Примеры заданий ОГЭ с ответами и комментариями. В приведённой ниже таблице между позициями первого и второго столбцов имеется взаимосвязь. Подготовка к ОГЭ по биологии 2022. Биология — теоретическая основа таких прикладных отраслей, как. Первая часть содержит 24 задания: Первая часть содержит 21 задания: 16 – с ответом в виде одной цифры, соответствующей номеру правильного ответа. Подборка тренировочных вариантов ОГЭ по биологии из разных источников для подготовки к экзамену в 9 классе.
Подцарство Простейшие
Теория первого задания ОГЭ биология. ОГЭ по биологии — единственный экзамен в 9 классе, формат которого в этом году поменялся. ОГЭ по биологии состоит из двух частей, включающих в себя 32 задания. Переходи по ссылке и напиши в сообщения группы ВК —?? Занятие проводит Елена Зеленская, преподаватель по биологии в онлайн-школе Умскул.
ОГЭ по биологии. Задание 1.
Типы плодов. Распространение плодов и семян в природе. Состав и строение семян. Условия прорастания семян 5. Цикл развития цветкового растения.
Влияние факторов внешней среды на развитие цветковых растений. Жизненные формы цветковых растений 5. Вид как основная систематическая категория. Система растительного мира.
Низшие, высшие споровые, высшие семенные растения. Основные таксоны категории систематики растений 5. Общая характеристика водорослей. Высшие споровые растения.
Моховидные Мхи. Общая характеристика мхов. Размножение мхов на примере зелёного мха кукушкин лён. Плауновидные Плауны.
Хвощевидные Хвощи , Папоротниковидные Папоротники. Размножение папоротникообразных. Цикл развития папоротника. Значение папоротникообразных в природе и жизни человека 5.
Хвойные растения, их разнообразие. Строение и жизнедеятельность хвойных. Размножение хвойных, цикл развития на примере сосны. Значение хвойных растений в природе и жизни человека 5.
Особенности строения и жизнедеятельности покрытосеменных как наиболее высокоорганизованной группы растений, их господство на Земле. Классификация покрытосеменных растений: класс Двудольные и класс Однодольные. Признаки классов. Цикл развития покрытосеменного растения 6 Животный организм.
Систематические группы животных 6. Отличия животных от растений. Многообразие животного мира. Органы и системы органов животных.
Организм — единое целое 6. Опора и движение животных. Питание и пищеварение у животных. Дыхание животных.
Транспорт веществ у животных. Выделение у животных. Покровы тела у животных. Координация и регуляция жизнедеятельности у животных.
Нервная регуляция. Гуморальная регуляция. Органы чувств, их значение. Поведение животных.
Врождённое и приобретённое поведение 6. Бесполое размножение. Половое размножение. Преимущество полового размножения.
Половые железы. Половые клетки гаметы. Зародышевое развитие. Постэмбриональное развитие: прямое, непрямое.
Метаморфоз развитие с превращением : полный и неполный 6. Вид как основная систематическая категория животных. Классификация животных. Система животного мира 6.
Строение и жизнедеятельность простейших. Значение простейших в природе и жизни человека. Кишечнополостные общая характеристика; особенности строения и жизнедеятельности. Плоские, круглые, кольчатые черви общая характеристика.
Особенности строения и жизнедеятельности плоских, круглых и кольчатых червей. Паразитические плоские и круглые черви 6. Ракообразные особенности строения и жизнедеятельности. Паукообразные особенности строения и жизнедеятельности в связи с жизнью на суше.
Насекомые особенности строения и жизнедеятельности. Размножение насекомых и типы развития. Значение насекомых в природе и жизни человека. Моллюски общая характеристика 6.
Рыбы общая характеристика. Местообитание и внешнее строение рыб. Особенности внутреннего строения и процессов жизнедеятельности. Земноводные общая характеристика.
Местообитание земноводных. Особенности внешнего и внутреннего строения, процессов жизнедеятельности, связанных с выходом земноводных на сушу. Пресмыкающиеся общая характеристика.
На время работы также антивирус лучше отключить.
Каждая из них имеет различный функционал и возможности, а также совместимость с конкретными операционными системами и архитектурами. Чтобы успешно провести активацию нужного вам софта и ОС важно знать, за что отвечает каждая программа: AAct — софт для активации Windows и Office при помощи KMS-сервера. AAct Network — тот же функционал, что и в предыдущей программе, однако она разработана для активации сразу нескольких компьютеров в локальной сети. Garbage Collector — софт для поиска и удаления мусора и ненужных файлов, связанных с активацией Windows и Office.
KMSAuto Net — аналогичный предыдущему софт, но с несколько большим функционалом. KMSCleaner — сервис для очистки системы от следов предыдущих активаций. Office 2013-2019 C2R Install — активация и получение лицензии офисных пакетов сборок от 2013 по 2019. Многие программы в этом списке повторяются по своему функционалу и это нормально.
Причина тому — не во всех случаях может помочь одна утилита и тогда потребуется использовать аналог. Ошибки активации Порой у пользователей во время активации могут возникнуть проблемы и вылетать ошибки.
Через некоторое время все простейшие стали двигаться в одном направлении. Ответ на демонстрационный вариант ОГЭ по биологии Большинство амеб не могут обитать в солёной воде, поэтому при повышении солености воды инфузории стараются отдалится от источника.
