Добавить в избранное 0. Вопрос пользователя. Нервные импульсы поступают непосредственно к железам по. Ответ эксперта. аксонам двигательных нейронов. Короткие, сильно ветвящиеся отростки — дендриты, по ним нервные импульсы поступают к телу нервной клетки.
Нервные импульсы поступают непосредственно
По нервным волокнам осуществляется проведение нервных импульсов. 2294 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по. 1)аксонам двигательных нейронов. Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов 2. аксонам вставочных мозга 4. белому в-ву спинного мозга. По нервным волокнам осуществляется проведение нервных импульсов. В нейроне нервные импульсы по дендритам проходят к соме клетки. Путь, по которому проходит нервный импульс при реализации рефлекса, называется рефлекторной дугой.
Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксо…
Рецептор восприниматель , трансформирующий энергию внешнего раздражения в нервный процесс; он связан с афферентным центростремительным, или рецепторным нейроном, распространяющим начавшееся возбуждение нервный импульс к центру; с этого явления начинается анализ И. Кондуктор проводник , вставочный, или ассоциативный, нейрон, осуществляющий замыкание, т. Это явление есть синтез, который представляет, «очевидно, явление нервного замыкания» И. Поэтому И. Павлов называет этот нейрон контактором, замыкателем. Эфферентный центробежный нейрон, осуществляющий ответную реакцию двигательную или секреторную благодаря проведению нервного возбуждения от центра к периферии, к эффектору.
Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу мышца, железа. Поэтому этот нейрон называют также эффекторным. Рецепторы возбуждаются со стороны трех чувствительных поверхностей, или рецепторных полей, организма: 1 с наружной, кожной, поверхности тела экстероцептивное поле при посредстве связанных с ней генетически органов чувств, получающих раздражение из внешней среды; 2 с внутренней поверхности тела интероцептивное поле , принимающей раздражения главным образом со стороны химических веществ, поступающих в полости внутренностей, и 3 из толщи стенок собственно тела проприоцептивное поле , в которых заложены кости, мышцы и другие органы, производящие раздражения, воспринимаемые специальными рецепторами. Рецепторы от названных полей связаны с афферентными нейронами, которые достигают центра и там переключаются при посредстве подчас весьма сложной системы кондукторов на различные эфферентные проводники; последние, соединяясь с рабочими органами, дают тот или иной эффект. Резюме по рефлекторной дуге Деятельность нервной системы носит рефлекторный характер, а сама нервная система построена по принципу рефлекторных дуг.
Формировать и отправлять эти импульсы может не только головной мозг, так как в головной мозг часто приходят сигналы. Нервный импульс может быть сформирован раздражением нерва или действием некоторых специфичных факторов на рецептор организма. К железам нервные импульсы поступают по нервным нитям.
В коллоидном пространстве происходит органификация йода — присоединение его к белку. Тиреоидные гормоны выделяются фолликулярными клетками в кровь. Основным и физиологически активным гормоном является трийодтиронин Т3 , который во много раз активнее тетрайодтиронина тироксина, Т4. Т3 образуется в тканях на периферии за счет дейодирования Т4. Поступающий из ЩЖ в кровь тироксин большей частью связывается с белками плазмы. Нарушения функции печени и почек влияют на содержание в крови тиреоидных гормонов.
На связывающую способность плазмы могут влиять глюкокортикоиды и лекарственные препараты контрацептивы, препараты раувольфии и др. Синтез и секреция тиреоидных гормонов регулируется гипоталамусом. Установлено, что ТРГ является рилизинг-фактором для пролактина. Физиологическое действие ТТГ заключается в стимуляции синтеза и секреции тиреоидных гормонов. С возрастом происходит снижение уровня тиреоидных гормонов в крови и повышение содержания ТТГ. На секрецию ТТГ влияют — стероидные гомоны, соматостатин и соматотропный гормон, гонадотропины, различные факторы роста. Его уровень обычно ниже у мужчин, а у женщин он зависит от фазы менструального цикла. Физиологические эффекты сводятся к стимуляции окислительно-восстановительных процессов, увеличению потребления О2 тканями. Тиреоидные гормоны участвуют во всех видах обмена — водно-солевом, белковом катаболическое действие , жировом, углеводном и энергетическом.
Стимулируют синтез белка, усиливают процессы всасывания глюкозы в кишечнике и утилизации их в тканях, активизируют распад гликогена и снижают его содержание в печени. Тиреокальцитонин с паратгормоном регулирует обмен кальция и фосфора в организме. Изменение продукции тиреогормонов связано с недостатком в пище йода, что ведёт к разрастанию ткани ЩЖ и появлению эндокринного зоба. Паращитовидные железы. Паращитовидные железы парные образования, расположенные в области шеи позади щитовидной железы. Их количество от 2 до 6, две верхние и две нижние. Располагаются в рыхлой соединительной клетчатке, отделяющей внутреннюю и наружную капсулы щитовидной железы. Верхняя пара примыкает сзади к долям щитовидной железы, вблизи их верхушки на уровне дуги перстневидного хряща. Нижняя пара находится между трахеей и долями щитовидной железы, вблизи их оснований.
Анатомическое строение. Паращитовидные железы - небольшие образования величиной с рисовое зернышко, залегающие позади долей щитовидной железы, имеют округлую или овальную форму. Размеры: длина — 4-5 мм, толщина — 2-3 мм, масса - 0,2-0,5 гр. Нижние паращитовидные железы крупнее верхних. Паращитовидные железы отличаются от щитовидной железы более светлой окраской, у детей бледно-розоватые, у взрослых - желто-коричневые и более плотной консистенцией. Паращитовидные железы имеют тонкую соединительнотканную капсулу, от которой вглубь капсулы отходят перегородки, делящие ткань железы на группы клеток, однако четкого разграничения на дольки нет. Паращитовидные и щитовидная железы схема : А. Расположение паращитовидных желез на задней поверхности щитовидной железы: 1 - щитовидная железа; 2 - щитовидный хрящ; 3- верхняя паращитовидная железа; 4 - нижняя паращитовидная железа; 5- трахея. Микроскопическое строение паращитовидной железы, сагиттальный разрез: 6 - фолликулы щитовидной железы; 7 - паращитовидная железа; 8 - оксифильные клетки; 9- главные клетки; 10 -капилляры; 11 —капсула.
Гистологическое строение. Паращитовидные железы на разрезе представлена фолликулами, но содержащийся в их просвете коллоид беден йодом. Паренхима железы состоит из плотной массы эпителиальных клеток. Среди главных клеток, подразделяющихся на светлые и темные, наиболее активными в функциональном отношении являются светлые клетки. Оба вида клеток - одни и те же клетки на разных этапах развития. В 1926 г. Паратгормон регулирует уровень кальция и фосфора в крови. Кальций влияет на проницаемость клеточных мембран, возбудимость, свертываемость крови и другие процессы. Важен и фосфор, входящий в состав многих ферментов, фосфолипидов, нуклеопротеинов, участвующих в поддержании кислотно-щелочного равновесия и обмена веществ.
Органами-мишенями для паратгормона являются кости, почки и тонкая кишка. Действие паратгормона на кости: вызывает увеличение количества остеокластов и повышение их метаболической активности; стимулирует метаболическую активность остеоцитов; подавляет образование костной ткани остеобластами. Действие паратгормона на почки: повышает реабсорбцию кальция и уменьшает реабсорбцию фосфатов в извитых канальцах. Действие паратгормона на кишечник: повышает всасывание кальция. Аномалии, гипо- и гиперфункция. В результате дефицита паратгормона — гипопаратиреозе, возникает судорожное сокращение скелетной мускулатуры, причиной которой является снижение уровня кальция в крови. При гипопаратиреозе у детей, с врожденной недостаточностью паращитовидных желез нарушается рост костей, и наблюдаются длительные судороги определенных групп мышц. Гиперпаратиреоз вызывается злокачественными опухолями паращитовидных желез. При избытке паратгормона развивается болезнь Реклинхгаузена, проявляющаяся в поражении скелета и почек, первичные изменения в костях, за счет активации остеокластов, разрушающих костную ткань с высвобождением кальция.
Падение уровня кальция в крови, недостаток кальция в пищевом рационе, незлокачественная опухоль паращитовидной железы, рахит вызывает повышенную секрецию паратгормона, что повышает активность остеокластов. В результате чего, уровень кальция в крови повышается, но кости становятся хрупкими. Отмечается нарушение углеводного обмена в костях. Развивается почечная недостаточность. Больные жалуются на боли в костях, слабость, преждевременное выпадение зубов, резкое похудание. Парная железа, расположенная в жировом околопочечном теле в непосредственной близости к верхнему полюсу почки. Наружное строение. Правый и левый надпочечники отличаются по форме: правый сравнивают с трехгранной пирамидой, левый — с полумесяцем. У каждого из надпочечников различают три поверхности: переднюю, заднюю и почечную.
