Новости что такое анодирование

Анодирование можно определить как экологически чистый электрохимический процесс, который заключается в создании оксидного слоя на поверхности обрабатываемого металла.

Технология анодирования металла, способы покрытия

Анодирование (техническая информация) Что такое анодированная металлическая поверхность. Название анодирования носит процесс, протекающий при использовании электролита и электрического тока различной величины и позволяющий получить на изделии прочную оксидную пенку.
Анодированный алюминий, полученный в домашних условиях Холодное анодирование характеризуется скоростью образования окисной пленки: она гораздо выше, чем скорость растворения металла с внешней стороны.
Анодирование алюминия | Re][miLL Цель этой статьи — глубоко изучить принцип процесса анодирования алюминия и его рабочий механизм, чтобы обеспечить четкое понимание и руководство для исследователей в инженерных и производственных областях.

Какие преимущества дает анодирование алюминия?

Качество анодировки можно проверить следующим образом: по анодированной поверхности нужно провести черту химическим карандашом. Если черта не смоется проточной водой, то процедура выполнена хорошо. Анодирование переменным током Если анодировать деталь не постоянным током, как описано выше, а переменным, то все подготовительные и заключительные операции нужно проводить так, как уже было описано. Различие состоит в том, что анодироваться должны сразу две детали. Если есть всего одна деталь, то в качестве второго электрода нужно использовать болванку или лист из алюминия. При переменном напряжении 10-12 В можно добиться такой же плотности тока, как и при постоянном токе. Время анодирования при этом составляет 25-30 минут. При анодировании деталь можно окрасить. Делается это в растворе анилинового красителя.

В итоге сперва попробовал на 35град, деталь стала окрашиваться, но не насыщено, поднял температуру до 40град, окраска прошла успешно. Первый опыт окраски был в растворе красителей для картриджа, эффект нулевой, потом попробовал в анилиновых, деталь окрасилась хорошо. Первые эксперименты проводились на кругляшке из Д16Т и подставке под эл.

Чем Чище поверхность детали, тем более яркий и насыщенный цвет получается в итоге. Второй опыт был над ручкой тормоза от велосипеда, предварительно с ручки была снята заводская анодировка и она отполирована до "зеркала". Полированная до зеркала деталь дала более насыщенный цвет.

Следующим подопытным были дропы от велосипеда, предоставленные irazor Исходное изделие с заводской анодировкой. Они же со снятой анодировкой, снимал долгой выдержкой в NaOH Одной из проблем стало то, что в этих деталях нет резьбовых соединений, в которые можно было бы вкрутить токоподвод, проконсультировавшись со Старшими товарищами по анодировке, были сделаны токоподводы в виде согнутой проволоки вставленной в отверстия, получается своего рода Подпружиненный контакт, да, в местах контакта будет непрокрас, так что выбираем наиболее незаметные места, в данном случаи отверстия являются крепёжными и будут закрытыми. Так же не забываем, если в детали имеются полости, то необходимо располагать деталь так, чтобы в этих полостях не происходило скопление пузырьков и как следствие вытеснение раствора и отсутствие анодного покрытия.

По 2 подвеса на деталь.

Этот процесс окрашивания алюминия дает желаемый цвет, когда анодирование проводится в ванне. Этот процесс дает алюминию более стойкое к истиранию покрытие, но недостатком является стоимость: просто требуется гораздо больше электроэнергии, что делает его более дорогим вариантом. Электролитическая окраска. Этот вид обработки придает цвет алюминиевой детали, потому что процесс анодирования создает стабильные и устойчивые поры на поверхности алюминия, а краситель просто заполняет эти поры. Металл погружается в ванну, которая содержит неорганическую соль металла.

Ток подается и откладывает соль металла в основании пор. Коротко о главном Анодирование представляет собой процесс создания оксидной пленки на поверхности металлов и сплавов путём их анодной поляризации в проводящей среде. Иными словами — на поверхности металлического субстрата выращиваются поры. Анодная пленка является продолжением структуры самого металла, так как начинает формироваться внутри его кристаллической решётки.

Покрытие выравнивает царапины, вмятины и другие незначительные дефекты металлической поверхности История анодирования Анодирование металлов впервые было использовано в промышленном масштабе в 1923 году. Первоначально оно было создано для защиты от коррозии деталей из дюралюминия в кораблестроительной промышленности. Очевидно, эта обработка использовалась, поскольку части морских транспортных судов требовали жесткого защитного покрытия, невосприимчивого к соленому, бурному морю. Этот процесс все еще используется сегодня, несмотря на устаревшие требования сложного цикла напряжения, которые теперь считаются ненужными. К 1927 году этот процесс получил развитие, и был запатентован новый процесс анодирования в серной кислоте. Серная кислота остается наиболее распространенным анодирующим электролитом и по сей день. Японцы использовали анодирование щавелевой кислотой с 1923 года, и оно было широко применено немцами, особенно в архитектурных решениях. Анодирование алюминиевых профилей широко использовалось в архитектуре в 1960-х и 70-х годах.

Анодированный алюминий

анодирование | это... Что такое анодирование? Что такое анодирование.
Анодирование. Что такое анодирование металла и для чего применяется При анодировании защитная пленка из окислов образуется из самого защищаемого металла.
Что называют анодированием и зачем его применяют | Алюминиевые системы DOKSAL™️ | Дзен Для чего необходимо анодирование Если вас интересует Узнайте, что такое анодирование и анодированное покрытие.

