Рассказываем, как искусственный интеллект уже применяется в медицине и на какие вызовы и задачи отечественного здравоохранения он отвечает. Главная проблема будущего искусственного интеллекта в медицине заключается в том, насколько хорошо могут быть обеспечены конфиденциальность и безопасность данных. Искусственный интеллект (ИИ) применяется во многих отраслях медицины и кажется, что его преимущества по сравнению с человеком очевидны. Подкомитет «Искусственный интеллект в здравоохранении» (ПК 01). Искусственный интеллект (ИИ) отлично зарекомендовал себя в отечественной медицине.
Полная роботизация: как искусственный интеллект помогает врачам
Искусственный интеллект (ИИ) в медицине — использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе сложных медицинских данных. Диагнозы уже ставит искусственный интеллект, мгновенно анализируя все обследования пациента. В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении. Влияние Искусственного интеллекта в области медицины увеличивается с каждым годом. Роль искусственного интеллекта в генетической диагностике Искусственный интеллект (ИИ) — это область компьютерных наук, которая занимается разработкой компьютерных систем, способных самостоятельно обучаться и принимать решения на основе полученных данных, что.
Роман Душкин: «Медицина — это область доверия»
В 2016 году, к примеру, искусственный интеллект, разработанный Microsoft, достиг уровня человека в распознавании речи, а за последние три года мы совершили несколько исторических прорывов в достижении паритета между компьютерами и людьми в переводе и понимании естественного языка. Алгоритмы и методы обучения ИИ постоянно совершенствуются, и этот прогресс уже находит выражение в конкретных решениях и в медицинской сфере. Уже сегодня ИИ-сервисы могут анализировать медицинские изображения и находить на них настолько ранние признаки заболевания, которые врач пока не может заметить. К примеру, проект InnerEye помогает онкологам-радиологам повышать эффективность лечения различных типов рака, ускоряя работу со снимками внутренних органов и тканей пациентов. Другой недавний пример — это использование суперкомпьютера IBM Watson в Токио, чтобы уточнить диагноз 60-летнего пациента с лейкемией и назначить успешное лечение, сопоставив генетические данные миллионов исследовательских работ.
И таких кейсов становится все больше: так, белорусский стартап DBrain вместе с американской компанией LigoLabs с помощью технологий ИИ и блокчейн повышают точность диагностики онкологических заболеваний. Подобные технологии используются и в России — российская платформа Botkin. AI позволяет выявлять онкологические заболевания легких благодаря анализу медицинских изображений с помощью технологий искусственного интеллекта в облаке Microsoft Azure. Решение уже успешно внедрено в нескольких регионах страны.
В России также есть цифровая гистологическая лаборатория UNIM, которая исследует гистологические материалы при помощи нейронной сети для постановки верного диагноза. Помимо этого, большой потенциал существует у использования ИИ в разработке и тестировании новых лекарств. Одна из крупнейших фармацевтических компаний — Novartis — совместно с Microsoft открыла ИИ-лабораторию, чтобы использовать "умные" алгоритмы в создании лекарственных препаратов. Подобными проектами занимается и Google: в 2018 году DeepMind смог лучше биологов предсказать форму свертывания белка.
Особое внимание уделяется радиологии — использованию нейросетей для анализа рентгеновских снимков. Google использовали алгоритмы для интерпретации снимков грудной клетки, чтобы поставить 14 различных диагнозов, от пневмонии до гипертрофии сердца и коллапса легкого. DNN также способны диагностировать отдельные виды рака , переломы, кровоизлияния, ретинопатию, поражения кожи и множество других заболеваний. Алгоритмы могут улучшить работу дерматологов, кардиологов, офтальмологов и даже психотерапевтов, позволяя отслеживать развитие депрессии. Примеры применения ИИ в здравоохранении на протяжении жизни человека Проблема состоит в том, что большинство исследований и отчетов все еще существуют только в виде препринта. Они не опубликованы и не проверены рецензентами. В препринтах проверка работоспособности алгоритмов осуществляется с точки зрения точности, что еще не равно клинической эффективности. Эффективность подтверждается с помощью недешевых клинических испытаний.