Последняя у правого надпочечника соприкасается с верхним полюсом правой почки, а у левого — с медиальным краем левой почки от ее верхнего полюса до ворот. Надпочечники имеют желтый цвет, их поверхности слегка бугристы. Размеры надпочечника: длина — 5 см, ширина — 3—4 см, толщина около 1 см. Снаружи каждый надпочечник покрыт толстой фиброзной капсулой, соединенной многочисленными тяжами с капсулой почки. Паренхима желез состоит из коркового вещества коры и мозгового вещества. Корковое вещество прочно спаяно с фиброзной капсулой, от которой вглубь железы отходят перегородки — трабекулы. Топография надпочечников. Задние поверхности надпочечников прилежат к поясничной части диафрагмы, почечные поверхности — к почкам. Левый надпочечник передней поверхностью прилежит к кардиальной части желудка и к хвосту поджелудочной железы, а медиальным краем соприкасается с аортой.
Правый надпочечник передней поверхностью прилежит к печени и к двенадцатиперстной кишке, а медиальным краем соприкасается с нижней полой веной. Оба надпочечника лежат забрюшинно; их передние поверхности частично покрыты брюшиной. Кроме брюшины надпочечники имеют общие с почкой оболочки, участвующие в их фиксации: это жировая капсула почки и почечная фасция. Внутреннее строение. Надпочечники состоят из двух самостоятельных желез внутренней секреции — коры и мозгового вещества, объединенных в единый орган. Кора и мозговое вещество имеют разное происхождение, разный клеточный состав и разные функции. Корковое вещество надпочечника делят на три зоны, связанные с синтезом определенных гормонов. Наиболее поверхностный и тонкий слой коры выделяется как клубочковая зона. Средний слой называется пучковой зоной.
Внутренний слой, примыкающий к мозговому веществу, образует сетчатую зону. Мозговое вещество, расположенное в надпочечнике центрально, состоит из хромаффинных клеток. Клетки мозгового вещества секретируют два родственных гормона — адреналин и норадреналин, которые объединяют под названием катехоламинов. Возрастные особенности. Толщина и структура надпочечника изменяется с возрастом. У новорожденного кора надпочечника состоит из двух частей: из зародышевой коры и тонкого слоя истинной коры. После рождения надпочечники уменьшаются. Рост надпочечников ускоряется в период полового созревания. К старости развиваются атрофические процессы.
Строение, функции гормонов. Мозговой слой надпочечника вырабатывает адреналин и норадреналин. Секреция адреналина осуществляется светло-окрашиваемыми клетками, а норадреналина — темно-окрашиваемыми клетками. Человек, у которого норадреналина продуцируется мало, ведет себя в экстренных ситуациях подобно кролику — у него сильно выражено чувство страха, а человек, у которого продукция норадреналина выше, ведет себя как лев теория «кролика и льва». Метаболизм катехоламинов происходит с помощью ферментов. Выделяемые в кровь адреналин и норадреналин, разрушаются быстро — время полужизни 30 секунд. У адреналина и норадреналина обнаружены физиологические эффекты, как у симпатической нервной системы: активация деятельности сердца, расслабление гладких мышц бронхов и т. Катехоламины принимают участие в активации продукции тепла, в регуляции секреции многих гормонов. За счет взаимодействия адреналина с бета-адренорецепторами повышается продукция глюкагона, ренина, гастрина, паратгормона, кальцитонина, инсулина, тиреоидных гормонов.
При взаимодействии катехоламинов с бета-адренорецепторами угнетается выработка инсулина. Во всех этих зонах продуцируются стероидные гормоны, источником для которых служит холестерин. В клубочковой зоне продуцируются минералокортикоиды, в пучковой — глюкокортикоиды, а в сетчатой — андрогены и эстрогены, т. К группе минералокортикоидов относятся: альдостерон, дезоксикортикостерон, 18-оксикортнкостерон, 18-оксидезоксикортикостерон. Основной представитель минералокортикоидов — альдостерон. Механизм действия альдостерона связан с активацией синтеза белка, участвующего в реабсорбции ионов натрия. Место действия клетки-мишени — это эпителий дистальных канальцев почки, в которых за счет взаимодействия альдостерона с рецепторами повышается продукция мРНК и рРНК и активируется синтез белка — переносчика натрия. В результате - почечный эпителий усиливает процесс обратного всасывания натрия из первичной мочи в интерстициальную ткань, а оттуда — в кровь. Механизм активного транспорта натрия из первичной мочи в интерстиций сопряжен с противоположным процессом — удалением ионов калия из крови в конечную мочу.
Альдостерон является натрийсберегающим, а также калийуретическим гормоном. За счет задержки в организме ионов натрия и воды альдостерон способствует повышению уровня АД. Альдостерон влияет на процессы реабсорбции натрия в слюнных железах. При обильном потоотделении альдостерон способствует сохранению натрия в организме, препятствует его потере не только с мочой, но и с потом. Калий же, с потом удаляется при действии альдостерона. В сетчатой зоне надпочечника секретируются в небольшом количестве мужские половые гормоны, близкие по строению к гормонам — андрогенам, а также эстрогены и прогестерон. Наиболее сильный физиологический эффект принадлежит кортизолу. Гормоны вызывают активацию глюконеогенеза — образование глюкозы из аминокислот и жирных кислот. Одновременно в других органах и тканях, в скелетных мышцах глюкокортикоиды тормозят синтез белков, чтобы создать депо аминокислот, необходимых для глюконеогенеза.
Главный эффект глюкокортикоидов — мобилизация энергетических ресурсов организма. Это свойство используется для снятия воспалительных реакций - после проведения операции на глазу по поводу катаракты больному рекомендуется ежедневно вводить глазные капли, содержащие глюкокортикоиды кортизон, гидрокортизон. Под влиянием глюкокортикоидов снижается продукция антител, уменьшается активность Т-киллеров, снижается интенсивность иммунологического надзора, снижается гиперчувствительность и сенсибилизация организма. Все это позволяет рассматривать глюкокортикоиды как активные иммунодепрессанты. Это свойство глюкокортикоидов широко используется в клинической практике для купирования аутоиммунных процессов, для снижения иммунной защиты организма хозяина. Это свойство глюкокортикоидов лежит в основе язвы желудка и 12перстной кишки, нарушение микроциркуляции в сосудах миокарда и как следствие — развитие аритмий, нарушение физиологического состояния кожных покровов — экземы, псориаз. Эти явления наблюдаются в условиях повышенного содержания эндогенных глюкокортикоидов или в условиях длительного введения глюкокортикоидов с лечебной целью. При высоких концентрациях глюкокортикоиды вызывают задержку натрия и воды в организме. В скелетных мышцах наблюдается мышечная слабость.
Регуляция продукции глюкокортикоидов осуществляется за счет двух гормонов — кортиколиберина и АКТГ. Изменение концентрации глюкокортикоидов как гипо-, так и гиперфункции приводит к серьёзным нарушениям в организме. Поджелудочная железа. У взрослого человека форма, размеры и вес железы варьируют в широких пределах. Поджелудочная железа дважды изгибается, огибая позвоночник. В железе различают головку, тело и хвост. Между головкой и телом имеется сужение — шейка; у нижней полуокружности головки - крючкообразный отросток. Длина железы - 14-22 см, поперечник головки — 3,5-6,0 см, толщина тела — 1,5-2,5 см, длина хвоста — до 6 см. Вес железы — 73 - 96 г.
Поджелудочная железа расположена забрюшинно, позади желудка. Железа находится над малой кривизной, лежит впереди позвоночника, покрывая аорту в виде поперечного валика. Головка поджелудочной железы выполняет подкову 12перстной кишки, а ее тело и хвост, перекинутые через нижнюю полую вену, позвоночный столб и аорту, простираются к селезенке на уровне I—III поясничных позвонков.
Наша доска вопросов и ответов в первую очередь ориентирована на школьников и студентов из России и стран СНГ, а также носителей русского языка в других странах. Для посетителей из стран СНГ есть возможно задать вопросы по таким предметам как Украинский язык, Белорусский язык, Казакхский язык, Узбекский язык, Кыргызский язык. На вопросы могут отвечать также любые пользователи, в том числе и педагоги.