Это проявление раздражимости организма.
Ритмичность — периодические изменения интенсивности физиологических процессов через определенные равные промежутки времени 9. Саморегуляция — способность организмов поддерживать постоянство внутренней среды гомеостаз — постоянство химического состава и интенсивности протекания биологических процессов в непрерывно меняющихся условиях внешней среды 10. Энергозависимость — живые организмы открытые поступает энергия извне и динамические устойчивые лишь при условии непрерывного доступа веществ и энергии: умрём без еды, воды, воздуха системы 11.
Подготовка к ОГЭ. Лекция 1
Огэ биология 1 задание теория | Биология — теоретическая основа таких прикладных отраслей, как. |
Биология егэ вся теория по первому заданию | Онлайн подготовка ЕГЭ по биологии: теория для каждого задания. |
Привет! Нравится сидеть в Тик-Токе? | (1635-1703) Первый оценил значение увеличительного прибора и применил его для исследования срезов растительных и животных тканей. |
Разбор задания №1 | ОГЭ по биологии — единственный экзамен в 9 классе, формат которого в этом году поменялся. |
Огэ биология 1 задание теория | ПРОВЕРЬ СЕБЯ НА РЕШУ ЕГЭ: Задания 1. Признаки биологических объектов. |
О чем эта статья:
- Шпаргалка (теория) по биологии: что нужно знать на экзамене ОГЭ)
- Вся теория для решения №19-21 заданий | Биология ОГЭ 2023 | Умскул | Подборка из 6 видео
- Привет! Нравится сидеть в Тик-Токе?
- Почему выбирают ОГЭ по биологии?
- ОГЭ по биологии. Задание 1.
1 комментарий для “Сборники теории для подготовки к ОГЭ по биологии”
- Форма для написания комментария
- Домашнее задание
- Поделиться:
- Вся теория для 1 задания ОГЭ по биологии | Умскул - YouTube
- Задание 1. Биология как наука. ЕГЭ 2024 по биологии
Вся теория для 1 задания ОГЭ по биологии | Умскул — Video
Инструкция к тренировочному варианту ОГЭ-2022 по заданию №1. Мы собрали всю необходимую теорию и практические задачи для задания А1 по биологии на тему: Биология как наука. Переходи по ссылке и напиши в сообщения группы ВК —?? Занятие проводит Елена Зеленская, преподаватель по биологии в онлайн-школе Умскул. БиологиЯ. Блог создан в помощь ученику при подготовке к ГИА. Биология как наука. Ты узнаешь, по каким признакам живое отличается от неживого, какие уровни организации материи изучает биология, какие методы есть в арсенале биологических наук.
Вход и регистрация
Применяется в производстве лекарств и других химических веществ. Метод был разработан М. Цветом, который впервые разделил окрашенные пигменты растительных клеток хлорофиллы и ксантофиллы. Так же применяется для разделения аминокислот. Задание 1 биология ЕГЭ — теория и тренировка В методе бумажной хроматографии на стартовой линии делают капли исследуемых жидкостей, а рядом — капли известных веществ Вода постепенно поднимается по бумаге, перенося с собой капли веществ на определенные расстояния от исходных. У каждого вещества это расстояние отличается, на этом основан принцип хроматографии Электрофорез тоже применяется для разделения веществ из их смесей, но уже с помощью электрического тока. Имеет большое значение для изучения состава нуклеиновых кислот и белков, например, применяют для разделения фрагментов ДНК по размерам. Метод меченых атомов используют для изучения превращений определенных видов атомов в организме. Для этого изучаемый атом заменяют на радиоактивный изотоп. Изучение клетки и других структур Микроскопия электронная и световая позволяет изучать объекты, недоступные глазу.
Световая Позволяет увидеть морфологию и некоторые процессы живых клеток Позволяет увидеть утраструктуру клетки Даже самые совершенные микроскопы имеют недостаточное большое увеличение Большое увеличение Можно изучать клетки эукариот и бактерий, мембранные органоиды, например, митохондрии и хлоропласты. Можно рассмотреть строение таких мелких органоидов, как рибосомы, а также изучить строение вирусов. Центрифугирование — метод разделения клеток, клеточных структур и макромолекул по их массе.
Вирусология — биологическая наука, изучающая вирусы. Основным объектом микологии являются грибы, их строение и особенности жизнедеятельности. Лихенология — биологическая наука, изучающая лишайники. Бактериология, вирусология и некоторые аспекты микологии часто рассматриваются в составе микробиологии — раздела биологии, науке о микроорганизмах бактериях, вирусах и микроскопических грибах. Систематика, или таксономия, — биологическая наука, которая описывает и классифицирует по группам все живые и вымершие существа. В свою очередь, каждая из перечисленных биологических наук подразделяется на биохимию, морфологию, анатомию, физиологию, эмбриологию, генетику и систематику растений, животных или микроорганизмов. Биохимия — это наука о химическом составе живой материи, химических процессах, происходящих в живых организмах и лежащих в основе их жизнедеятельности.
