания и их характеристики.

Амплитуда их движения будет снижаться и стремиться к нулю до тех пор, пока не достигнет этого показателя. Затухающие колебания собственные и присутствующие в системах можно рассматривать с одной и той же позиции — общих качеств. Но при этом такие признаки как период и амплитуда нуждаются в переопределении, а прочие требуют дополнения и уточнения, если сравнивать их с аналогичными признаками собственных незатухающих колебаний. Общие характеристики затухающих колебаний — амплитуду затухающих колебаний определяет время; — их частота и период находятся в зависимости от степени затухания; — фаза и начальная фаза обладают тем же смыслом, что и в случае с незатухающими. Существуют ли условия, в которых свободные колебания будут незатухающими? Чтобы колебания были именно свободными, необходимо исключить любые силы, действующие на систему, помимо возвращающей. Чтобы сделать их незатухающими, необходимо восполнять потерю энергии. Сделать это можно, если прилагать к телу периодическую внешнюю силу.

Источником энергии — поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири или закрученной пружины постепенно, отдельными порциями передается маятнику. Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике. Автоколебания совершают паровые машины, двигатели внутреннего сгорания, электрические звонки, струны смычковых музыкальных инструментов, воздушные столбы в трубах духовых инструментов, голосовые связки при разговоре или пении и т.

Свободными или собственными называются колебания, которые совершает система около положения равновесия после того, как она каким-либо образом была выведена из состояния устойчивого равновесия и представлена самой себе. Как только тело или система выводится из положения равновесия, сразу же появляется сила, стремящаяся возвратить тело в положение равновесия. Эта сила называется возвращающей, она всегда направлена к положению равновесия, происхождение ее различно: а для пружинного маятника - сила упругости; б для математического маятника - составляющая сила тяжести.

Незатухающие колебания. Автоколебания

Незатухающие колебания создаются такими устройствами, которые сами могут поддерживать свои колебания за счет некоторого постоянного источника энергии. Затухающие колебания — это колебания, амплитуда которых со временем уменьшается из-за внешней силы или трения, в то время как незатухающие колебания продолжаются неопределенно долго с постоянной амплитудой. Свободные незатухающие колебания или собственные характерны для идеальной системы, где отсутствует трение. Колебания бывают незатухающими и затухающими. Незатухающие колебания маятника 3, показанных на рисунке часов, происходят за счёт потенциальной энергии поднятой гири 2. незатухающие колебания, так как амплитуда и, следовательно, полная энергия колебаний не менялись.

Похожие новости:

Оцените статью
Добавить комментарий