Подробно об анодировании-нужно ли анодирование на деталях из алюминия? Важно знать про анодирование

Обычно анодирование проводят при постоянном токе в гальваностатическом или потенциостатическом режиме. Анодирование алюминия: создание прочного оксидного слоя, стойкого к коррозии и механическому воздействию Содержание статьи: 1. Что такое анодирование алюминия? анодированный алюминий, нужно чуть подробнее остановиться на том, как образуется защитная пленка. Что такое анодированный алюминий и как анодируют алюминиевый профиль Ссылка на основную публикацию. Анодирование в обобщенном смысле – это электрохимический процесс образования стабильных оксидных покрытий на поверхности металлов.

Технология производства

  • Анодирование алюминия: основы
  • Atvantage анодирования алюминиевого корпуса?
  • Анодирование алюминия что это такое: анодированный алюминий по выгодной цене
  • Технология анодирования
  • Анодирование, что это такое? (стр. 1 )
  • Анодированные украшения: что это такое, особенности, уход за изделиями | Ювелирное дело

Процесс анодирования алюминия

это электролитическая пассивация, применяемая для увеличения толщины естественного оксидного слоя на поверхности металлических деталей. Предлагаем вам рассмотреть вопрос о том, что такое анодированный алюминий, какие существуют его разновидности, в каких сферах используется анодированный алюминий и можно ли анодировать этот материал своими руками. Наиболее частой технологией анодирования алюминия является так называемое сернокислое анодирование – по химическому составу анодного раствора (электролита). В данной статье мы расскажем вам о том, что такое анодирование, объясним основные понятия и способы анодирования, расскажем о плюсах и минусах метода, а также о том, когда используют анодирование | Статьи ГК Интерстилс в Ташкенте. Анодирование алюминиевых и стальных конструкций;Статьи/Статьи по алюминиевым конструкциям.

Анодирование алюминия: что это за процесс?

А чем тоньше "трубочки", тем прочнее пленка, из них состоящая! Но не всегда пленка имеет такой вид. Если анодный слой у нас получился рыхлый, непрочный, в основном, из за завышенной температуры процесса то и смотрится он совсем по другому: Зарегистрируйте блог на портале Pandia. Бесплатно для некоммерческих и платно для коммерческих проектов. Регистрация, тестовый период 14 дней. Условия и подробности в письме после регистрации. Царапины сделаны ногтем- настолько мала прочность анодного слоя: Точность выдерживания техпроцесса анодирования прежде всего - температуры! А значит - и высокой прочности анодного слоя! Два процесса анодирования. Есть два основных, отличающихся друг от друга процесса анодирования. Коренным образом их отличает лишь температура процесса.

Хотя она, эта температура, влияет настолько сильно, что в итоге получаются очень разные результаты. В случае "теплого" процесса размеры "трубочек" велики, что ведет к двум следствиям: во первых анодный слой получается не очень прочным и твердым - это минус. Но во вторых - в "трубочки" большого диаметра легко ввести краситель, мельчайшие частицы которого еще проходят в эти "ворота". И таким образом - окрасить слой в любой цвет. Причем, что интересно: в качестве красителя применяются самые обычные анилиновые красители. Те, которыми красят джинсы и пасхальные яйца! К тому же существует очень простой способ обеспечить водостойкость подобного окрашивания. Достаточно лишь просто поварить окрашенную деталь в том же красителе, или после окраски обработать паром. При этом верхушки "трубочек" закупориваются, оставляя краситель запертым внутри. После этого - вода уже не в силах вымыть краситель из анодного слоя.

Несмотря на то что сам по себе краситель- водорастворим. Ну и что еще надо отметить - относительная "крупнотрубочность" слоя - это прекрасная основа для сцепления с краской или клеем. Такие детали можно красить нитро - или даже эпоксидными красками. Результат получается очень эстетичный и надежный в плане защиты от коррозии. Краска держится очень прочно. Из за большого объема этот материал размещен на нескольких страницах: Вы можете открыть свой мини-сайт на портале Pandia для коммерческого проекта. Зарегистрировать Заказать написание учебной работы.

В результате получается, что лишь небольшая часть всех, имеющихся на земле металлов, способны удовлетворять, данным параметрам. К ним относятся алюминий, тантал, титан. Чаще всего в промышленности применяется анодная обработка алюминия и алюминиевых сплавов. Варианты анодирования Есть несколько вариантов анодирования которые отличаются составом электролита и разными условиями рабочего процесса. Прежде всего температурой электролита. Именно температура является основополагающим , влияющим на качество покрытия фактором.

Особенности ухода Пленка, покрывающая изделие, разрушается под воздействием хлора, лака для волос, некоторых чистящих средств. Если вы собрались заняться уборкой, то лучше это делать в перчатках или снять украшение. Особого ухода изделия не требуют. По мере загрязнения их моют в мыльной воде и полируют мягкой тряпочкой. Ультразвуковая же чистка анодированных изделий строго запрещена. Глядя на красоту анодированных украшений, сложно представить, что они сделаны из металла, который до недавнего времени использовался только в космической и медицинской промышленности. Изделия из титана очень часто по красоте и стоимости не уступают золотым. Дополнительную информацию об особенностях технологии анодирования вы узнаете, посмотрев видео: Рида Хасанова.