Тест «Нервная система»
Тест «Нервная система» — 4ЕГЭ | Нервные импульсы поступают непосредственно к мышцам и железам по. |
Человек и его здоровье (стр.51-75) | 1. Нервные импульсы поступают непосредственно к железам по. |
Регуляция желудочной секреции. | Вариант Часть Нервные импульсы поступают непосредственно к железам по. |
Нервная система. Общие сведения | Путь, по которому проходит нервный импульс при реализации рефлекса, называется рефлекторной дугой. |
ПОДПИСАТЬСЯ НА РАССЫЛКУ
- Нервные импульсы поступают непосредственно к железам по - ВПР 2024
- Задание 17 ОГЭ по биологии с ответами, ФИПИ: организм человека, 3 из 6
- Урок 1: Значение, строение и функционирование нервной системы
- Задание 17 ОГЭ по биологии с ответами, ФИПИ: организм человека, 3 из 6
Строение головного мозга
- Нервные импульсы поступают непосредственно
- Нервные импульсы поступают непосредственно к железам по
- Человек и его здоровье (стр.51-75)
- Задание 17 ОГЭ по биологии с ответами, ФИПИ: организм человека, 3 из 6
- Нервная регуляция работы надпочечников
- Нервные импульсы поступают непосредственно к железам по... -
Человек и его здоровье (стр.51-75)
Войти Регистрация. Биология. Нервные импульсы поступают непосредственно. 2293 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. Рефлекторная дуга – это путь, по которому проходит нервный импульс во время осуществления рефлекса.
Регуляция желудочной секреции.
Раствор Рингера, перфузируемый в одно сердце, переходил во второе. При раздражении симпатического нерва первого сердца, второе также начинало сокращаться. Возникла гипотеза о том, что раздражение нервов влечёт появление в перфузате некоторых веществ, которые оказывают действие на другое сердце, подобное эффекту раздражения симпатического нерва. Сначала были открыты адреналин и ацетилхолин.
В настоящее время открыто более 30 медиаторов, среди которых норадреналин, серотонин, мелатонин, гистамин, дофамин, октопамин, АТФ, ГАМК, глицин, глутамат, аспартат, эндорфины, энкефалины, вазопрессин, окситоцин, вещество P. По химическому составу и механизму действия медиаторы сходны с гормонами. Подробнее медиаторы будут рассмотрены ниже.
Нейроны имеют биохимический аппарат, общий со всеми остальными живыми клетками, в том числе способность генерировать химическую энергию путём окисления пищеварительных веществ, а также восстанавливать и сохранять свою целостность. Нейроны обладают кроме того специфическими свойствами, которых лишены другие клетки и которые связаны с особой функцией нейронов как передатчиков нервных импульсов: необходимость в поддержании ионных градиентов, что требует большой затраты энергии, и свойства, связанные со способностью нейронов производить и выделять набор химических передатчиков — нейромедиаторов. В синапсах — микроскопических участках где тесно соприкасаются окончание одного нейрона и воспринимающая поверхность другого, приход импульса вызывает внезапное выделение молекул медиатора из окончания.
Затем эти молекулы диффундируют через заполненную жидкостью щель между двумя клетками и воздействуют на специфические рецепторы постсинаптической мембраны, изменяя при этом электрическую активность воспринимающего нейрона. За последние годы достигнуты значительные успехи в познании различных медиаторных веществ, в составлении карт, их распределении по мозгу и в выяснении молекулярных процессов синаптической передачи. Такими исследованиями установлено, что действие многих лекарственных веществ и нейротоксинов на поведение основано на их способности прерывать или модифицировать химическую передачу от нейрона к нейрону.
В них есть также указания на то, что причинами психических болезней, возможно, окажутся в конечном счёте нарушения функции специфических медиаторных систем мозга. Методика исследования функционального химизма мозга очень сложна, так как медиаторы содержатся в ничтожно малых количествах, ткань мозга структурно и химически очень сложна и выделить для исследования определённую медиаторную структуру нелегко. Одну из методик разработали В.
Уиттейкер V. Whittaker и Э. При осторожном разрушении ткани мозга путём гомогенизации в растворе сахарозы многие нервные окончания отрываются от своих аксонов и образуют особые замкнутые частицы, названные "синаптосомами".
Синаптосомы содержат механизмы синтеза, хранения, высвобождения и инактивации медиатора, связанные с нервным окончанием; центрифугированием можно очистить от других компонентов нейрона. Эта методика дала нейрохимикам возможность изучать механизмы синаптической передачи в пробирке. Эти методики показали, что медиаторы, расположены не диффузно по всей ткани мозга, а в высшей степени локально в ограниченных центрах и путях — составлены карты для многих медиаторов.
Например, многие клетки мозга, содержащие норадреналин сосредоточены в стволе и образуют скопление, известное как locus coeruleus. Аксоны этих нейронов сильно ветвятся и проецируются в различные области — гипоталамус, мозжечок и передний мозг. Норадреналиновые нейроны причастны к поддержанию бодрствования, к системе поощрения центр удовольствия , к сновидениям и к регуляции настроения.
Нейроны, содержащие моноамин дофамин сосредоточены в substantia nigra и в вентральной покрышку. Нейроны, содержащие дофамин посылают свои аксоны в передний мозг эмоции и в область полосатого тела регуляция сложных движений.
Клетки спутники выполняют питательную, опорную и защитную функции, способствуя росту и развитию нервных клеток. Строение нейрона Нейрон — основная структурная и функциональная единица нервной системы. Структурно-функциональной единицей нервной системы является нервная клетка — нейрон.
Его основными свойствами являются возбудимость и проводимость. Нейрон состоит из тела и отростков. Короткие, сильно ветвящиеся отростки — дендриты, по ним нервные импульсы поступают к телу нервной клетки. Дендритов может быть один или несколько. Каждая нервная клетка имеет один длинный отросток — аксон, по которому импульсы направляются от тела клетки.
Нервный импульс может быть сформирован раздражением нерва или действием некоторых специфичных факторов на рецептор организма. К железам нервные импульсы поступают по нервным нитям. Например: мы видим опасность, мозг анализирует, что это действительно опасность и отправляет импульс в надпочечники, где выделяется адреналин.
Исследования показали, что новые нейроны во взрослом мозге могут образовываться не только из нейрональных стволовых клеток, но и из стволовых клеток крови. Оказалось, что стволовые клетки действительно проникают в мозг, но они не превращаются в нейроны, а сливаются с ними, образую двуядерные клетки.
Затем «старое» ядро нейрона разрушается, а его замещает «новое» ядро стволовой клетки крови. Согласно одной из гипотез, стволовые клетки несут новый генетический материал, который, попадая в «старую» клетки мозжечка, продлевает его жизнь. Итак, новые нейроны могут возникать из стволовых клеток даже в мозге взрослого человека. Этот феномен уже достаточно широко применяется для лечения различных нейродегенеративных заболеваний заболеваний, сопровождающихся гибелью нейронов головного мозга. Препараты стволовых клеток для трансплантации получают двумя способами.
Первый - это использование нейрональных стволовых клеток, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга. Второй подход - использование эмбриональных стволовых клеток. Эти клетки располагаются во внутренней клеточной массе на ранней стадии формирования зародыша. Они способны превращаться практически в любые клетки организма. Наибольшая сложность в работе с эмбриональными клетками — заставить их трансформироваться в нейроны.
Новые технологии позволяют сделать это. Трансплантация стволовых клеток, несомненно, будет одним из главных подходов в терапии таких нейродегенеративных заболеваний, как болезни Альцгеймера и Паркинсона. Термин «нейроглия» ввел в обиход немецкий патологоанатом Рудольф Вирхов для описания связывающих элементов между нейронами. Эти клетки составляют половину объема мозга. Нейроны — это высокоспециализированные клетки, существующие и функционирующие в строго определенной среде.
Такую среду им обеспечивает нейроглия. Нейроглия — вспомогательная и очень важная составная часть нервной ткани, связанная с нейронами. По мере специализации нейрона как индивидуальной клетки в процессе эволюции возникла организация более высокого порядка — межклеточное «сообщество» нейрона и нейроглии. Нейроглия не принимает непосредственного участия генерации и проведении нервных импульсов и, тем не менее, нормальное функционирование нейрона невозможно в отсутствии или при повреждении глии. Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную.
Клетки нейроглии не образуют синапсов. Различают глию центральной и периферической нервной системы. Клетки глии центральной нервной системы делятся на макроглию и микроглию. Макроглия развивается из глиобластов нервной трубки и включает: эпендиму, астроглию и олигодендроглию. Эпендимоциты выстилают желудочки головного мозга и центральный канал спинного мозга.
Эти клетки цилиндрической формы. Они образуют слой типа эпителия, носящий название эпендимы. Между соседними клетками эпендимы имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между эпендимоцитами в нервную ткань. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости. Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань.
Такие клетки называются таницитами. Они многочисленны в дне III желудочка. Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза. Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость ликвор. Астроглию образуют астроциты.