Морфология — биологическая наука, изучающая форму и строение организмов, а также закономерности их развития. В широком смысле она включает в себя цитологию, анатомию, гистологию и эмбриологию. Различают морфологию животных и растений. Анатомия — это раздел биологии точнее — морфологии , наука, изучающая внутреннее строение и форму отдельных органов, систем и организма в целом. Анатомия растений рассматривается в составе ботаники, анатомия животных — в составе зоологии, а анатомия человека является отдельной наукой. Физиология — биологическая наука, изучающая процессы жизнедеятельности растительных и животных организмов, их отдельных систем, органов, тканей и клеток. Существуют физиология растений, животных и человека. Эмбриология биология развития — раздел биологии, наука об индивидуальном развитии организма, в том числе развитии зародыша. Объектом Генетики являются закономерности наследственности и изменчивости. В настоящее время это одна из наиболее динамично развивающихся биологических наук.
По изучаемому уровню организации живой природы выделяют молекулярную биологию, цитологию, гистологию, органологию, биологию организмов и надорганизменных систем. Молекулярная биология является одним из наиболее молодых разделов биологии, наука, изучающая, в частности, организацию наследственной информации и биосинтез белка. Цитология, или клеточная биология, — биологическая наука, объектом изучения которой являются клетки как одноклеточных, так и многоклеточных организмов. Гистология — биологическая наука, раздел морфологии, объектом которой является строение тканей растений и животных. К сфере органологии относят морфологию, анатомию и физиологию различных органов и их систем. Биология организмов включает все науки, предметом которых являются живые организмы, например, Этологию — науку о поведении организмов. Биология надорганизменных систем подразделяется на биогеографию и экологию. Распространение живых организмов изучает Биогеография, тогда как Экология — организацию и функционирование надорганизменных систем различных уровней: популяций, биоценозов сообществ , биогеоценозов экосистем и биосферы. По преобладающим методам исследования можно выделить описательную например, морфологию , экспериментальную например, физиологию и теоретическую биологию. Выявление и объяснение закономерностей строения, функционирования и развития живой природы на различных уровнях ее организации является задачей Общей биологии.
К ней относят биохимию, молекулярную биологию, цитологию, эмбриологию, генетику, экологию, эволюционное учение и антропологию. Эволюционное учение изучает причины, движущие силы, механизмы и общие закономерности эволюции живых организмов. Одним из его разделов является Палеонтология — наука, предметом которой являются ископаемые останки живых организмов. Антропология — раздел общей биологии, наука о происхождении и развитии человека как биологического вида, а также разнообразии популяций современного человека и закономерностях их взаимодействия. Прикладные аспекты биологии отнесены к сфере биотехнологии, селекции и других быстроразвивающихся наук. Биотехнологией называют биологическую науку, изучающую использование живых организмов и биологических процессов в производстве. Она широко применяется в пищевой хлебопечение, сыроделие, пивоварение и др. Селекция — наука о методах создания пород домашних животных, сортов культурных растений и штаммов микроорганизмов с нужными человеку свойствами. Под селекцией понимают и сам процесс изменения живых организмов, осуществляемый человеком для своих потребностей. Прогресс биологии тесно связан с успехами других естественных и точных наук, таких как физика, химия, математика, информатика и др.
Например, микроскопирование, ультразвуковые исследования УЗИ , томография и другие методы биологии основываются на физических закономерностях, а изучение структуры биологических молекул и процессов, происходящих в живых системах, было бы невозможным без применения химических и физических методов. Применение математических методов позволяет, с одной стороны, выявить наличие закономерной связи между объектами или явлениями, подтвердить достоверность полученных результатов, а с другой — смоделировать явление или процесс. В последнее время все большее значение в биологии приобретают компьютерные методы, например моделирование. На стыке биологии и других наук возник целый ряд новых наук, таких как биофизика, биохимия, бионика и др. Достижения биологии Наиболее важными событиями в области биологии, повлиявшими на весь ход ее дальнейшего развития, являются: установление молекулярной структуры ДНК и ее роли в передаче информации в живой материи Ф. Крик, Дж. Уотсон, М. Уилкинс ; расшифровка генетического кода Р. Холли, Х. Корана, М.
Ниренберг ; открытие структуры гена и генетической регуляции синтеза белков А. Львов, Ф. Жакоб, Ж. Моно и др. Шлейден, Т. Шванн, Р. Вирхов, К. Бэр ; исследование закономерностей наследственности и изменчивости Г. Мендель, Х. Морган и др.
Линней , эволюционной теории Ч. Дарвин и учения о биосфере В. Значимость открытий последних десятилетий еще предстоит оценить, однако наиболее крупными достижениями биологии были признаны: расшифровка генома человека и других организмов, определение механизмов контроля потока генетической информации в клетке и формирующемся организме, механизмов регуляции деления и гибели клеток, клонирование млекопитающих, а также открытие возбудителей «коровьего бешенства» прионов. Работы по программе «Геном человека», которые проводились одновременно в нескольких странах и были завершены в начале нынешнего века, привели нас к пониманию того, что у человека имеется около 25—30 тыс. Кроме того, был расшифрован ряд генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов. Однако практическое применение результатов, полученных в ходе реализации данной программы, откладывается до тех пор, пока не будут расшифрованы геномы значительного количества людей, и тогда станет понятно, в чем же все-таки их различие. Биологические исследования являются фундаментом медицины, фармации, широко используются в сельском и лесном хозяйстве, пищевой промышленности и других отраслях человеческой деятельности. Хорошо известно, что только «зеленая революция» 1950-х годов позволила хотя бы частично решить проблему обеспечения быстро растущего населения Земли продуктами питания, а животноводство — кормами за счет внедрения новых сортов растений и прогрессивных технологий их выращивания. В связи с тем, что генетически запрограммированные свойства сельскохозяйственных культур уже почти исчерпаны, дальнейшее решение продовольственной проблемы связывают с широким введением в производство генетически модифицированных организмов. Производство многих продуктов питания, таких как сыры, йогурты, колбасы, хлебобулочные изделия и др.