Общие области применения включают военную технику, промышленное оборудование и кухонную посуду. Материалы, подходящие для анодирования Алюминий Возможно, наиболее часто анодируемый материал, алюминий известен своей совместимостью с процессом анодирования. Оксидный слой естественного происхождения на алюминиевых поверхностях может быть дополнительно утолщен и улучшен за счет анодирования. В результате получается более прочная, устойчивая к коррозии и эстетически универсальная отделка. Относительно легкий вес алюминия в сочетании с преимуществами анодирования делает его предпочтительным материалом в таких отраслях, как аэрокосмическая, автомобильная и архитектурная. Магний Магний можно анодировать для повышения его коррозионной стойкости, износостойкости и адгезии краски. Анодирование магния несколько отличается от анодирования алюминия, так как вместо оксидного слоя образуется гидроксидное или оксидно-гидроксидное покрытие. Анодирование магнием часто используется в аэрокосмической промышленности из-за низкой плотности магния и высокого отношения прочности к весу. Однако стоит отметить, что анодированный магний не так устойчив к коррозии, как анодированный алюминий. Титан Анодирование титана отличается от анодирования алюминия и магния как по процессу, так и по назначению. Вместо того, чтобы стремиться к более толстому оксидному слою для защиты, анодирование титана часто направлено на получение ярких цветов без красителей или пигментов. Эта окраска достигается за счет преломления света через оксидный слой различной толщины. Точное напряжение контролирует толщину и, следовательно, получаемый цвет. Помимо эстетики, анодирование также можно использовать для повышения износостойкости титановых компонентов, особенно в биомедицинской области, где титан широко используется для изготовления имплантатов. Цинк Хотя цинк не так часто анодируется, как алюминий или титан, он может подвергаться процессу, подобному анодированию, называемому «пассивацией» или «хромированием». Этот процесс повышает коррозионную стойкость оцинкованных или оцинкованных деталей. Однако, когда речь идет о традиционном анодировании, цинк не так распространен. Вместо этого его основные защитные обработки включают гальванизацию и вышеупомянутую пассивацию. Оборудование, используемое в анодировании Электролитический бак Центральное место в процессе анодирования занимает электролитический бак, часто изготовленный из материала, стойкого к выбранной кислоте, в котором содержится раствор электролита, в котором происходит процесс анодирования. Детали, подлежащие анодированию, погружаются в этот резервуар. Крайне важно, чтобы конструкция этого резервуара выдерживала кислую среду и поддерживала постоянный состав электролита для равномерного анодирования. Напряжение питания Источник питания является важным компонентом, обеспечивающим необходимый постоянный ток DC для облегчения электрохимической реакции во время анодирования. Тип и технические характеристики источника питания будут различаться в зависимости от процесса анодирования, с различными требованиями для процессов, таких как твердое анодирование, по сравнению со стандартным сернокислотным анодированием. Очень важно, чтобы источник питания обеспечивал стабильную и регулируемую мощность, гарантируя, что процесс анодирования можно точно настроить для достижения желаемых результатов. Система охлаждения В процессе анодирования выделяется тепло из-за электрического сопротивления электролита. Это тепло должно регулироваться для поддержания постоянной температуры ванны, что имеет решающее значение для достижения стабильных результатов анодирования. Система охлаждения обычно состоит из теплообменников и охладителей, которые циркулируют и охлаждают электролит. Поддержание правильной температуры особенно важно в таких процессах, как твердое анодирование, когда ванна работает при более низких температурах. Механизмы управления Чтобы процесс анодирования был успешным и последовательным, необходимо точно контролировать несколько параметров, таких как плотность тока, температура ванны и продолжительность обработки. Механизмы управления включают в себя различные датчики, таймеры и контроллеры, которые отслеживают и регулируют эти параметры в режиме реального времени. Современные установки для анодирования часто используют компьютеризированные системы для автоматизации и оптимизации этих элементов управления, обеспечивая высокое качество и воспроизводимость результатов. Процесс анодирования Убедитесь, что на поверхности заготовки нет загрязнений, включая масла, смазки и другие остатки. Обычно включает погружение заготовки в растворитель или щелочной раствор. Для удаления стойких частиц можно использовать ультразвуковую очистку.

Анодирование, что это такое? (стр. 1 )

анодированный алюминий, нужно чуть подробнее остановиться на том, как образуется защитная пленка. Мы знаем, что такое анодирование, а теперь следует узнать, какое оборудование для анодирования нужно. это процесс электролитической пассивации, используемый для увеличения толщины слоя естественного оксида на поверхности металлических деталей.

Анодирование алюминия: основы

Далее происходит процесс окраски заготовки. Для этого используется горячий раствор анилинового красителя. На протяжении 30 минут происходит заключительный этап — закрепление всех слоев. Благодаря этому можно достичь намного лучшего качества, твердости и прочности анодного покрытия. Холодный процесс прекрасно демонстрирует небольшую скорость растворения внешней пленки. Как следствие, образуется толстый слой. Совсем обратная ситуация при теплом процессе. Итак, для достижения таких результатов необходимо создать условия принудительного охлаждения.

Без этого создать красивое и износоустойчивое покрытие создать будет невозможно. Если говорить о минусе этой технологии, то она заключается в следующем: поверхность нельзя окрасить органическими красителями. Технологический процесс того, как происходит холодное анодирование алюминия выглядит так: Поверхность тщательно обезжиривается. В ванне происходит процесс анодирования до образования плотного оттенка. Осуществляется промывка в холодной и горячей воде. Далее происходит процесс варки заготовки в дистиллированной воде. Также изделие выдерживается на пару.