Астроциты — клетки отростчатой формы, бедные органеллами. Они выполняют в основном опорную и трофическую функции. Различают два типа астроцитов - протоплазматические и волокнистые. Протоплазматические астроциты локализуются в сером веществе центральной нервной системы, а волокнистые астроциты - преимущественно в белом веществе. Протоплазматические астроциты характеризуются короткими сильно ветвящимися отростками и светлым сферическим ядром.
Отростки астроцитов тянутся к базальным мембранам капилляров, к телам и дендритам нейронов, окружая синапсы и отделяя изолируя их друг от друга, а также к мягкой мозговой оболочке, образуя пиоглиальную мембрану, граничащую с субарахноидальным пространством. Подходя к капиллярам, их отростки образуют расширенные «ножки», полностью окружающие сосуд. Астроциты накапливают и передают вещества от капилляров к нейронам, захватывают избыток экстрацеллюлярного калия и других веществ, таких как нейромедиаторы, из экстрацеллюлярного пространства после интенсивной нейрональной активности. Олигодендроглию образуют олигодендроциты. Олигодендроциты — имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра.
Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов. В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах, причем, в противоположность аналогичным клеткам периферической нервной системы — нейролеммоцитам, один олигодендроглиоцит может участвовать в миелинизации сразу нескольких аксонов. Микроглия образуют микроглиоциты, которые представляют собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки возможно, из премоноцитов красного костного мозга.
Функция микроглии — защита от инфекции и повреждения, и удаление продуктов разрушения нервной ткани. Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы. Их короткие отростки имеют на своей поверхности вторичные и третичные ответвления, что придает клеткам «колючий» вид. Описанная морфология характерна для типичной ветвистой, или покоящейся микроглии полностью сформированной центральной нервной системы. Она обладает слабой фагоцитарной активностью.
Ветвистая микроглия встречается как в сером, так и в белом веществе центральной нервной системы. В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии — амебоидная микроглия. Клетки амебоидной микроглии формируют выросты — филоподии и складки плазмолеммы. В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца. Амебоидные микроглиальные тельца отличаются высокой активностью лизосомальных ферментов.
Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не вполне развит и вещества из крови легко попадают в центральную нервную систему. Считают также, что она способствует удалению обломков клеток, появляющихся в результате запрограммированной гибели избыточных нейронов и их отростков в процессе дифференцировки нервной системы. Полагают, что, созревая, амебоидные микроглиальные клетки превращаются в ветвистую микроглию. Реактивная микроглия появляется после травмы в любой области мозга. Она не имеет ветвящихся отростков, как покоящаяся микроглия, не имеет псевдоподий и филоподий, как амебоидная микроглия.
В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы. Есть данные о том, что реактивная микроглия формируется вследствие активации покоящейся микроглии при травмах центральной нервной системы. Рассмотренные выше глиальные элементы относятся к центральной нервной системе. Глия периферической нервной системы в отличие от макроглии центральной нервной системы происходит из нервного гребня. К периферической нейроглии относятся: нейролеммоциты или шванновские клетки и глиоциты ганглиев или мантийные глиоциты.
Нейролеммоциты и шванновские клетки формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов. В отличие от нейронов нейроглия содержит малодифференцированные клетки способные к регенерации, размножению и развитию в течении всей жизни. Тема 4. Нервные узлы.
Нервные волокна. Нервные стволы нервы Нервные узлы ганглии. Нервные узлы, или ганглии, это скопления нейронов вне центральной нервной системы. Нервные узлы, расположенные в пределах центральной нервной системы, называются ядрами. Выделяют чувствительные и вегетативные нервные узлы.
Чувствительные нервные узлы лежат по ходу задних корешков спинного мозга и по ходу черепно-мозговых нервов. Афферентные нейроны в спиральном и вестибулярном ганглии являются биполярными, в остальных чувствительных ганглиях - псевдоуниполярными. Спинномозговой узел спинальный ганглий. Спинномозговой узел имеет веретеновидную форму, окружен капсулой из плотной соединительной ткани. От капсулы в паренхиму узла проникают тонкие прослойки соединительной ткани, в которой расположены кровеносные сосуды.
Нейроны спинномозгового узла характеризуются крупным сферическим телом и светлым ядром с хорошо заметным ядрышком. Клетки располагаются группами, преимущественно по периферии органа. Центр спинномозгового узла состоит главным образом из отростков нейронов и тонких прослоек эндоневрия, несущих сосуды. Дендриты нервных клеток идут в составе чувствительной части смешанных спинномозговых нервов на периферию и заканчиваются там рецепторами. Аксоны в совокупности образуют задние корешки, несущие нервные импульсы в спинной мозг или продолговатый мозг.
Дендриты и аксоны клеток в узле и за его пределами покрыты миелиновыми оболочками из нейролеммоцитов. Тело каждой нервной клетки в спинномозговом узле окружено слоем уплощенных клеток олигодендроглии, которые здесь называются мантийными глиоцитами, или глиоцитами ганглия, или же клетками-сателлитами. Они расположены вокруг тела нейрона и имеют мелкие округлые ядра. Снаружи глиальная оболочка нейрона покрыта тонковолокнистой соединительнотканной оболочкой. Клетки этой оболочки отличаются овальной формой ядер.
Нейроны спинномозговых узлов содержат такие нейромедиаторы, как ацетилхолин, глутаминовая кислота. Автономные вегетативные узлы. Вегетативные нервные узлы располагаются следующим образом: вдоль позвоночника, впереди от позвоночника, в стенке органов - сердца, бронхов, пищеварительного тракта, вблизи поверхности этих органов. К вегетативным узлам подходят миелиновые преганглионарные волокна, содержащие отростки нейронов центральной нервной системы. По функциональному признаку и локализации вегетативные нервные узлы разделяют на симпатические и парасимпатические.
Большинство внутренних органов имеет двойную вегетативную иннервацию, то есть получает постганглионарные волокна от клеток, расположенных как в симпатических, так и в парасимпатических узлах. Реакции, опосредуемые их нейронами, часто имеют противоположную направленность так, например, симпатическая стимуляция усиливает сердечную деятельность, а парасимпатическая ее тормозит. Общий план строения вегетативных узлов сходен. Снаружи узел покрыт тонкой соединительнотканной капсулой. Вегетативные узлы содержат мультиполярные нейроны, которые характеризуются неправильной формой, эксцентрично расположенным ядром.
Часто встречаются многоядерные и полиплоидные нейроны. Каждый нейрон и его отростки окружены оболочкой из глиальных клеток-сателлитов - мантийных глиоцитов. Наружная поверхность глиальной оболочки покрыта базальной мембраной, кнаружи от которой расположена тонкая соединительнотканная оболочка. Нейроны вегетативных нервных ганглиев, как и спинномозговых узлов, имеют эктодермальное происхождение и развиваются из клеток нервного гребня. Тела нейронов образуют серое вещество головного и спинного мозга, а также нервные ганглии беспозвоночных и позвоночных животных.
Связь ЦНС и ганглиев с органами осуществляется при помощи проводящих элементов — нервов, основу которых составляют нервные волокна. Нервы, или нервные стволы, связывают нервные центры головного и спинного мозга с рецепторами и рабочими органами, или же с нервными узлами. Отростки нервных клеток, окруженные плазмалеммой олигодендроцитов или шванновских клеток, называются нервными волокнами рис. Отросток нервной клетки в составе нервного волокна называются осевым цилиндром, а глиальные клетки, формирующие оболочку волокна, называются леммоцитами, или шванновскими клетками. Нервные волокна образуют в головном и спинном мозге проводящие пути, а на периферии — нервы.
В пределах ЦНС нервные волокна входят в состав белого вещества мозга. По нервным волокнам осуществляется проведение нервных импульсов. Толщина соматических нервных волокон равна 12-14 мкм, автономных - 5-7 мкм. В зависимости от строения покрывающих оболочек нервные волокна подразделяются на два вида: безмякотные немиелиновые и мякотные миелиновые рис. Безмякотные немиелиновые нервные волокна входят в состав периферических нервов, идущих к внутренним органам, но многие сенсорные волокна также являются безмякотными.
Они имеют несколько осевых цилиндров 3-5, иногда до 12 , окруженных шванновскими клетками. В электронных микрофотографиях видно, что каждый осевой цилиндр погружен в леммоцит, ее клеточная мембрана смыкается и образует мезаксон — сдвоенные мембраны шванновской клетки. Каждая шванновская клетка подобным образом окружает несколько осевых цилиндров, погруженных в леммоцит, может быть в разное количество мезаксонов в нервном волокне. Миелин отсутствует. Шванновские клетки на всем протяжении окутывают безмякотное волокно, препятствуя его соприкосновению с окружающей средой.