Познание природы возбудителей, процессов течения многих заболеваний, механизмов иммунитета, закономерностей наследственности и изменчивости позволили существенно снизить смертность и даже полностью искоренить ряд болезней, таких, например, как черная оспа. С помощью новейших достижений биологической науки решается и проблема репродукции человека. Значительная часть современных лекарственных препаратов производится на основе природного сырья, а также благодаря успехам генной инженерии, как, например, инсулин, столь необходимый больным сахарным диабетом, в основном синтезируется бактериями, которым перенесен соответствующий ген. Не менее значимы биологические исследования для сохранения окружающей среды и разнообразия живых организмов, угроза исчезновения которых ставит под сомнение существование человечества. Наибольшее значение среди достижений биологии имеет тот факт, что они лежат даже в основе построения нейронных сетей и генетического кода в компьютерных технологиях, а также широко используются в архитектуре и других отраслях. Вне всякого сомнения, наступивший XXI век является веком биологии. Методы познания живой природы Как и любая другая наука, биология имеет свой арсенал методов. Помимо научного метода познания, применяемого в других отраслях, в биологии широко используются такие методы, как исторический, сравнительно-описательный и др. Научный метод познания включает в себя наблюдение, формулировку гипотез, эксперимент, моделирование, анализ результатов и выведение общих закономерностей. Наблюдение — это целенаправленное восприятие объектов и явлений с помощью органов чувств или приборов, обусловленное задачей деятельности.
Основным условием научного наблюдения является его объективность, т. Полученные в результате наблюдения факты называются Данными. Они могут быть как Качественными описывающими запах, вкус, цвет, форму и т. На основе данных наблюдений формулируется Гипотеза — предположительное суждение о закономерной связи явлений. Гипотеза подвергается проверке в серии экспериментов. Экспериментом называется научно поставленный опыт, наблюдение исследуемого явления в контролируемых условиях, позволяющих выявить характеристики данного объекта или явления. Высшей формой эксперимента является Моделирование — исследование каких-либо явлений, процессов или систем объектов путем построения и изучения их моделей. По существу это одна из основных категорий теории познания: на идее моделирования базируется любой метод научного исследования — как теоретический, так и экспериментальный. Результаты эксперимента и моделирования подвергаются тщательному анализу. Анализом называют метод научного исследования путем разложения предмета на составные части или мысленного расчленения объекта путем логической абстракции.
Анализ неразрывно связан с синтезом. Синтез — это метод изучения предмета в его целостности, в единстве и взаимной связи его частей. В результате анализа и синтеза наиболее удачная гипотеза исследования становится Рабочей гипотезой, и если она способна устоять при попытках ее опровержения и по-прежнему удачно предсказывает ранее необъясненные факты и взаимосвязи, то она может стать теорией. Под Теорией понимают такую форму научного знания, которая дает целостное представление о закономерностях и существенных связях действительности. Общее направление научного исследования состоит в достижении более высоких уровней предсказуемости. Если теорию не способны изменить никакие факты, а встречающиеся отклонения от нее регулярны и предсказуемы, то ее можно возвести в ранг Закона — необходимого, существенного, устойчивого, повторяющегося отношения между явлениями в природе. По мере увеличения совокупности знаний и совершенствования методов исследования гипотезы и прочно укоренившиеся теории могут оспариваться, видоизменяться и даже отвергаться, поскольку сами научные знания по своей природе динамичны и постоянно подвергаются критическому переосмыслению. Исторический метод выявляет закономерности появления и развития организмов, становления их структуры и функции. В ряде случаев с помощью этого метода новую жизнь обретают гипотезы и теории, ранее считавшиеся ложными. Так, например, произошло с предположениями Ч.
Под этими номерами ученикам предлагаются задания, подробное описание ответов на которые нужно дать на соответствующем бланке. Если решение задачи не будет последовательным и аргументированным, эксперты не засчитают баллы. Баллы Максимально за экзамен можно набрать 45 первичных баллов, которые в дальнейшем переводятся в оценку по пятибалльной шкале. В связи с тем, что в 2021 году ОГЭ проводился только по русскому языку и математике, Рособрнадзор не разрабатывал новые официальные шкалы баллов по остальным предметам. В 2020 году применялась такая шкала: 0—12 баллов — оценка «2»; 25—35 баллов — оценка «4»; 36—45 баллов — оценка «5». Таким образом, минимальный порог, который должен преодолеть на экзамене ученик для получения оценки «удовлетворительно», составляет 13 баллов. Однако если у выпускника есть цель поступить в колледж или профильный класс, нужно подойти к процессу сдачи ОГЭ серьёзно и постараться набрать 36 баллов и выше. Для получения более высокого результата требуется решение заданий повышенной сложности. За каждое верно решённое задание можно получить от 1 до 3 баллов в зависимости от типа задачи и уровня сложности.