Эти действия позволяют закрепить все образовавшиеся слоя. Думайте о безопасности Итак, выполнить этот процесс в домашних условиях можно, но для этого следует быть крайне предусмотрительным и соблюдать технику безопасности. Лучше всего делать это на открытом воздухе. Ведь кислота является очень опасным веществом. И это даже несмотря на то, что вы будете использовать большой концентрат кислоты. Если она попадет на кожу, то вы испытаете неприятный зуд. Но если случайно попадет в глаза, то это может привести к серьезным последствиям.

Итак, для работы следует использовать защитную одежду, перчатки и очки. Плюс ко всему, всегда иметь рядом раствор соды или ведро чистой воды. Заключение Итак, вот мы и узнали с вами, что такое анодированный алюминий. Мы рассмотрели сферы его использования и варианты того, как выполнить подобную работу самостоятельно. В дополнении ко всему, предлагаем просмотр видео, которое закрепит все полученные знания из этой статьи о том, как анодировать алюминий своими руками.

Ниже -10 растущий анодный слой вполне хорош, но есть одно НО. Для поддержания нужной силы тока может не хватить напряжения, выдаваемого вашим блоком питания с понижением температуры електрическое сопротивление электролита сильно возрастает. А советовать Вам делать блок питания с высоким 80-100 вольт выходным напряжением, я не буду- такое напряжение уже опасно для жизни.

Потому вот я и не советую работать с электролитом ниже -10 градусов. В этих пределах нарастает плотный, окрашенный, красивый анодный слой. Я бы весьма рекомендовал плотность тока 2.. Просто это- мой любимый режим. Мне он кажется наиболее надежным. По многим соображениям, о которых тут не буду распространяться. Ведь, напомню, пленка не только нарастает изнутри, но и растворяется снаружи. И, если скорость роста мала- большой толщины слоя вы не дождетесь, процесс анодирования превратится в процесс банального травления металла.

В том смысле, что чем больше размер площадь катода пластина из свинца - тем лучше. Лучше потому что это обеспечит весьма «мягкий», равномерный режим распределения плотностей тока по поверхности обрабатываемых деталей, особенно больших. Эта самая «равномерность» весьма важна для уменьшения проблем с возможными «прогарами»и растравами деталей. Чисто практически, площадь катода рекомендуется хотя бы в 2 раза больше, чем площадь анода-детали. При этом, если лист свинца положен на дно ванны, его нижняя поверхность- не считается, поскольку почти не работает. Таким образом, рекомендую катодную плотность тока вдвое меньшую, чем анодную. Важна лишь плотность тока. Но чисто практически, исходя из того что цепь наша имеет ненулевое электрическое сопротивление, нам потребуется довольно приличный вольтаж нашего блока питания.

Причем, очень желательно- чтобы блок питания имел несколько выходных напряжений, ну хотя бы два. Физически это- лишь отвод от середины вторичной обмотки трансформатора. У меня хорошо зарекомендовал себя вариант с 25 и 50 вольтами на выходе. Кстати, вы в курсе, что напряжение без нагрузки, и напряжение под нагрузкой у блока питания- это две большие разницы? Под нагрузкой напряжение всегда падает «проседает». И большая разница этих напряжений говорит о слабости трансформатора. Как правило, при этом, он трансформатор еще и сильно греется. А значит- его надо менять на более мощный.

А вот если напряжение вашего трансформатора при отдаче ампер так 10-15 «просело» лишь на пару вольт- это нормально. И греться сильно он не будет… Почему я хочу купить кондиционер? Соблюдение токового режима при анодировании- дело не особо хитрое. Крути себе реостат, да поглядывай на амперметр… А вот с температурным режимом- все намного сложнее. Пока что я просто перед анодированием охлаждаю 4-5 канистр с электролитом в бытовом морозильнике, и провожу анодирование при постоянном росте температуры. В смысле, залил я раствор с -10 градусной температурой, включил ток… и поползла температура вверх! А что же вы хотите- там весьма солидное тепло выделяется по ходу дела…. А потом- электролит сливаю в канистры обратно, и по второму кругу в морозильник!

Нудно, спросите? Не то слово! Вот потому то моей голубой мечтой является изготовление некой холодильной установки, способной охлаждать електролит прямо в ванне, по ходу процесса! Как это и принято в заводской практике! И, наверное, самым простым путем тут будет переделка оконного небольшого! Сделать в ванне двойную стенку, залить туда ТОСОЛ, и в него поместить трубку охладителя… Ну или еще проще- гонять холодный воздух по тому «двойному дну». Думаю, что таки сооружу подобную «установку», тем более, что оконный кондиционер и невелик, и не особо дорог… Типичные ошибки процесса. В рамках этого сайта я описываю «холодную» технологию анодирования, в результате которой, покрытие получается очень твердое, достаточно толстое, самоокрашивающееся, с высокой коррозионной защитой.

И выглядит примерно так: Поэтому, в случае отклонения процесса в какую либо сторону от именно этого варианта, я буду называть результат браком. Хотя даже и такое бракованное покрытие- вполне честный вариант анодирования, дающий тоже неплохую защиту и приличный внешний вид. Итак, речь пойдет о типичных ошибках и «как с ними бороться». На самом деле их не так уж и много. Попробую перечислить их по порядку: 1 — Температура процесса слишком низкая. Вы не можете добиться правильной плотности тока на детали анодной плотности тока. Несмотря на то, что реостат выкручен по максимуму и напряжение, идущее с блока питания- максимально. В результате малой плотности тока покрытие растет очень медленно, и оно- бесцветно.