Строение нерва А и нервного волокна Б. Поперечное строение нерва а , нервного волокна б. Поскольку отростки нервных клеток покрыты плазмалеммой шванновских клеток только один раз, то нервный импульс при прохождении рассеивается. Он проходит по безмякотным нервным волокнам в 10 раз медленнее, по сравнению с мякотными. Мякотные нервные волокна составляют белое вещество головного и спинного мозга и входят в периферические нервы.
Мякотное нервное волокно состоит из одного осевого цилиндра, вокруг которого шванновские клетки образуют миелиновую оболочку. Нервное волокно, состоящее из одного осевого цилиндра и расположенных вокруг него шванновских клеток, называют мякотным, или миелиновым. Характерная особенность шванновских клеток — наличие в них липоидного вещества миелина, который образует вокруг осевого цилиндра мякотную миелиновую оболочку. Каждая шванновская клетка миелинизирует небольшой сегмент только одного аксона. Мякотная, или миелиновая, оболочка примыкает к осевому цилиндру и окружает его чехлом.
Она выполняет роль изолятора. Этим объясняется большая скорость проведения нервных импульсов мякотными нервными волокнами, т. Миелин регулярно прерывается через определенные промежутки. Фактически эти участки, лишенные миелина, являются границами между двумя соседними клетками, где они соединяются при помощи коротких отростков и называются узлами нервного волокна перехват Ранвье. В перехвате Ранвье аксолемма осевого цилиндра не покрыта миелиновой оболочкой.
По этой же причине в миелиновых волокнах в отличие от не имеющих перехватов немиелиновых волокон скорость проведения нервных импульсов выше. Участок между узлами называется межузловым сегментом. Они называются «насечками миелина» Шмидтлантермановскими насечками. Шмидтлантермановские насечки — это участки расслоения миелина, образовавшиеся при миелинизации. Функция насечек неясна.
В зависимости от длины миелинового сегмента количество насечек миелина бывает различным. Они отсутствуют в пределах ЦНС. Осевой цилиндр содержит митохондрии, элементы гладкой ЭПС, элементы цитоскелета — микротрубочки, нейрофиламенты и микрофиламенты.
Ответы на вопрос
- Нервная система. Общие сведения • Биология, Анатомия и физиология человека • Фоксфорд Учебник
- Страница 47
- Топ вопросов за вчера в категории Биология
- Тест «Нервная система»
Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксо…
Нервная система. Общие сведения • Биология, Анатомия и физиология человека • Фоксфорд Учебник | Проведение нервного импульса в ЦНС. |
Регуляция желудочной секреции. | Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. |
Как устроена периферическая нервная система человека? | Слайд 6 Нервные импульсы поступают непосредственно к железам по. |
Тест «Нервная система» | нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам вставочных нейронов 3)серому веществу спинного морга 4)белому веществу спинного мозга. |
Нервные импульсы поступают непосредственно к железам по | 2294 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по. 1)аксонам двигательных нейронов. |
Остались вопросы?
К железам нервные импульсы поступают по нервным нитям. среды путем модификационного приема и проведения импульсов, поступающим по различным каналам. Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных. Сердитые импульсы поступают конкретно к железам по 1) аксонам двигательных нейронов. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. По аксонам нервные импульсы поступают к. Нервный Импульс в нейронах.
нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам
Схема регуляции сердечной деятельности. Нервная регуляция работы сердца. Влияние нервной системы на деятельность сердца. Нейронные импульсы в мозгу. Синапсы головного мозга. Афферентные и эфферентные нервные пути.
Афферентный путь и эфферентный путь. Проводящие пути афферентные и эфферентные. Афферентные двигательные пути. Структура и функции рефлекторной дуги. Строение рефлекторной дуги мигательного рефлекса.
Общая схема строения рефлекторной дуги. Рефлекторная дуга безусловного мигательного рефлекса. Нервная система Нейрон. Структура двигательного нейрона. Нейроны центральной нервной системы.
Нервная регуляция. Нервная регуляция жизнедеятельности организма. Система органов нервной регуляции. Нервная регуляция осуществляется. Механизм передачи возбуждения в возбуждающих синапсах, медиаторы..
Синапс и нейромедиаторы. Медиаторы синапсов. Возбуждающие и тормозящие синапсы. Аксоны и дендриты спинного мозга. Дендрит двигательного нейрона.
Нейрон Аксон дендрит. Этапы синаптической передачи импульса. Этапы синаптической передачи в химическом синапсе. Механизм синаптической передачи нервного импульса через синапс. Рефлекторный механизм деятельности нервной системы.
Рефлекторный принцип функционирования ЦНС. Рефлекс нервная система. Рефлекторный принцип деятельности нервной системы человека.. Роль нейромедиаторов в передаче нервных импульсов. Химическая передача нервного импульса.
Симпатическое влияние на сердце. Влияние симпатической нервной системы на сердце. Влияние симпатической системы на сердце. Влиянием симпатических нервов на деятельность сердца. Состав простейшей рефлекторной дуги.
Соматическая рефлекторная дуга функции. Звено рефлекторной дуги выполняет функции. Нервная клетка Нейрон. Аксон отросток нервной клетки. Дендрит чувствительного нейрона.
Спинальные рефлексы: Миотатический рефлекс, сухожильны. Рефлекс с проприорецепторов скелетных мышц схема. Схема миотатического рефлекса. Сокращение и растяжение мышц. Преобразования раздражения в нервные импульсы происходит в.
Раздражение в нервный Импульс. В преобразования раздражителя в нервный Импульс. Зрительный нерв образован аксонами клеток. Что иннервируют зрительные нервы. Зрительный нерв иннервирует мышцы.
Рефлексы спинного мозга Аксон рефлекс. Рефлексы спинного мозга коленный рефлекс. Вставочный Нейрон коленного рефлекса. Двигательный Нейрон функции. Строение рефлекторной дуги коленного рефлекса.
Схема рефлекторной дуги бицепс-рефлекса. Рефлекторная дуга разгибательного рефлекса рефлекса схема. Рефлекторная дуга коленного рефлекса образована. Схема передачи импульса нейрона.
Гипоталамус — это центр, который накапливает данные из всего организма, а также из внешней среды. Нервные клетки гипоталамуса способны вырабатывать несколько типов нейроэндокринных трансмиттеров — биологически активных веществ, которые влияют на интенсивность синтеза тропных гормонов гипофиза: Либерины — группа соединений, которые стимулируют гормональный синтез. Так, соматолиберин увеличивает выработку соматотропного гормона роста, тиреолиберин — тиреотропного, гонадолиберин — лютенизирующего и фолликулостимулирующего гормонов. Статины — вещества, которые подавляют выработку тропных гормонов гипофиза. Различают такие разновидности, как соматостатин, пролактостатин, меланостатин.
Окситоцин и вазопрессин — гормоны, которые вырабатываются гипоталамусом, но накапливаются в задней доле гипофиза. Первый возрастает во время родов и вызывает сокращение мышечной стенки матки, но также выполняет и другие функции. Вазопрессин регулирует водный обмен, повышает тонус сосудов. Гормоны гипоталамуса поступают к гипофизу по кровеносному руслу и там воздействуют на его функции. Статины и либерины не всегда действуют строго избирательно.
Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов.
В отличие от нейронов нейроглия содержит малодифференцированные клетки способные к регенерации, размножению и развитию в течении всей жизни. Тема 4. Нервные узлы. Нервные волокна. Нервные стволы нервы Нервные узлы ганглии. Нервные узлы, или ганглии, это скопления нейронов вне центральной нервной системы.
Нервные узлы, расположенные в пределах центральной нервной системы, называются ядрами. Выделяют чувствительные и вегетативные нервные узлы. Чувствительные нервные узлы лежат по ходу задних корешков спинного мозга и по ходу черепно-мозговых нервов. Афферентные нейроны в спиральном и вестибулярном ганглии являются биполярными, в остальных чувствительных ганглиях - псевдоуниполярными. Спинномозговой узел спинальный ганглий. Спинномозговой узел имеет веретеновидную форму, окружен капсулой из плотной соединительной ткани.
От капсулы в паренхиму узла проникают тонкие прослойки соединительной ткани, в которой расположены кровеносные сосуды. Нейроны спинномозгового узла характеризуются крупным сферическим телом и светлым ядром с хорошо заметным ядрышком. Клетки располагаются группами, преимущественно по периферии органа. Центр спинномозгового узла состоит главным образом из отростков нейронов и тонких прослоек эндоневрия, несущих сосуды. Дендриты нервных клеток идут в составе чувствительной части смешанных спинномозговых нервов на периферию и заканчиваются там рецепторами. Аксоны в совокупности образуют задние корешки, несущие нервные импульсы в спинной мозг или продолговатый мозг.