План подготовки к экзамену с нуля В определённый момент перед выпускником возникает множество вопросов: с чего начать подготовку к финальному испытанию? Вдруг это будет трудно? Переживать по этому поводу не стоит, ведь ОГЭ — это не конец света, а жизненный этап, который проходят все школьники страны. Чтобы успешно справиться с экзаменом, вполне достаточно школьных знаний. Но чтобы правильно их применить, с ними нужно разобраться и их систематизировать. Шаг 1 Если вы решили готовиться к ОГЭ по биологии самостоятельно, постарайтесь грамотно распределить время, чтобы не оставлять всё на последний момент. Лучше всего будет начать подготовку за год до экзамена — так вы сможете проработать весь материал в удобном для себя темпе и усвоите всю важную информацию вовремя. Составьте план. Разделите все темы для повторения на те, которые хорошо усвоены, вызывающие затруднение и которые вы не помните совсем.
Лучше всего начинать двигаться от простого к сложному. Шаг 2 Обязательно ознакомьтесь с форматом экзамена. На официальном сайте ФИПИ вы сможете найти документы, демонстрирующие актуальную на текущий учебный год структуру и содержание контрольных материалов. Важно понимать, на какие темы стоит обратить больше внимания и по каким критериям эксперты будут выставлять баллы. При проработке заданий с развёрнутым ответом держите перед глазами документ с критериями, он поможет вам выработать персональный шаблон решения поставленных задач. Шаг 3 Для того чтобы успешно подготовиться к ОГЭ по биологии, следует с вниманием отнестись к изучению теоретической составляющей, так как основная его часть состоит из заданий по теории дисциплины. Самый доступный вариант — обратиться к учебникам биологии. Кроме того, существует масса онлайн-ресурсов, которые смогут помочь вам в разборе особо сложных и непонятных тем. Шаг 4 Составляя конспекты по изученному материалу, делайте это грамотно: используйте схемы, таблицы и рисунки — так будет проще систематизировать информацию.
Заведите словарь биологических терминов, выписывайте их вместе с определением и сразу же заучивайте. Попробуйте пересказать выученный материал друзьям — так вероятность того, что он отложится в долгосрочной памяти, значительно повысится.
Помогает выделить то, что важно. Для классификации организмов важны как свойства в совокупности, как и по отдельности. Или, в генетике при анализе наследования конкретного признака, к примеру, окраска венчика цветка, нужно анализировать именно его, абстрагируясь при этом от формы и цвета семени, размера куста и прочих. Современные методы изучения биологических объектов.
Метод обнаружения болезнетворных микроорганизмов в пробах, мазках и др. Часто используется в мед. Цитогенетический исследует кариотип человека хромосомы ядра , выявляет наследственные заболевания, связанные с изменением структуры и количества хромосом. Световая микроскопия Довольно дешевый и эффективный метод исследования. Актуален до сих пор и без него не обойтись практически ни одному биологу. Строение его довольно простое, обязательно повторите.
Позволяет наблюдать живые объекты. Можно рассматривать клетку целиком, срез органа, ткань, но не органоиды. Иногда видно ядро и хлоропласты, клеточную стенку. Метод микроскопирования в темном поле Мелкие структуры, невидимые при обычном микроскопировании, становятся заметны в отраженных лучах. Используется в микробиологической диагностике патогенных микроорганизмов. Существуют флуорохромы см.
Позволяет изучить локализацию различных химических веществ в живой и фиксированной клетке. Фазово-контрастная микроскопия Основана на том, что отдельные структуры, прозрачной, в целом, клетки отличаются друг от друга по светопреломлению и плотности. Проходя через эти структуры, свет изменяет свою фазу, но наш глаз не воспринимает это изменение. Специальный объектив на микроскопе создаёт черно-белое контрастное изображение. Микробиологическая диагностика патогенных микроорганизмов. Электронная микроскопия Требует длительной и сложной подготовки объекта к микроскопированию, дорогостоящий метод, однако позволяющий рассматривать самые мелкие клеточные структуры.
Изучение повехностных структур клетки, её органоидов, отдельных элементов, ультраструктуры, всё это возможно только благодаря электронному микроскопу. Структура вирусов исследуется и была открыта только таким методом. Биохимический Исследование химических процессов, происходящих в организме. Исследование биохимического анализа крови человека. Может быть частным методом генетики как науки. Был использован для выявления частных болезней обмена веществ, связанных с наследственностью.
Центрифугирование Разделение смесей на составляющие под действием центробежной силы. Изучение состава и свойств смесей. Применяется для разделения органоидов клетки, легких и тяжелых фракций органических соединений. Хроматография Метод разделения компонентов смесей, основа на распределении компонентов между двумя фазами: неподвижной нанесенной на колонку и подвижной, протекающей через неподвижную. Метод разделения пигментов растительной клетки. Метод определения беременности по наличию определенного гормона в моче или в крови Электрофорез Близкий к хроматографии метод, разделению веществ в геле способствует электрический ток.