Проблема в том, что при очень низкой температуре элекрическое сопротивление электролита сильно возрастает, вследствии чего вашего напряжения 25-50 вольт недостаточно для получения «правильной» плотности тока. У вас есть 2 пути решения: или поднять напряжение вольт так до 60-100 опасно!!! Я бы советовал второй вариант. Плотность тока правильная, а вот твердость анодного слоя слабовата, да и окраски у него по сути нет. Так себе, легкий мутновато-молочный оттенок… Дело в том, что температура- важнейший показатель процесса. И при превышении порога допуска, процесс изменяется качественно. Из «холодного» он становится «теплым». Со всеми вытекающими: бесцветная и не слишком толстая и твердая пленка.

Даже уже полученный «холодный слой», при этом разрыхляется и постепенно растворяется. Окраска исчезла не полностью, но пленка потеряла всякую прочность. Царапины от ногтя: 3 — Анодная плотность тока мала. Анодный слой растет медленно, он бесцветен. Хотя и прочен вполне. Дело в том, что окрашенность у анодного слоя появляется скачкообразно, примерно с анодной плотности тока в 1,5.. При меньшей- слой получается бесцветным, а вернее- слегка мутно-белым. И хоть прочность такого слоя не так уж и плоха, мы ведь хотим еще и эстетики?

В качестве небольшого запаса надежности. Вдруг вы ошиблись при подсчете площади поверхности детали? Хочется чтобы процесс шел быстро- потому вы подняли ток выше нормы. Но вас преследуют частые «пробои» и растравы то детали, то зажима подвески. Это явление называется «прогар». Вот почему это происходит: Прогар — отчего он происходит? В принципе, при очень интенсивном перемешивании электролита, и как следствии — хорошем отводе тепла от детали, допустимы большие плотности тока. Это сокращает время процесса, и позволяет нарастить особо толстый анодный слой.

В промышленности возможен даже вариант с 2мм слоем анода. Так обрабатывают рабочую поверхность цилиндров судовых двигателей. Для этого там имеют место во первых, супер качественное охлаждение детали в процессе анодирования, во вторых- напряжение анод-катод в сотни вольт. Но ни то, ни другое мы позволить себе не сможем, к сожалению. И в итоге, из за естественной концентрации тока на углах и концах детали, деталь наша будет иметь зоны местного перегрева. А такие зоны нагревают окружающий электролит. А нагретый электролит имеет значительно более низкое электрическое сопротивление. Значит весь электрический ток устремляется именно в перегретую зону, перегревая ее этим еще больше!

Кроме того, теплый электролит интенсивно растворяет анодный слой! В зоне перегрева начинается такой себе мини-процесс в «теплой» интерпретации. В течении нескольких секунд, такая микрозона перегрева полностью оголяется до белого метала, и через нее начинает течь ток, в разы больший нормального. За пару минут деталь может раствориться наполовину! И все вышеуказаные проблемы- из за недостаточного перемешивания электролита! Таким образом, я не слишком советую большую плотность тока. В том смысле, что площадь поверхности свинцового катода мала, в сравнении с площадью поверхности обрабатываемой детали. Это не самая большая проблема, если вы обрабатываете маленькие детали, расположенные далеко от катода в разных концах ванны.

Но вот, если вы станете анодировать тот же рессивер, в ванне не слишком больших габаритов, то начнутся проблемы. Появится высокая склонность к прогару и растравливанию детали. Дело в том, что малые размеры катода способствуют неравномерному распределению силовых линий тока по поверхности детали. А это и приводит в итоге к повышенному риску прогара. Мой совет: площадь катода должна быть хотя бы в 2 раза больше чем площадь детали. В этом случае, получится достаточно равномерное распределение тока на поверхности детали. В идеале- лучше всего иметь свинцовую «облицовку» по всем стенкам и дну ванны. Не удается добиться правильной силы тока, а самое главное,- при подаче тока на деталь, пузырьки кислорода идут не с ее поверхности, а с поверхности зажима.

Ну или- вообще не идут. Чисто електрическая проблема. Возникшая, скорее всего, от вашей лени сделать качественный зажим. Всяческие варианты с обматыванием детали алюминиевой проволокой, имхо, ненадежны. Зажим должен быть струбциноподобным, с резьбовой контактной шпилькой-электродом из алюминия. Только такая конструкция позволяет с достаточной силой прижать електрод к детали, обеспечив тем самым, надежный электрический контакт. Возможна и еще одна причина- точка контакта шпильки-электрода на зачищена наждачкой. Надо перед каждым анодированием обязательно зачищать точку контакта.