Дендриты и аксоны клеток в узле и за его пределами покрыты миелиновыми оболочками из нейролеммоцитов. Тело каждой нервной клетки в спинномозговом узле окружено слоем уплощенных клеток олигодендроглии, которые здесь называются мантийными глиоцитами, или глиоцитами ганглия, или же клетками-сателлитами. Они расположены вокруг тела нейрона и имеют мелкие округлые ядра. Снаружи глиальная оболочка нейрона покрыта тонковолокнистой соединительнотканной оболочкой. Клетки этой оболочки отличаются овальной формой ядер. Нейроны спинномозговых узлов содержат такие нейромедиаторы, как ацетилхолин, глутаминовая кислота.
Автономные вегетативные узлы. Вегетативные нервные узлы располагаются следующим образом: вдоль позвоночника, впереди от позвоночника, в стенке органов - сердца, бронхов, пищеварительного тракта, вблизи поверхности этих органов. К вегетативным узлам подходят миелиновые преганглионарные волокна, содержащие отростки нейронов центральной нервной системы. По функциональному признаку и локализации вегетативные нервные узлы разделяют на симпатические и парасимпатические. Большинство внутренних органов имеет двойную вегетативную иннервацию, то есть получает постганглионарные волокна от клеток, расположенных как в симпатических, так и в парасимпатических узлах. Реакции, опосредуемые их нейронами, часто имеют противоположную направленность так, например, симпатическая стимуляция усиливает сердечную деятельность, а парасимпатическая ее тормозит.
Общий план строения вегетативных узлов сходен. Снаружи узел покрыт тонкой соединительнотканной капсулой. Вегетативные узлы содержат мультиполярные нейроны, которые характеризуются неправильной формой, эксцентрично расположенным ядром. Часто встречаются многоядерные и полиплоидные нейроны. Каждый нейрон и его отростки окружены оболочкой из глиальных клеток-сателлитов - мантийных глиоцитов. Наружная поверхность глиальной оболочки покрыта базальной мембраной, кнаружи от которой расположена тонкая соединительнотканная оболочка.
Нейроны вегетативных нервных ганглиев, как и спинномозговых узлов, имеют эктодермальное происхождение и развиваются из клеток нервного гребня. Тела нейронов образуют серое вещество головного и спинного мозга, а также нервные ганглии беспозвоночных и позвоночных животных. Связь ЦНС и ганглиев с органами осуществляется при помощи проводящих элементов — нервов, основу которых составляют нервные волокна. Нервы, или нервные стволы, связывают нервные центры головного и спинного мозга с рецепторами и рабочими органами, или же с нервными узлами. Отростки нервных клеток, окруженные плазмалеммой олигодендроцитов или шванновских клеток, называются нервными волокнами рис. Отросток нервной клетки в составе нервного волокна называются осевым цилиндром, а глиальные клетки, формирующие оболочку волокна, называются леммоцитами, или шванновскими клетками.
Нервные волокна образуют в головном и спинном мозге проводящие пути, а на периферии — нервы. В пределах ЦНС нервные волокна входят в состав белого вещества мозга. По нервным волокнам осуществляется проведение нервных импульсов. Толщина соматических нервных волокон равна 12-14 мкм, автономных - 5-7 мкм. В зависимости от строения покрывающих оболочек нервные волокна подразделяются на два вида: безмякотные немиелиновые и мякотные миелиновые рис. Безмякотные немиелиновые нервные волокна входят в состав периферических нервов, идущих к внутренним органам, но многие сенсорные волокна также являются безмякотными.
Они имеют несколько осевых цилиндров 3-5, иногда до 12 , окруженных шванновскими клетками. В электронных микрофотографиях видно, что каждый осевой цилиндр погружен в леммоцит, ее клеточная мембрана смыкается и образует мезаксон — сдвоенные мембраны шванновской клетки. Каждая шванновская клетка подобным образом окружает несколько осевых цилиндров, погруженных в леммоцит, может быть в разное количество мезаксонов в нервном волокне. Миелин отсутствует. Шванновские клетки на всем протяжении окутывают безмякотное волокно, препятствуя его соприкосновению с окружающей средой. Строение нерва А и нервного волокна Б.
Поперечное строение нерва а , нервного волокна б. Поскольку отростки нервных клеток покрыты плазмалеммой шванновских клеток только один раз, то нервный импульс при прохождении рассеивается. Он проходит по безмякотным нервным волокнам в 10 раз медленнее, по сравнению с мякотными. Мякотные нервные волокна составляют белое вещество головного и спинного мозга и входят в периферические нервы. Мякотное нервное волокно состоит из одного осевого цилиндра, вокруг которого шванновские клетки образуют миелиновую оболочку. Нервное волокно, состоящее из одного осевого цилиндра и расположенных вокруг него шванновских клеток, называют мякотным, или миелиновым.
Характерная особенность шванновских клеток — наличие в них липоидного вещества миелина, который образует вокруг осевого цилиндра мякотную миелиновую оболочку. Каждая шванновская клетка миелинизирует небольшой сегмент только одного аксона. Мякотная, или миелиновая, оболочка примыкает к осевому цилиндру и окружает его чехлом. Она выполняет роль изолятора. Этим объясняется большая скорость проведения нервных импульсов мякотными нервными волокнами, т. Миелин регулярно прерывается через определенные промежутки.
Фактически эти участки, лишенные миелина, являются границами между двумя соседними клетками, где они соединяются при помощи коротких отростков и называются узлами нервного волокна перехват Ранвье. В перехвате Ранвье аксолемма осевого цилиндра не покрыта миелиновой оболочкой. По этой же причине в миелиновых волокнах в отличие от не имеющих перехватов немиелиновых волокон скорость проведения нервных импульсов выше. Участок между узлами называется межузловым сегментом. Они называются «насечками миелина» Шмидтлантермановскими насечками. Шмидтлантермановские насечки — это участки расслоения миелина, образовавшиеся при миелинизации.
Функция насечек неясна. В зависимости от длины миелинового сегмента количество насечек миелина бывает различным. Они отсутствуют в пределах ЦНС. Осевой цилиндр содержит митохондрии, элементы гладкой ЭПС, элементы цитоскелета — микротрубочки, нейрофиламенты и микрофиламенты. Скорость проведения нервного импульса зависит от диаметра аксона, а сам диаметр определяется количеством содержащихся в нем нейрофиламентов. В нормальных и патологических условиях количество нейрофиламентов и диаметр аксона тесно коррелируют.
Аксонный транспорт обеспечивает кинезии микротрубочек. Основной материал антероградного транспорта — белки, синтезированные в перикарионе например, белки ионных каналов, ферменты синтеза нейромедиаторов. Внешняя плазмалемма шванновских клеток окружена базальной мембраной. Выше изложено особенности строения мякотного периферического нервного волокна. Мякотные нервные волокна ЦНС построены сходным образом. Однако оболочка их образована не леммоцитами, а олигодендроцитами.
Насечки и перехваты в них отсутствуют, нет и базальных мембран. Нервные стволы нервы образованы пучками мякотных и безмякотных нервных волокон, которые объединяются соединительной тканью, образующей соединительнотканные оболочки. В нерве может быть множество волокон только мякотных только или безмякотных. Есть нервы, в которых встречаются и те и другие. Наружная оболочка нерва — эпиневрий - состоит из волокнистой соединительной ткани, объединяющей все пучки в составе нерва. Периневрий — соединительнотканная оболочка, окружающая каждый отдельный пучок нервных волокон.
Эндоневрий — рыхлая соединительная ткань между отдельными нервными волокнами. Эта ткань связывает отдельные нервные волокна в пучки, соединяясь с их базальной мембраной. Нервы образованы пучками нервных волокон, которые объединены соединительнотканными оболочками. Большинство нервов - смешанные, то есть включают афферентные и эфферентные нервные волокна. Периневриальный барьер необходим для поддержания гомеостаза в эндоневрии. Барьер контролирует транспорт молекул через Периневрий к нервным волокнам, предотвращает доступ в эндоневрий инфекционных агентов.
Периферический нерв содержит разветвленную сеть кровеносных сосудов. В эпиневрии и в наружной части периневрия содержатся артериолы и венулы, а также лимфатические сосуды. В эндоневрии проходят кровеносные капилляры. Периферический нерв иннервирован — имеет специальные нервные волокна. Тема 5. Нервные сети.