Основной метод ДНК-диагностики. Фрагменты видны в УФ-излучении, благодаря предварительному окрашиванию. Метод меченых атомов Чтобы проследить за превращением какого-либо вещества в него вводят радиоактивную метку изотоп какого-либо элемента Применяется для изучения процессов, происходящих в живых клетках. Позволяет проследить круговорот элемента в природе или осаждение вещества в каком-либо органе или ткани. Современные методы позволяют определить до миллиардных долей грамма определенного вещества в пробе. Метод витального прижизненного окрашивания В низких концентрациях красители малотоксичны для живых клеток.
Этот метод позволяет судить о жизнедеятельности клетки при различных внешних воздействиях. Метод культивирования клеток и тканей Основан на выращивании отдельных клеток, тканей и органов вне организма. Отдельные клетки или кусочки тканей выращивают обычно погруженными в питательную среду. Таким образом можно получить стерильные материалы для посадки растений. Можно вырастить кусочки тканей человека для трансплантации его собственных тканей или даже органов. Таким методом выращивают редкие орхидеи, продающиеся в каждом цветочном магазине, наращивают биомассу женьшеня и т.
Conclusion
- Изменения ОГЭ по биологии — 2024
- Что нужно знать для ОГЭ по биологии — 2024
- Что представляет собой ОГЭ по биологии
- Подготовка к ОГЭ. Лекция 1 - презентация онлайн
- Что представляет собой ОГЭ по биологии
Задание №1 ОГЭ по Биологии
ОГЭ по биологии. Задание 1. | Первая часть содержит 24 задания: Первая часть содержит 21 задания: 16 – с ответом в виде одной цифры, соответствующей номеру правильного ответа. |
вся теория для 1 задания огэ по биологии – Rainy Weathers | Разбор ОГЭ по биологии 2023. Огэ биология 1 задание теория. |
Теория для подготовки к ЕГЭ по биологии
ОГЭ 2023 по биологии 9 класс задание №1. Признаки биологических объектов на разных уровнях организации живого. Главная» Новости» Теория биология огэ 2024. ОГЭ по биологии – это основной экзамен, который оценивает знания школьников в области биологии и их способность применять полученные знания для решения практических задач. 1 задание ОГЭ по Биологии. Разбираем с вами один из важных нюансов, когда писать «ритмичность», а когда «саморегуляция». Разбираем, сколько баллов по биологии на ОГЭ в 2023 году в 9 классе нужно по каждому заданию, максимальный и проходной балл. Слайд 1БИОЛОГИЯ ОГЭ Задание №1 Биология как наука.
Вся теория для решения №19-21 заданий | Биология ОГЭ 2023 | Умскул 📽️ Топ-6 видео
Обработка означает любое действие операцию или совокупность действий операций , совершаемых с использованием средств автоматизации или без использования таких средств с Персональными данными, включая сбор, запись, систематизацию, накопление, хранение, уточнение обновление, изменение , извлечение, использование, передачу распространение, предоставление, доступ , блокирование, удаление, уничтожение Персональных данных. Настоящая Политика конфиденциальности вступает в силу с момента ее размещения на Сайте, если иное не предусмотрено новой редакцией Политики конфиденциальности. Контролирующие и обрабатывающие лица Пользователи соглашаются с тем, что: Пользуясь Сайтом, и принимая условия использования, опубликованные на Сайте, пользователь заявляет о своем однозначном согласии с обработкой его Персональных данных способами, описанными в настоящей Политике. С какой целью собираются эти данные Имя используется для обращения лично к вам, а ваш e-mail для отправки вам писем рассылок, новостей тренинга, полезных материалов, коммерческих предложений. Вы можете отказаться от получения писем рассылки и удалить из базы данных свои контактные данные в любой момент, кликнув на ссылку для отписки, присутствующую в каждом письме. Сбор Персональных данных При регистрации на Сайте Пользователи подтверждают свое согласие с условиями настоящей Политики и свое согласие на обработку своих Персональных данных в соответствии с условиями настоящей Политики, кроме того они соглашаются на обработку своих Персональных данных на серверах Университета «Синергия», расположенных на территории Российской Федерации. Обработка Персональных данных осуществляется не дольше, чем этого требуют цели обработки Персональных данных, изложенные в настоящей Политике за исключением случаев, предусмотренных законодательством Российской Федерации. Университет «Синергия» может обрабатывать следующие Персональные данные: «Как к Вам обращаться» в форме обратной связи, в случае если посетитель указывает свои полные ФИО или только часть; Электронный адрес; Номер телефона; Также на сайте происходит сбор и обработка обезличенных данных о посетителях в т. Вышеперечисленные данные далее по тексту Политики объединены общим понятием Персональные данные.