Алгоритм правильного режима анодирования: 1- Вы аккуратно подсчитали площадь поверхности детали, и правильно вычислили необходимую силу тока. Диаметр пузырьков крайне мал, их общее течение напоминает скорее струйки дыма, чем собственно пузырьки. Для полного понимания вот вам фото «правильного» течения процесса: 4- Длительность процесса контролируется в общем то визуально по цвету детали, но в среднем равна 20-30 минутам для мелких деталей заглушки и т. Подготовка под анодирование. Есть несколько специфичных тонкостей, которые надо знать, чтобы подготовить детали к анодировке. Легко подсчитать, что при толщине слоя 0,05 мм, болту в гайке станет теснее на 0,2 мм. Шлифовать тем или иным способом деталь уже анодированную почти невозможно- твердость покрытия как у керамики. Да и крайне неэстетично обдирать часть покрытия, открывая, к тому же, дорогу коррозии… Значит единственный способ- обеспечить «запас» до обработки.

Плоские участки можно подогнать напильником и шкуркой. Ну а у резьбы, как показывает практика, достаточно легко шлифовать лишь самую вершину резьбы- именно ей «становится тесно». Это можно сделать очень мелкой наждачкой. Во первых сильно выигрывает эстетика, во вторых снижается вероятность «прогара» при анодировании. Хотя, на самом деле, не так этот прогар и страшен.. Надо отметить что дефекты поверхности анодный слой не маскирует- они будут видны и на обработанной детали. Не советую держать ее в горячем едком калии или натрии, как рекомендуют заводские технологи- это заметно портит чистоту поверхности. Лучше пользоваться куском хозяйственного мыла и зубной щеткой- детали мелкие, работа нас не пугает… 4 — Очень эффективно обезжиривает стиральный порошок: достаточно растворить его в горячей воде, залить в пластиковую емкость, высыпать туда детали и хорошенько потрясти посудину.

Но есть одно НО: после промывки детали надо тут же высушить горячим воздухом, иначе дюраль интенсивно окисляется! Видимо, стиральный порошок уж очень агрессивен! Тончайший слой жира с пальцев рук- не помеха. Он моментально окисляется кислородом при первых секундах анодирования и всплывает в виде черных хлопьев… Вот и все. Этого вполне достаточно. Самодельная установка для анодирования. Тут я постараюсь подробно описать устройство всего необходимого оборудования. С некоторыми рекомендациями по изготовлению.

Ну и, по возможности, с фотографиями. Замечу, установка пригодна для анодирования деталей с площадью поверхности примерно до 7-8 дм2. На практике этого хватит для ресиверов ружей 70-90 см. Итак, приступим: Гальваническая ванна. Ванна, скорее всего, понадобится даже не одна. У меня их, например, три. Одна- для обработки всяких маленьких деталей, другая- для недлинных труб до 60 см , третья- для длинных труб 70-90 см. Замечу, для работы с последней, нужен весьма мощный блок питания, до 20-30 ампер при 50 вольтах.

Материал для изготовления ванны может использоваться разный, можно даже использовать нержавейку или алюминий.

В ходе травления с поверхности также убирают все микродефекты, что делает ее более гладкой. Далее заготовки извлекают из ванны с травильным раствором и тщательно очищают от остатков кислоты и других загрязнений с помощью специальных составов — гидроксида натрия, нейтрализующих добавок, содержащих аммиак или аммиачные соединения, деминерализованной воды и т. Осаждающиеся на поверхность металла частички формируют прочную оксидную пленку. Такие электрохимические реакции сопровождаются выделением большого количества тепла, в связи с этим электролитный раствор в ванне необходимо постоянно охлаждать.

По завершении анодного оксидирования заготовки промывают в деионизированной воде, что позволяет удалить заряженные частицы, из-за которых на анодированной поверхности могут появиться пятна. Добавление цвета Пористая структура полученного при анодировании покрытия позволяет использовать его для последующей окраски, которая придает изделиям дополнительную эстетичность и защищает их от воздействия влаги и агрессивных химических веществ. Герметизация На завершающем этапе обработки заготовки погружают в емкость с раствором ацетата никеля, который заполняет микропустоты и герметизирует поры, что позволяет придать анодированной поверхности деталей дополнительную гладкость и однородность. Процесс обработки различных типов металла При анодировании заготовок из стали учитываются свойства и характеристики конкретного металла. Рассмотрим особенности технологического процесса для других металлов и их сплавов: Анодирование меди и медных сплавов Медь тяжело поддается анодированию.

Чаще всего медные детали обрабатывают электрохимическим способом, который позволяет изменить цвет поверхности. Электролитный раствор готовят на основе фосфатов или оксалатов. Оксидирование меди и ее сплавов — очень сложный технологический процесс, поэтому применяется очень редко. Анодирование титана Для изделий из этого металла оксидирование — практически обязательная процедура. Нанесение оксидной пленки позволяет не только повысить прочность и износостойкость деталей, но и придать поверхности требуемый цвет.

Покрытие может окрашиваться в любой оттенок из весьма широкого спектра. Электролитные растворы для анодирования титановых заготовок изготавливаются на основе практически любой кислоты. Анодирование серебра При анодном оксидировании поверхности изделий из серебра чаще всего применяется смесь полисульфидов натрия серная печень , с помощью которой поверхность окрашивается в различные оттенки синего или фиолетового цветов. Анодирование алюминия Для улучшения характеристик поверхности алюминиевых заготовок широко применяется анодное оксидирование. Существует большое количество методик, позволяющих не только повышать прочность и износостойкость изделий, но и окрашивать их поверхность в различные цвета.