Соединение нервов между собой синапсы. Нейроны, как отдельные единицы нервной системы, функционируют не изолированно. Они соединены между собой и образуют единую сеть, которая передает возбуждение от рецепторов в ЦНС и от нее в различные органы рис. Специализированные контакты нейронов между собой, а также нейронов с клетками исполнительных органов, называются синапсами. Несмотря на разнообразие синапсов, в их строении имеются общие черты. В синапсе выделяют пресинаптическую и постсинаптическую мембраны и пространство между ними - синаптическую щель шириной от 2 до 30 нм.
Толщина каждой мембраны не превышает 5-6 нм. Пресинаптическая мембрана является продолжением поверхностной мембраны аксонального окончания. Она не сплошная, в ней имеются отверстия, через которые цитоплазма аксонального окончания сообщается с синаптическим пространством. Постсинаптическая мембрана менее плотная, в ней отсутствуют отверстия. Синаптические входы нейрона. Синаптические бляшки окончаний пресинаптичесиих аксонов образуют соединения на дендритах и теле соме - постсинаптического нейрона.
Схема выброски медиатора и процессов, происходящих в гипотетическом центральном синапсе. Конечные участки аксонов и дендритов в области синапса не имеют мякотной оболочки и расширены в пресинаптический мешочек. Мешочек характерен для синаптических пузырьков, имеющих диаметр 40-59 нм. В них содержится медиатор. В зависимости от типа выделяемого медиатора различают синапсы: а холинэргические — выделяют ацетилхолин; б адренэргические — выделяют норадреналин, дофамин катехоламины ; в серотонинэргические — выделяют серотонин; г пептидэргические — выделяют пептиды эндорфины, энкефалины и аминокислоты глицин, глутамат, ГАМК. В таких синапсах передача нервного импульса осуществляется при помощи химического вещества — медиатора.
Такие синапсы называются синапсами с химической передачей. При изменении мембранного потенциала в терминалях нейромедиаторы выходят в синаптическую щель через поры диаметром 4-5 нм, имеющиеся в пресинаптической мембране экзоцитоз и связываются со своими рецепторами в постсинаптической мембране, вызывая изменение мембранного потенциала постсинаптического нейрона. Основными медиаторами являются: 1. Ацетилхолин — один из первых выявленных медиатора. Он известен как «вещество блуждающего нерва» из-за своего воздействия на сердечную деятельность. Представляет собой наиболее распространенный медиатор ЦНС.
Аминокислота глицин, оказывающая тормозное действие на мотонейроны. Кислая аминокислота глутамат, является самым распространенным возбуждающим медиатором ЦНС. Адреналин, норадреналин и дофамин — представляют собой семейство медиаторов, передающих возбуждение или торможение в ЦНС, так и в периферической нервной системе. В пресинаптической части расположены синаптические пузырьки и митохондрии. Синаптические пузырьки содержат нейромедиатор. Постсинаптическая мембрана располагает рецепторами нейромедиатора и ионными каналами.
Синаптическая передача — сложный каскад событий. Она возможна при реализации ряда последовательных процессов: синтез нейромедиатора, его накопление и хранение в синаптических пузырьках вблизи пресинаптической мембраны, высвобождение нейромедиатора из нервной терминали, кратковременное взаимодействие нейромедиатора с рецептором, встроенным в постсинаптическую мембрану, разрушение нейромедиатора или захват его нервной терминалью. Многие неврологические и психические заболевания сопровождаются нарушениями синаптической передачи. Медиаторы связываются со специфическими рецепторами постсинаптической мембраны. Вокруг рецептора формируется область высокой концентрации вещества того или иного медиатора. Соответственно повышается или понижается вероятность открывания ионного канала, так как изменяется его проводимость.
В синапсах возбуждение проводится только в одном направлении, но гораздо медленней, чем по нервному волокну. Однако передача информации осуществляется исключительно точно. В некоторых синапсах синаптическая щель отсутствует и его структурной основой является плотный контакт. В таком синапсе возбуждение может передаваться без участия медиатора, так как мембраны клеток соприкасаются. Эти синапсы называются синапсами с электрической передачей. В синапсах такого строения пресинаптическая мембрана также имеет поры, но они в 5 раз меньше, чем в синапсах с химической передачей возбуждения.
Поры электрических синапсов являются межклеточными диффузионными каналами, соединяющими соприкасающиеся клетки. По структуре и локализации синапсы подразделяются на 3 группы: межнейронные, рецепторно — нейрональные и нейроэффкторные. Межнейронные синапсы подразделяются на аксодендритические, аксосоматические и аксо-аксональные. Межнейронные синапсы являются синапсами между двумя нейронами. Если аксон одного нейрона контактирует с дендритом другого постсинаптического нейрона, то такие синапсы называются аксодендритическими.
Он разделен на две симметричные половины: переднюю и заднюю борозды. По центру проходит спинномозговой канал, заполненный жидкостью — ликвором.
Вокруг спинномозгового канала расположено серое вещество. На срезе он имеет вид бабочки, образован телами нервных клеток. Спинной мозг снаружи покрывает белое вещество, состоит из отростков нейронов, образует проводящие пути. Поперечный срез спинного мозга Поперечный срез спинного мозга имеет боковые и передние рога. В задних находится ядро чувствительного нейрона, а в передних нейроны двигательного центра. В боковых рогах залегают рецепторы симпатической и парасимпатической системы. В спинном мозге различают 31 пару нервов.
Каждая из начинается двумя корешками, передними двигательными , задними чувствительными. На задних корешках располагаются тела чувствительных, называются нервными узлами. Каждая пара спинномозговых нервов отвечает за определенное действие. Спинной мозг выполняет несколько функций: Рефлекторную — осуществляется соматическими и вегетативными нервами; Проводниковую — осуществляется белым веществом нисходящих и восходящих проводящих путей; Головной мозг расположен в черепе.
Нервные импульсы поступают непосредственно к железам по 1) аксонам…
У высших животных и человека на фоне простых и сложных рефлексов также при посредстве нейронов образуются временные рефлекторные связи высшего порядка, известные под названием условных рефлексов И. Таким образом, всю нервную систему можно себе представить состоящей в функциональном отношении из трех родов элементов. Рецептор восприниматель , трансформирующий энергию внешнего раздражения в нервный процесс; он связан с афферентным центростремительным, или рецепторным нейроном, распространяющим начавшееся возбуждение нервный импульс к центру; с этого явления начинается анализ И. Кондуктор проводник , вставочный, или ассоциативный, нейрон, осуществляющий замыкание, т. Это явление есть синтез, который представляет, «очевидно, явление нервного замыкания» И. Поэтому И. Павлов называет этот нейрон контактором, замыкателем.
Эфферентный центробежный нейрон, осуществляющий ответную реакцию двигательную или секреторную благодаря проведению нервного возбуждения от центра к периферии, к эффектору. Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу мышца, железа. Поэтому этот нейрон называют также эффекторным. Рецепторы возбуждаются со стороны трех чувствительных поверхностей, или рецепторных полей, организма: 1 с наружной, кожной, поверхности тела экстероцептивное поле при посредстве связанных с ней генетически органов чувств, получающих раздражение из внешней среды; 2 с внутренней поверхности тела интероцептивное поле , принимающей раздражения главным образом со стороны химических веществ, поступающих в полости внутренностей, и 3 из толщи стенок собственно тела проприоцептивное поле , в которых заложены кости, мышцы и другие органы, производящие раздражения, воспринимаемые специальными рецепторами.
Тесты 34-01. Какой элемент соматической рефлекторной дуги полностью расположен в спинном мозге? А двигательный нейрон.