Сначала лучистые канальцы, части вакуоли, накапливают воду и изливают ее в центральную полость. Затем вакуоль сокращается, и избыток воды удаляется из клетки во внешнюю среду. Таким образом, разрыв клетки предотвращается. Однако лучистые канальцы можно заметить на изображении не у всех простейших. Например, у амёбы сократительная вакуоль выглядит как небольшой пузырек и внешне похожа на ядро. В таком случае органоид можно «узнать» по более округлой, чем у ядра, форме. Сократительная вакуоль в форме солнышка есть только у инфузорий. Отличительной особенностью будет также то, что у них таких вакуолей всегда две. Представители типа Инфузории имеют 2 ядра: большое — макронуклеус — осуществляет контроль над процессами жизнедеятельности в клетке; малое — микронуклеус — участвует в процессе полового размножения. Распределение обязанностей у ядер инфузории похоже на распределение обязанностей директоров в торговой организации. Большое ядро, как гендиректор, будет руководить большим количеством процессов: это и питание, и транспорт веществ, и обменные процессы. У него много работы, поэтому макронуклеусу нужно быть крупным, иначе он не справится с обязанностями. Малое ядро, как директор по развитию сети, занят одним делом: увеличением количества точек продаж, в переносе на роль ядер простейших — размножением. У других типов простейших одно ядро, поэтому оно будет отвечать за все процессы жизнедеятельности. Органоиды движения. У Простейших есть три вида структур для передвижения: реснички, псевдоподии, жгутики. Реснички — это тонкие множественные выросты на поверхности клетки, которые помогают передвигаться, так как способны выполнять ритмичные сократительные движения. За счет их последовательного сокращения — они по очереди то напрягаются, то расслабляются — инфузория как будто плывет, отталкиваясь множеством маленьких коротких «ручек». Органоиды движения инфузории действительно похожи на ресницы человека. При этом реснички характерны для инфузорий, у амёбы данных структур нет. Амёба обыкновенная передвигается с помощью псевдоподий. Псевдоподии ложноножки — цитоплазматические выросты, используемые для передвижения клетки. Принцип движения: выпячивания цитоплазмы то появляются, то исчезают, обеспечивая как бы «перетекание» клетки с места на место. На этом изображении амебы отчетливо видны двигательные выросты — псевдоподии. Другие простейшие эвглена зелёная, лямблия имеют жгутики, с помощью которых перемещаются в пространстве. Жгутик — поверхностная структура клетки, служащая для передвижения. Это длинные и тонкие, обычно единичные образования, которые вращаются как винт моторной лодки, тем самым двигая клетку в нужном направлении. Только у лодки винт сзади, а у простейших — спереди. Простейшие при этом будут двигаться в сторону вращения жгутика. А вот так выглядят жгутики хламидомонад под электронным микроскопом. Органоиды пищеварения. Их функции — питание и выведение ненужных веществ. Для простейших характерно наличие пищеварительных вакуолей. Это органоиды, в которых происходит расщепление питательных веществ, поглощенных клеткой. В вакуолях, как и в наших органах пищеварения, содержатся ферменты — вещества, способствующие разложению пищи до простых органических соединений. А для того чтобы пища попала в пищеварительные вакуоли, у инфузории есть следующие структуры: Ротовой желобок — это углубление, по которому пища попадает в клеточный рот. Клеточный рот — участок клетки, где происходит заглатывание пищи с образованием пищеварительной вакуоли. Это происходит следующим образом: частицы с водой вовлекаются в ротовой желобок, затем проталкиваются в глотку и собираются в пузырек на ее конце. Отрываясь от глотки, пузырек превращается в пищеварительную вакуоль и начинает перемещаться по цитоплазме инфузории. Клеточная глотка — это канал, который соединяет клеточный рот и цитоплазму. Когда переваривание пищи завершается, непереваренные остатки нужно удалить из клетки. Для этого у инфузории есть порошица — это отверстие в пелликуле, из которого выбрасываются непереваренные остатки пищи. А теперь обсудим еще несколько деталей питания простейших. Питание Главное отличие живого от неживого — наличие в составе органических веществ: у живых существ они есть, у объектов неживой природы их нет. Следовательно, органические вещества на Земле появляются только из живой природы. Одни живые организмы умеют сами их создавать из неорганических, остальные же могут питаться только готовой органикой, которую создал кто-то другой. На основе этого у живых организмов выделяют два основных типа питания — автотрофный и гетеротрофный, и один смешанный — миксотрофный. Гетеротрофы в ходе питания поглощают готовые органические вещества, созданные другими организмами. Гетеротрофы получают питательные вещества вместе с готовой пищей — равно как и мы с вами. Но в отличие от нас они не могут сами приготовить себе обед, им всегда приходится ходить в кафе. Например, так питается Инфузория-туфелька, Амёба обыкновенная, Малярийный плазмодий. Автотрофы самостоятельно синтезируют создают для себя органические вещества из неорганических. Они, в свою очередь, делятся на: Фототрофов — в основе их питания лежит процесс фотосинтеза , используется для этого энергия солнечного света.