Во первых сильно выигрывает эстетика, во вторых снижается вероятность «прогара» при анодировании. Хотя, на самом деле, не так этот прогар и страшен.. Надо отметить что дефекты поверхности анодный слой не маскирует- они будут видны и на обработанной детали. Не советую держать ее в горячем едком калии или натрии, как рекомендуют заводские технологи- это заметно портит чистоту поверхности. Лучше пользоваться куском хозяйственного мыла и зубной щеткой- детали мелкие, работа нас не пугает… 4 — Очень эффективно обезжиривает стиральный порошок: достаточно растворить его в горячей воде, залить в пластиковую емкость, высыпать туда детали и хорошенько потрясти посудину. Но есть одно НО: после промывки детали надо тут же высушить горячим воздухом, иначе дюраль интенсивно окисляется! Видимо, стиральный порошок уж очень агрессивен! Тончайший слой жира с пальцев рук- не помеха.

Он моментально окисляется кислородом при первых секундах анодирования и всплывает в виде черных хлопьев… Вот и все. Этого вполне достаточно. Самодельная установка для анодирования. Тут я постараюсь подробно описать устройство всего необходимого оборудования. С некоторыми рекомендациями по изготовлению. Ну и, по возможности, с фотографиями. Замечу, установка пригодна для анодирования деталей с площадью поверхности примерно до 7-8 дм2. На практике этого хватит для ресиверов ружей 70-90 см.

Итак, приступим: Гальваническая ванна. Ванна, скорее всего, понадобится даже не одна. У меня их, например, три. Одна- для обработки всяких маленьких деталей, другая- для недлинных труб до 60 см , третья- для длинных труб 70-90 см. Замечу, для работы с последней, нужен весьма мощный блок питания, до 20-30 ампер при 50 вольтах. Материал для изготовления ванны может использоваться разный, можно даже использовать нержавейку или алюминий. Но эти ванны придется тщательно мыть после использования. И в них нельзя оставлять электролит надолго.

Потому как коррозия будет иметь место. Более нетребовательны пластиковые ванны. И, пожалуй самый подходящий материал- полиэтилен. Так, для маленькой ванны я использую пищевой контейнер, купленный в супермаркете, на 6 литров. А для больших ванн я вполне приспособил длинные пластиковые цветочные горшки- очень подходящая «тара» получилась. И вполне кислотоупорная. Что очень важно- ванна должна иметь хорошую теплоизоляцию корпуса. Иначе электролит будет быстро в ней нагреваться, особенно летом, придется гораздо чаще его менять.

Самое простое решение- обклеить ванну толстым 2-4 см слоем пенопласта. Можно также, закрепив ванну внутри подходящей коробки, залить промежуток строительной пеной. Но имейте в виду- пена, расширяясь, может сильно покоробить ванну. Тут важно- не переборщить с количеством пены. Лучше ее лить в несколько этапов. Вот примерно такие ванны должны у вас получиться: Затем, необходимо изготовить свинцовый катод для ванны. Делается он из листового свинца. Такой свинец лучше всего снять с толстых електрокабелей.

Думаю, вы и так это знаете: аккумуляторы и кабеля- 2 основных источника Pb для подвоха, озабоченного изготовлением грузов для грузпояса… Задача состоит в том, что площадь катода должна быть не менее чем раза в 2 больше площади поверхности обрабатываемой детали. При этом, поверхность катода, прислоненная к стенке дну ванны в учет не берется. Весьма полезным является наличие множества отверстий в катодной пластине- через них удобно выходить газу и, кроме того, так катод работает чуть эффективнее. Катод можно собрать из нескольких кусков, если нет одного большого. При этом куски надо паять мощным паяльником, обязательно- вдоль всех стыков толстым швом. Не забывайте- у нас сильноточная цепь, она не любит тонких сечений! Паять лучше свинцом , а не припоями ПОС. Вывод контакта из ванны можно выполнить просто полоской того же свинца.

Хотя можно и толстым медным проводом в изоляции. Место припайки медного провода надо изолировать силиконовым герметиком. Вот такие катоды для ванн получились у меня: Токоограничивающий резистор. Кусок толстого нихромового провода диаметром 2 мм- метров этак 5. Из него нужно свернуть спирать- это будет мощный сильноточный резистор для регулировки силы тока на детали. По тому же принципу, как и у сварщиков. Купить такой провод можно там, где торгуют разным оборудованием для электросварки. Спираль сделать путем навивки провода на подходящий штырь или трубу.

Можно часть резистора сделать из тонкой 1.. Не советую экспериментировать со стандартными, вращающимися проволочными потенциометрами зеленые такие — их мощность все же маловата, будут сильно греться. Да и цена- немаленькая. Поверьте, простая самодельная спираль с «крокодилами» — и проще и надежнее. Блок питания. Электрическая схема БП выглядит примерно так: Попробуем разобрать ее по блочно. Самая важная и дорогая деталь БП. К нему предъявляются весьма высокие требования.

Прежде всего- по мощности. Если вы намерены анодировать не только мелкие детали, а и относительно крупные ресиверы ружей , с площадью поверхности 5-8 дм2, то ищите трансфоматор с током вторичной обмотки 10-15 ампер. Такие трансформаторы весьма дороги, поэтому иногда выгодно купить 2 меньших, и подключить их параллельно. Очень важно, чтобы во вторичной обмотке был хотя бы один центральный отвод- это даст вам 2 рабочих напряжения. Если будет несколько отводов- еще лучше. Напряжения вторичных обмоток я советую 2х25 вольт. Это довольно распространенный вариант. У меня 2 спараллеленных: один самодельный, другой- силовой от советского усилителя мощности: 2- диодный мост.