Нейронные сети для пациентов Алгоритмы, которые пациенты могут использовать самостоятельно, развиваются медленнее, чем те, которые используют клиницисты. Датчики на часах определяют частоту сердечных сокращений пользователя в состоянии покоя и при физической нагрузке, и когда происходит сильное отклонение от ожидаемого, пользователю выдается предупреждение о записи ЭКГ через часы, результаты которого затем интерпретирует алгоритм.
Помогает выявлять рак на ранней стадии. ИИ уже умеет диагностировать рак легких, анализируя большие фотографии легочных тканей. Также есть разработки ИИ для диагностики рака кожи по фотографиям. Об этом я подробнее расскажу ниже. Используется в британских больницах для УЗИ-обследования беременных. Система ScanNav анализирует снимки плода, используя большую базу данных. В этой базе более 350 тысяч изображений плодов с различными патологиями.
Система помогает получить информацию о возможных отклонениях в развитии плода. ИИ также используется для диагностики ОРВИ и пневмонии, что помогает врачам быстро назначать правильное лечение. Сейчас на базе ИИ много приложений, помогающих в управлении здоровьем. Одно из них - BionMax. ИИ помогает расшифровать анализы Сегодня есть технологии, благодаря которым люди сами могут следить за здоровьем. Например, есть приложения, которые отслеживают пульс, давление и другие важные показатели. Также существуют сервисы, где можно расшифровать результаты медицинских анализов. Один из них — BionMax. Купить рекламу Отключить BionMax — это возможность расшифровать результаты медицинских анализов прямо в телефоне.
Сервис работает на основе искусственного интеллекта и сотрудничает со специалистами из лаборатории Lab4U. BionMax предлагает загрузить результаты медицинских анализов и ответить на вопросы по состоянию здоровья и симптомам. После этого сервис анализирует полученные данные пациента и дает индивидуальные советы по приему витаминов и минералов, а также по сдаче дополнительных анализов. Также в приложении скоро появятся программы сбалансированного питания и дневник тренировок. С BionMax заботиться о здоровье легко! Читайте другую полезную статью об анализах, подготовленную специалистами из BionMax:.
Совокупное использование сервисов MVS Platform и МИС обеспечит администрацию клиники всеми необходимыми инструментами для качественного менеджмента. Адрес: г. Санкт-Петербург, Левашовкий пр-кт, д. А, ком.
Искусственный интеллект в помощь врачам и пациентам
Технологии на базе искусственного интеллекта становятся все более востребованными в медицине и здравоохранении. Специалисты с помощью искусственного интеллекта поставили свыше 8 миллионов диагнозов. В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении. Искусственный интеллект или ИИ относится к моделированию человеческого интеллекта в машинах, предназначенных для того, чтобы мыслить и учиться подобно людям. Минздрав рассказал о распространении искусственного интеллекта для медицины в России.
Искусственный интеллект в помощь врачам и пациентам
Искусственный интеллект (ИИ) применяется во многих отраслях медицины и кажется, что его преимущества по сравнению с человеком очевидны. Таким образом, применение искусственного интеллекта в медицине стало ведущим трендом здравоохранения. Искусственный интеллект в здравоохранении уже способствует научным открытиям и активно его меняет. На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России.
«Россия 1» 27.11.2023 «Утро России». «Искусственный интеллект в медицине: достижения и перспективы»
Ускоренная разработка медикаментов Технологии ИИ ускоряют процессы создания лекарственных препаратов, традиционно занимающие много времени и требующие внушительных финансовых вложений. Благодаря анализу сложных биохимических взаимодействий алгоритмы машинного обучения способны мгновенно определять лучшие составы лечебных средств. Ускорение процессов максимально важно для адаптации в условиях кризисов в здравоохранении и быстрой разработки эффективных методов лечения новых болезней. Мониторинг за психическим здоровьем Традиционные модели здравоохранения часто игнорируют факторы психического здоровья пациентов, которые становятся одними из самых важных благодаря возможностям ИИ. Уникальные приложения позволяют заблаговременно выявлять психические отклонения за счет комплексного анализа речевых шаблонов, текстовых сообщений, социальной активности человека. Такие инструменты очень важны для своевременного вмешательства и решения психических нарушений до начала обострения. Улучшение обучения специалистов Возможности ИИ становятся революционными в области обучения медиков. Благодаря симуляторам виртуальной реальности создается максимально реалистичная и захватывающая среда обучения.