Структура и функции рефлекторной дуги. Строение рефлекторной дуги мигательного рефлекса. Общая схема строения рефлекторной дуги. Рефлекторная дуга безусловного мигательного рефлекса. Нервная система Нейрон. Структура двигательного нейрона. Нейроны центральной нервной системы. Нервная регуляция. Нервная регуляция жизнедеятельности организма. Система органов нервной регуляции. Нервная регуляция осуществляется. Механизм передачи возбуждения в возбуждающих синапсах, медиаторы.. Синапс и нейромедиаторы. Медиаторы синапсов. Возбуждающие и тормозящие синапсы. Аксоны и дендриты спинного мозга. Дендрит двигательного нейрона. Нейрон Аксон дендрит. Этапы синаптической передачи импульса. Этапы синаптической передачи в химическом синапсе. Механизм синаптической передачи нервного импульса через синапс. Рефлекторный механизм деятельности нервной системы. Рефлекторный принцип функционирования ЦНС. Рефлекс нервная система. Рефлекторный принцип деятельности нервной системы человека.. Роль нейромедиаторов в передаче нервных импульсов. Химическая передача нервного импульса. Симпатическое влияние на сердце. Влияние симпатической нервной системы на сердце. Влияние симпатической системы на сердце. Влиянием симпатических нервов на деятельность сердца. Состав простейшей рефлекторной дуги. Соматическая рефлекторная дуга функции. Звено рефлекторной дуги выполняет функции. Нервная клетка Нейрон. Аксон отросток нервной клетки. Дендрит чувствительного нейрона. Спинальные рефлексы: Миотатический рефлекс, сухожильны. Рефлекс с проприорецепторов скелетных мышц схема. Схема миотатического рефлекса. Сокращение и растяжение мышц. Преобразования раздражения в нервные импульсы происходит в. Раздражение в нервный Импульс. В преобразования раздражителя в нервный Импульс. Зрительный нерв образован аксонами клеток. Что иннервируют зрительные нервы. Зрительный нерв иннервирует мышцы. Рефлексы спинного мозга Аксон рефлекс. Рефлексы спинного мозга коленный рефлекс. Вставочный Нейрон коленного рефлекса. Двигательный Нейрон функции. Строение рефлекторной дуги коленного рефлекса. Схема рефлекторной дуги бицепс-рефлекса. Рефлекторная дуга разгибательного рефлекса рефлекса схема. Рефлекторная дуга коленного рефлекса образована. Схема передачи импульса нейрона. Поверхностная мембрана нервной клетки в состоянии покоя снаружи. Распределение зарядов и ионов на мембране нервной клетки. Нервный Импульс потенциал действия. Суммация возбуждения. Суммация ВПСП. Временная суммация в нервных центрах схема. Суммация в ЦНС. Нейрон структурная и функциональная единица. Нервная регуляция функций организма.
Для осуществления его работы используется энергия, получаемая при расщеплении АТФ. Роль АТФ в механизме мышечного сокращения. Миозин обладает свойствами фермента АТФ-азы. При расщеплении АТФ освобождается около 10 000 кал. Под влиянием АТФ изменяются и механические свойства миозиновых нитей - резко увеличивается их растяжимость. Полагают, что расщепление АТФ является источником энергии, необходимой для скольжения нитей. Кроме того, энергия АТФ используется для работы кальциевого насоса в ретикулюме. В соответствии с этим ферменты, расщепляющие АТФ, локализуются в этих мембранах, а не только в миозине. Ресинтез АТФ, непрерывно расщепляющейся в процессе работы мышц, осуществляется двумя основными путями. КФ содержится в мышце в значительно больших количествах, чем АТФ, и обеспечивает ее ресинтез в течение тысячных долей секунды. Однако при длительной работе мышцы запасы КФ истощаются, поэтому важен второй путь - медленный ресинтез АТФ, связанный с гликолизом и окислительными процессами. Окисление молочной и пировиноградной кислот, образующихся в мышце во время ее сокращения, сопровождается фосфорилированием АДФ и креатина, то есть ресинтезом КФ и АТФ. Нарушение ресинтеза АТФ ядами, подавляющими гликолиз и окислительные процессы, ведет к полному исчезновению АТФ и КФ, вследствие чего кальциевый насос перестает работать. Теплообразование при сократительном процессе. По своему происхождению и времени развития теплообразование это делится на две фазы. Первая во много раз короче второй и носит название начального теплообразования. Она начинается с момента возбуждения мышцы и продолжается в течение всего сокращения, включая и фазу расслабления. Вторая фаза теплообразования происходит в течение нескольких минут после расслабления, и носит название запаздывающего , или восстановительного теплообразования. В свою очередь начальное теплообразование может быть разделено на несколько частей - тепло активации, тепло укорочения, тепло расслабления. Тепло, образующееся в мышцах, поддерживает температуру тканей на уровне, обеспечивающем активное протекание физических и химических процессов в организме. Виды сокращений. В зависимости от условий, в которых происходит сокраще- ние, различают два его типа - изотоническое и изометрическое. Изотоническим называется такое сокращение мышцы, при котором ее волокна укорачиваются, но напряжение остается прежним. Примером является укорочение без нагрузки. Изометрическим называется такое сокращение, при котором мышца укорачиваться не может когда ее концы неподвижно закреплены. В этом случае длина мышечных волокон остается неизменной, но напряжение их растет подъем непосильного груза. Естественные сокращения мышц в организме никогда не бывают чисто изотоническими или изометрическими. Одиночное сокращение. Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное сокращение мышцы. В нем различают две основные фазы: фазу сокращения и фазу расслабления. Сокращение мышечного волокна начинается уже во время восходящей ветви ПД. Длительность сокращения в каждой точке мышечного волокна в десятки раз превышает продолжительность ПД. Поэтому наступает момент, когда ПД прошел вдоль всего волокна и закончился, волна же сокращения охватила все волокно и оно продолжает быть укороченным. Это соответствует моменту максимального укорочения или напряжения мышечного волокна. Сокращение каждого отдельного мышечного волокна при одиночных сокращениях подчиняется закону "все или ничего". Это означает, что сокращение, возникающее как при пороговом, так и при сверхпороговом раздражении, имеет максимальную амплитуду. Величина же одиночного сокращения всей мышцы зависит от силы раздражения. При пороговом раздражении сокращение ее едва заметно, с увеличением же силы раздражения оно нарастает, пока не достигнет известной высоты, после чего уже остается неизменной максимальное сокращение. Это объясняется тем, что возбудимость отдельных мышечных волокон неодинакова, и поэтому только часть их возбуждается при слабом раздражении. При максимальном сокращении они возбуждены все. Скорость проведения волны сокращения мышцы совпадает со скоростью распространения ПД. Суммация сокращений и тетанус. Если в эксперименте на отдельное мышечное волокно или на всю мышцу действуют два быстро следующих друг за другом сильных одиночных раздражения, то возникающее сокращение будет иметь большую амплитуду, чем максимальное одиночное сокращение. Сократительные эффекты, вызванные первым и вторым раздражением, как бы складываются. Это явление носит название суммации сокращений. Для возникновения суммации необходимо, чтобы интервал между раздражениями имел определенную длительность - он должен быть длиннее рефрактерного периода, но короче всей длительности одиночного сокращения, чтобы второе раздражение подействовало на мышцу раньше, чем она успеет расслабиться. При этом возможны два случая. Если второе раздражение поступает, когда мышца уже начала расслабляться, на миографической кривой вершина второго сокращения будет отделяться от первого западением. Если же второе раздражение действует, когда первое сокращение еще не дошло до своей вершины, то второе сокращение как бы сливается с первым, образуя вместе с ним единую суммированную вершину. Как при полной, так и при неполной суммации ПД не суммируются. Такое суммированное сокращение в ответ на ритмические раздражения называются тетанусом. В зависимости от частоты раздражения он бывает зубчатый и гладкий. После прекращения тетанического раздражения волокна вначале расслабляются не полностью, и их исходная длина восстанавливается лишь по истечении некоторого времени. Это явление называется посттетанической , или остаточной контрактурой. Она связана с тем. Если после достижения гладкого тетануса еще больше увеличивать частоту раздражения, то мышца при какой-то частоте начинает вдруг расслабляться. Это явление называется пессимумом. Он наступает тогда, когда каждый следующий импульс попадает в рефрактерность от предыдущего. Моторные единицы. Мы рассмотрели общую схему явлений, лежащих в основе тетанического сокращения. Для того, чтобы более подробно познакомиться с тем, как этот процесс совершается в условиях естественной деятельности организма, необходимо остановиться на некоторых особенностях иннервации скелетной мышцы двигательным нервом. Каждое моторное нервное волокно, являющееся отростком двигательной клетки передних рогов спинного мозга альфа-мотонейрона , в мышце ветвиться и иннервирует целую группу мышечных волокон. Такая группа называется моторной единицей мышцы. Количество мышечных волокон, входящих в состав моторной единицы, вариирует в широких пределах, но их свойства одинаковы возбудимость, проводимость и др. Вследствие того, что скорость распространения возбуждения в нервных волокнах, иннервирующих скелетные мышцы, очень велика, мышечные волокна, составляющие моторную единицу, приходят в состояние возбуждения практически одновременно. Электрическая активность моторной единицы имеет вид частокола, в котором каждому пику соответствует суммарный потенциал действия многих одновременно возбужденных мышечных волокон. Следует сказать, что возбудимость различных скелетных мышечных волокон и состоящих из них моторных единиц значительно вариирует. Она больше в т. При этом возбудимость обоих ниже возбудимости нервных волокон, их иннервирующих. Это зависит от того, что в мышцах разница Е0-Е к больше, и, значит, реобаза выше. ПД достигает 110-130 мв, длительность его 3-6 мсек. Максимальная частота быстрых волокон - около 500 в сек. Длительность ПД в медленных волокнах примерно в 2 раза больше, продолжительность волны сокращения - в 5 раз больше, а скорость ее проведения в 2 раза медленнее.