Можно, конечно собрать его и на отдельных диодах, но сегодня удобнее купить единым блоком- это уже давно не редкость. Удобство прежде всего в легкости крепления к теплоотводу- один винт и все! Совет прост- выбирайте самый мощный! Тогда он точно не перегорит при воможном коротком замыкании. Кстати, установка моста на большой! И не «всухую», а через слой теплопроводной пасты. У меня стоит 32 Амперный вариант в металлическом корпусе- теплотвод у него очень хороший! Вот мой: 3- амперметр.

Весьма желателен не слишком мелкий: на крупной шкале легче отслеживать слабые изменения. По ним, например, легко «ловится» начало срыва нормального процесса в «прогар», собственно, еще до самого «прогара». Не ищите амперметр именно на 10 или 20 ампер. В этом нет нужды. Подбором шунта кусок медного провода можно отрегулировать прибор на любой предел измерений. Вот мой амперметр. У него сменные шунты- на 10 и на 20 ампер. На фотке- шунт на 10 Ампер.

Размером побольше. Для коммутации. Чтобы не заморачиваться с переключателями- где их взять то, для токов до 20-30 ампер? Они недешевые. Проще «крокодил» переставить. Просто врезать в стенку БП вентилятор. При этом сделать его отключаемым- нужда в нем есть лишь на максимальных токовых режимах. Вот, например, мой: 6- фильтрующий сглаживающий конденсатор.

Не то чтобы его наличие- так уж необходимо. Но у меня все же сложилось устойчивое мнение, что он изрядно понижает вероятность срыва процесса в «прогар». Потому- рекомендую. Емкость подбирайте сами у меня- 4700мкф , а напряжение- должно быть заметно больше рабочего. Провода соединительные. Не удивляйтесь, что я их вынес в отдельный пункт. Они того стоят. Провод должен быть качественный, медный, толстый, с сечением не менее 3-4 мм2.

Для токов в 20-30 ампер другие- не подходят. В принципе, какой найдете. Главное- чтобы он был герметичный, стеклянный. Зажимы для деталей. Очень важная составляющая. Если на них сэкономите- будете иметь массу проблем с некачественным контактом зажим-деталь. Моя рекомендация- делать их разной формы, но одной конструкции: пластиковый эбонит, капролон, фторопласт… корпус- струбцина, и алюминиевая резьбовая шпилька- электрод. Только такой конструктив обеспечивает достаточно надежный прижим контакта к детали.

Вот несколько моих зажимов: Зажимы — особая большая песня! Зажимы, они же- «подвески» для обрабатываемых деталей- элемент отнюдь не заурядный. Тут существуют весьма высокие требования как к конструкции, материалу, так и к надежности электрического контакта с деталью. Рассмотрим по отдельности условия работы гальванического зажима. Иначе весь ток просто не успеет «добраться» до детали и «стечет» мимо нее по цепи зажим-электролит-катод. Причем амперметр покажет ток в цепи, и может быть, даже оптимальный… На практике это вынуждает делать зажимы исключительно «из того же материала». В место контакта маленькая такая точка из за большой силы прижима електролит не затекает и процесс анодирования там не идет , а вся остальная поверхность зажима обрастает непроводящим ток слоем анода… Потому и «стекания» тока мы не имеем. Потому всяческие способы «обматывания» детали алюминиевой проволокой я не приветствую вследствии ненадежности контакта.

Естественно, лучше свести размер этой точки к минимуму. Кроме того- такие участки на детали- это просто некрасиво… 4 — Конструкция зажима должна быть достаточно универсальной- чтобы можно было быстро закрепить разные по форме и размерам детали. В итоге, после некоторых экспериментов, я пришел к такой вот конструкции зажимов: А тут еще виден и зажим для труб ресиверов. Нечто струбцинообразное, где сама струбцина пластиковая в моем случае эбонитовая , а винт- из «того же материала», т е алюминиевый- шпилька М8. Крокодил, подводящий ток, вешается на верхнюю часть шпильки. Фиксация слоя. Итак, все у нас получилось. Наша деталь приобрела красивый золотисто-коричневый оттенок, по твердости слой тоже весьма хорош- не рыхлый и не царапается, скажем, швейной иголкой… Пора начинать собирать ружьё?

Не совсем. Дело в том что пока что анодный слой имеет на микроуровне пористую, проницаемую для воды и воздуха структуру. По сути пока что слой хорошо защищает металл от механических повреждений, но довольно слабо от химического воздействия среды. Существует несколько способов, помогающий микропорам «закрыться». Простейший из них- горячая вода. Достаточно просто поварить детали в кастрюле с пол-часа, как какую нибудь банальную картошку. Правда воду гораздо лучше использовать дистиллированную. Ее можно или купить в магазине автозапчастей- ею доливают аккумуляторы, или разморозить холодильник- растаявшая вода- это и есть дистиллят.

Пойдут также дождь или снег- и это дистиллят… Ну а если вы- счастливый обладатель самогонного аппарата то вы и сами знаете, как ее добыть… При отсутствии дистиллированной воды есть и другой вариант. Можно просто подержать детали на паровой бане. То есть- наливаете на дно кастрюли немного воды, ставите на дно какую нибудь подставку, на нее кладете деталь. Затем закрываете крышкой кастрюлю, и включаете огонь.

Похожие новости:

Оцените статью
Добавить комментарий