VR-симуляция облегчают отработку сложных процедур.
Первого российско-американского конкурса стартапов Сбер500Startups Первый поставщик специализированного сервиса видеоаналитики для здравоохранения Финалист конкурса "Новатор Москвы" на медицинские изделия по 3-му классу риска В 2019 году команда "Третье Мнение" победила в акселерационной программе Сбер500Startups и продолжила развитие в Кремниевой долине США В 2020 году сервис "Третье Мнение. ИИ-мониторинг" стал первым в России сервисом видеоаналитики для медучреждений Финалист конкурса 2020 года в номинации "Меняющие реальность" Первое регистрационное удостоверение для модуля анализа рентгенологических исследований Лидер Эксперимента по использованию инновационных технологий В области компьютерного зрения для анализа изображений и дальнейшего применения в системе здравоохранения города Москвы по направлению КТ COVID-19 Сервисы "Третье Мнение" победили в акселераторе «Будущее здравоохранения» Медтех-центра Москвы и «МЕДСИ» Победитель акселератора медицинских стартапов Future Healthcare Партнеры.
Технология была открыта в 1987 году во время изучения кишечной палочки Escherichia coli. Ученые обнаружили в её ДНК странные повторяющиеся последовательности, но не смогли выяснить их предназначение. Бактерии производят специальные ферменты, когда пытаются бороться с вирусами. Это помогает бороться с будущими вирусными атаками. Бактерия использует сохраненный генетический материал и производит белки Cas9, которые способны при совпадении генов с геном вируса быстро его нейтрализовать.
По той же схеме, белок ищет совпадающий генетический материал и разрезает его вне зависимости от того, принадлежит он бактерии, животному или человеку. Например, в сельском хозяйстве технологию используют для изменения свойств продуктов: можно удалить из арахиса ген, который вызывает аллергическую реакцию, можно создавать необычные сорта.
Первого российско-американского конкурса стартапов Сбер500Startups Первый поставщик специализированного сервиса видеоаналитики для здравоохранения Финалист конкурса "Новатор Москвы" на медицинские изделия по 3-му классу риска В 2019 году команда "Третье Мнение" победила в акселерационной программе Сбер500Startups и продолжила развитие в Кремниевой долине США В 2020 году сервис "Третье Мнение. ИИ-мониторинг" стал первым в России сервисом видеоаналитики для медучреждений Финалист конкурса 2020 года в номинации "Меняющие реальность" Первое регистрационное удостоверение для модуля анализа рентгенологических исследований Лидер Эксперимента по использованию инновационных технологий В области компьютерного зрения для анализа изображений и дальнейшего применения в системе здравоохранения города Москвы по направлению КТ COVID-19 Сервисы "Третье Мнение" победили в акселераторе «Будущее здравоохранения» Медтех-центра Москвы и «МЕДСИ» Победитель акселератора медицинских стартапов Future Healthcare Партнеры.
Машины лечат людей: как нейросети используют в российской медицине
При этом важно, что она ведется на основе реального потока исследований и врачи постоянно предоставляют обратную связь по работе алгоритмов. Разработчики могут видеть показатели качества своих продуктов уже на этапе тестирования. Также созданы равные условия для всех участников: постоянно обновляется каталог решений на базе искусственного интеллекта, ежемесячно составляется лидерборд сервисов. С этого года Москва первой в стране ввела специальный тариф в рамках ОМС на анализ результатов профилактических маммографических исследований с помощью систем искусственного интеллекта. Сейчас алгоритмы доступны рентгенологам 150 медицинских учреждений, в том числе детских. Искусственный интеллект помогает находить на снимках лучевых исследований признаки рака легкого, COVID-19, остеопороза позвоночника, аневризмы аорты, ишемической болезни сердца, инсульта, легочной гипертензии, гидроторакса, а также рака молочной железы, грыж позвоночника, плоскостопия и других заболеваний.
Наша общая задача, чтобы врач непосредственно на рабочем месте в своей медицинской информационной системе получал лучшие и самые эффективные решения. Алексей Кашпанов заместитель руководителя отдела продаж и развития компании «Нетрика Медицина» Один из примеров внедрения ИИ-решений в практическое здравоохранение —центр лучевой диагностики, созданный в Архангельской области. Специалисты центра проверяют снимки, полученные после маммографии и других исследований, с использованием технологий искусственного интеллекта.
Это позволяет медицинским учреждениям, в которых выполнялись исследования, получать второе мнение в сложных ситуациях. Работу центра в числе других информационных систем поддерживает сервис «N3. Обмен данными инструментальных исследований».
Изображение сгенерировано нейросетью Midjourney В настоящее время, ИИ в медицине представлен двумя типами решений: медицинскими анализ изображений, данных электронной медкарты, видеопотока и немедицинскими голосовые сервисы оптимизации работы центров обработки звонков, сервисы видеоаналитики для обеспечения безопасности пациента, чат-боты для первичного сбора данных о пациенте перед записью к врачу. Эксперты отмечают, что выбор проектов для внедрения должен базироваться на точности инструмента, измеримом эффекте, качестве информационной защиты и стоимости продукта. Необходимость финансирования со стороны государства для отрасли, сфокусированной на проектах с ИИ, также подчеркивается собеседниками «Ъ».
Однако, даже с ростом использования ИИ, встречаются проблемы. Так, совсем недавно Росздравнадзор впервые приостановил использование системы анализов Botkin.
Российская компания «Третье мнение» создала умную видеоаналитику на базе компьютерного зрения — области искусственного интеллекта, которая может обнаружить, отследить и проанализировать увиденное. ИИ-мониторинг уже работает в частных и государственных клиниках: он распознаёт движения пациентов и предупреждает медперсонал в случае угрозы, например падения. Так работникам поликлиник не нужно постоянно следить за видеокамерами, чтобы быть в курсе состояния больных. Видеоаналитика также делает наблюдение менее навязчивым.
Сейчас компания развивает технологию для ухода на дому. Голосовой помощник Яндекса Алиса тоже стремится помогать больным. В Йошкар-Оле для неё разработали медсестёр Алсу и Снежану: при их запуске можно узнать расписание приёма врачей в двух больницах города. Американская компания IBM предлагает клиникам аналогичное решение — чат-бота watsonx Assistant для записи к врачу. Как и навыки Алисы, он снимает административную нагрузку с медработников и позволяет больным записаться на приём не выходя из дома. Помощь людям с особенностями здоровья Искусственный интеллект даёт возможность видеть, слышать и даже двигаться.
Компания Intel создала инвалидные кресла, которые управляются при помощи мимики. За каждым из выражений лица владелец может закрепить ту или иную команду, а встроенные камеры будут их распознавать. Эта разработка решила проблему людей с параличом выше пояса, которые не могли управлять обычными колясками с рычагом. Система распознаёт до 10 выражений лица, каждому из которых пользователь задаёт команду. Для этого им нужно выбрать интенсивность движения на планшете, который передаст сигналы кардиостимуляторам и вживлённым в спинной мозг электродам. Технология находится на стадии доработки и тестирований.
Она не сможет излечить человека от паралича, так как не восстанавливает повреждённые участки спинного мозга, но значительно расширит возможности парализованного в передвижении и сделает его жизнь более насыщенной. Лечение рака Искусственный интеллект оказался незаменим в исследованиях ДНК — там, где машинное зрение может распознать объекты, недоступные человеческому глазу.
Искусственный интеллект в медицине: главные тренды в мире
Искусственный интеллект для визуализации и обработки ренгенологических изображений 10. HUB Telemed Телемедицина Телемедицинская платформа для врачей с возможностью выбора метода описания лучевых исследований на основе ИИ Применение искусственного интеллекта в медицинских нейросетях предлагает обещающие перспективы для будущего здравоохранения в России. Использование этих систем может значительно улучшить диагностику, ускорить процесс лечения и сделать медицинские услуги более доступными и персонализированными для пациентов.
Разрабатывать и внедрять передовые решения также помогает федеральный проект «Искусственный интеллект» нацпроекта «Цифровая экономика». В ходе его реализации с 2021 года Фондом содействия инновациям запущена линейка эффективных инструментов. Такой комплексный подход позволяет не терять взаимодействие с перспективными командами и стимулирует приток новых идей и решений», — рассказал ИА Регнум генеральный директор Фонда содействия инновациям Сергей Поляков. По его словам, о востребованности мер поддержки свидетельствует статистика поступающих заявок: по линии федпроекта «Искусственный интеллект» Фондом уже поддержано более 800 проектов, каждый десятый из которых связан с медициной. Предложенные инноваторами решения направлены на предупреждение развития конкретных заболеваний или патологических состояний, что, в свою очередь, ведёт к снижению заболеваемости населения и повышению трудоспособности», — подчеркнул Сергей Поляков. Уже на этапе клинических испытаний врачебное сообщество проявило к данной системе большой интерес.
Онлайн-доступ для тестирования программного обеспечения получили более 500 врачей.
В эту отрасль пришли ИТ-гиганты, телеком и финансовые организации. Еще одна важная сфера применения ИИ - разработка новых лекарственных препаратов. Обычно на этапе ранней разработки в пробирках синтезируют примерно 10 тысяч препаратов, которые прогоняют через серию тестов, чтобы выбрать 250 препаратов, которые затем отправят на доклинические испытания. Благодаря ИИ большая часть рутинной работы с математическими моделями может быть автоматизирована С ИИ синтезировать все препараты вручную не требуется. А дальше другие программы определяют - правильно ли он их сгенерировал.
Из миллиона выбирается 50 самых лучших, и уже эти 50 мы синтезируем и проверяем". По словам специалиста, если раньше этап ранней разработки занимал 36 месяцев, то благодаря ИИ он может сократиться до 10-12 месяцев. Помимо ускорения процесса ИИ также увеличивает вероятность получения нужного препарата. Третья его задача - уменьшение стоимости разработки. Следующая цель - использовать ИИ на самом продолжительном и дорогом этапе разработки: клинических исследованиях. Думаю, что в течение 10-15 лет мы к этому придем", - подытожил Роман Драй.
На закупку таких решений было направлено 368,8 млн рублей из федерального бюджета и 79,5 млн рублей — из региональных. В 2024 году в практическом здравоохранении каждого региона должны работать по три решения на базе искусственного интеллекта. Директор по акселерации фонда «Сколково» Юлия Щеглова представила доклад, посвященный мерам поддержки стартапов, разрабатывающих ИИ-решения в здравоохранении. Так, участниками конференции стали несколько компаний-разработчиков, получивших грантовую поддержку в рамках программ фонда. Важной темой дискуссий стали расхождения в результатах работы над аналогичными задачами врачей и ИИ, их выявление и корректировка, а также недостаток в публичном поле исследований эффективности тех или иных ИИ-решений. Решения на базе ИИ регионы сегодня рассматривают уже не в качестве любопытной новинки, а как еще один компонент системы здравоохранения, который должен решать конкретные задачи и обладать доказанной эффективностью.
Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек
Ещё один не менее важный результат – активное развитие технического регулирования систем искусственного интеллекта для клинической медицины. В 2024 году влияние технологий искусственного интеллекта (ИИ) на здравоохранение будет более глубоким и масштабным, чем когда-либо прежде. Статья Искусственный интеллект в медицине России, Искусственный интеллект в медицине, Искусственный интеллект в радиологии, AI-технология Сбера прогнозирует развитие злокачественных новообразований, «Синтелли» представила российскую. Решения с использованием искусственного интеллекта в медицине внедряют 70 российских регионов, сообщил заместитель министра здравоохранения РФ Павел Пугачев, выступая на форуме "Биотехмед". Статья Искусственный интеллект в медицине России, Искусственный интеллект в медицине, Искусственный интеллект в радиологии, AI-технология Сбера прогнозирует развитие злокачественных новообразований, «Синтелли» представила российскую.
Искусственный интеллект в медицине
Мы активно развиваем искусственный интеллект в медицине. О том, как искусственный интеллект внедряют в сфере медицины, рассказал директор АИИ Роман Душкин. Рассматриваем применение ИИ в здравоохранении на примере интеллектуальной системы «Джейн», которая помогает врачам ставить верные диагнозы. Статья Искусственный интеллект в медицине России, Искусственный интеллект в медицине, Искусственный интеллект в радиологии, AI-технология Сбера прогнозирует развитие злокачественных новообразований, «Синтелли» представила российскую. Провалы искусственного интеллекта в медицине происходят потому, что это вовсе не интеллект, а схожий с системой распознавания лиц алгоритм, сказал газете ВЗГЛЯД руководитель экспертного совета ЭИСИ (Экспертный институт социальных исследований) Глеб.
Искусственный интеллект в здравоохранении внедряют 70 регионов России
Это подтвердила и врач МРТ Ольга Козловская, отметив, что ИИ уже сейчас становится хорошим помощником рентгенологам благодаря автоматизации рутинной работы и поддержке врачебных решений. Сопредседатель Всероссийского союза пациентов, член СПЧ при Президенте РФ Ян Власов уверен, что в условиях серьезной проблемы дефицита кадров в здравоохранении, когда у врачей не хватает времени на работу с пациентом, ИИ сможет технологически облегчить жизнь медперсоналу за счет поставки первично обработанного объема информации. Он определил роль ИИ в медицине как инструмента, помогающего врачу не только в оптимизировать время на рутинные операции, но и избегать или минимизировать врачебные ошибки. Кроме того, стоит вопрос стандартизации этой технологии: ИИ потребуется признавать медицинской программой для того, чтобы работать со здоровьем населения». Участник дискуссии, доктор медицинских наук, профессор Владислав Шафалинов считает, что в ситуации с применением ИИ в существующей системе здравоохранения первичным должен быть вопрос безопасности , а уже потом — эффективности.
Согласно оценкам Минздрава, планируется, что в текущем году каждый регион приобретет как минимум одно медицинское устройство с использованием искусственного интеллекта. К 2024 году этот показатель планируется увеличить до не менее трех медицинских изделий с применением технологий ИИ. Пока к работе ИИ есть вопросы, к робокошкам их нет. Пилотный проект по внедрению милых роботов-курьеров на помощь медицинскому персоналу и посетителям стартовал в трёх больницах столицы.
А повышение уровня качества обслуживания в медицине влияет и на улучшение показателей здоровья населения всей нашей страны. Что, конечно же, особенно актуально в последние два года, когда идёт борьба с коронавирусом. Это стало очевидно уже в 2020 году, и касалось не только напрямую сферы медицины, но и смежных областей. Стали очевидны такие проблемы, которые в обычной обстановке и со стандартной нагрузкой не так бросались в глаза. И в то же время пандемия стала наиболее эффективным стимулом для развития и внедрения инновационных методов решения различных задач. Разумеется, максимум внимания в исследовательской работе стало уделяться таким направлениям, которые целиком либо в какой-то мере были направлены на борьбу с пандемией, на снижение нагрузки врачей, на оптимизацию здравоохранения. И, конечно же, отдельно стоит упомянуть разработки, нацеленные на предиктивную аналитику и моделирование сценариев развития событий с учётом вероятности возникновения иных эпидемий. Подготовка к таким событиям становится залогом успеха в борьбе с ними. Существуют ли какие-то разработки, позволяющие в будущем действовать на упреждение и успешнее бороться с такими проблемами, как SARS-CoV-2? Столкнувшись с трудностями борьбы с коронавирусом, мы в очередной раз заострили внимание исследователей на важности аналитики, в частности, аналитики эпидемиологической обстановки в мире.
Модератор сессии, директор по проектной деятельности ассоциации «Национальная база медицинских знаний» Андрей Алмазов спросил у директора Института перспективных исследований мозга МГУ им. Анохина", акад. РАН Константина Анохина, как работает мозг и что такое интеллект. Первая - это развитие таких технологий, которые меняют любую профессию, в том числе и медицину. Об этом надо знать. Вторая - экзистенциальная. Можно прожить всю жизнь, занимаясь своей профессией, не зная ничего об этом. Но, если перед смертью задаться вопросом: "Зачем мы жили?