Вопрос гласит: «Что такое фотосинтез и какие процессы включает в себя данный процесс? Включает в себя основные процессы: Процесс Описание Фотофаза Процесс, в котором световая энергия поглощается хлорофиллом и используется для разделения молекулы воды на кислород, протоны и электроны. Темновая фаза Процесс синтеза органических веществ из полученных протонов и электронов с использованием углеродного диоксида. Фиксация углерода Процесс, в котором углеродный диоксид превращается в органические соединения, такие как глюкоза, с использованием энергии и простых сахаров, полученных в результате фотосинтеза. Таким образом, фотосинтез является важной биологической реакцией, которая обеспечивает жизнь на Земле путем превращения световой энергии в химическую энергию в виде органических веществ. Что такое экосистема и как она функционирует? В экосистеме каждый компонент выполняет свою роль и взаимодействует с другими организмами и средой. Основные компоненты экосистемы это: продуценты зеленые растения , которые производят органическое вещество с помощью фотосинтеза, потребители животные — питающиеся растительным и животным питанием, и разлагатели, которые разлагают органические вещества и возвращают их в среду. Интеракции между компонентами экосистемы происходят через три основных процесса: питание, размножение и миграцию. Питание — это передача энергии и вещества от одного организма другому. Размножение — это процесс, при котором организмы создают потомство и передают свои гены следующему поколению. Миграция — это перемещение организмов внутри экосистемы или между различными экосистемами. Функционирование экосистемы зависит от множества факторов, таких как климатические условия, доступность пищевых ресурсов, взаимодействия между организмами и др. Каждая экосистема имеет свою собственную структуру и специфические особенности функционирования. Обмен веществами и энергией, циркуляция веществ и биоэлементов, саморегуляция и взаимодействие организмов — все это процессы, обеспечивающие баланс и устойчивость экосистемы. При нарушении этих процессов, например, из-за вмешательства человека или неблагоприятных природных условий, экосистема может стать неустойчивой и испытывать серьезные проблемы. Основные элементы экосистемы 1. Продуценты: Продуценты — это организмы, способные производить органическое вещество из неорганических компонентов при помощи солнечной энергии. Они выполняют фотосинтез, в результате которого выделяется кислород и происходит образование органических веществ, необходимых для всей экосистемы. Примерами продуцентов являются растения и некоторые виды водорослей. Потребители: Потребители — это организмы, которые получают энергию и питательные вещества, поглощая органические вещества, синтезированные продуцентами. Потребители делятся на несколько уровней в зависимости от их роли в пищевой цепи. Примерами потребителей могут служить животные, питающиеся растениями или другими животными. Разлагатели: Разлагатели — это организмы, которые разлагают органические вещества и отбросы мертвых организмов на более простые компоненты, возвращая их в неживую природу. Они играют важную роль в процессе извлечения питательных веществ из органического материала и очищении окружающей среды от отходов. Примерами разлагателей могут быть грибы, бактерии и некоторые виды червей. Неживая среда: Неживая среда состоит из неорганических компонентов, таких как вода, воздух, почва. Она обеспечивает условия для существования и развития всех живых организмов в экосистеме. Неживая среда также играет роль в передаче питательных веществ и энергии между организмами.
Задания по биологии. ОГЭ биология человек. Методы биологии ЕГЭ. Биология ЕГЭ. Методы биологии таблица ЕГЭ. Задачи по биологии ЕГЭ 2023. ОГЭ биология. ОГЭ биология 25 задание. Вопросы по биологии ОГЭ. ОГЭ биология задание 25 таблица. План подготовки к ЕГЭ по биологии. Биология подготовка к ЕГЭ. Чек лист для подготовки к ЕГЭ по биологии. План по подготовке к ЕГЭ по биологии. Жизненный цикл растений ЕГЭ биология 2023. ЕГЭ биология задания. Вопросы по биологии ЕГЭ. ЕГЭ по биологии задания. Вопросы ЕГЭ биология. Задания второй части ЕГЭ по биологии. Признаки биологических объекто. Признаки биологических объектов живых организмов. Закономерности передачи наследственных признаков изучает. Признаки живых систем таблица. Книжка ОГЭ по биологии 2023 Кириленко. Кириленко биология ЕГЭ животные 2023. ЕГЭ 2021 биология задания. Таблица для 1 задания ЕГЭ биология. ЕГЭ по биологии 1 задание решение. ЕГЭ по биологии 2023. Подготовка к ОГЭ 2023. Разбор ОГЭ по биологии 2023. Шпаргалки для ОГЭ по биологии 9 класс. Шпаргалки по биологии по заданиям. Шпаргалки по биологии ЕГЭ. Основные элементы рабочего стола с соответствующими им надписями. Соедините стрелки строки с соответствующими им элементами. Соедините стрелкой год с соответствующим событием. Соединил стрелками описание с соответствующим рисунком. Кириленко биология ЕГЭ 2022. Биология ЕГЭ Кириленко ботаника. Шпаргалка Эволюция биология. Шпаргалки по биологии ЕГЭ 2021. Шпаргалка по эволюции ЕГЭ биология. Скрипты биология ЕГЭ. Кириленко биология ЕГЭ. Кириленко биология ЕГЭ растения грибы лишайники. Кириленко биология ОГЭ. Водоросли важный компонент водной экосистемы так как они. Водоросли ОГЭ биология. Водоросли ЕГЭ задания. Водоросли ОГЭ. Животные ОГЭ биология теория. Биология 1 задание теория. Тесты насекомые ОГЭ по биологии. Типы грибов таблица. Таблица по биологии многообразие грибов. Схема многообразие грибов. Строение грибов 5 класс биология таблица строение. Решение 19 задания ОГЭ химия. Решение всех задач по информатике ОГЭ. Задачи по информатике ОГЭ. Решение 1 задания по информатике ОГЭ. Структура ЕГЭ по биологии. Структура заданий ЕГЭ по биологии. Оценка работы ЕГЭ по биологии. Методы биологических исследований ЕГЭ.
Вход и регистрация
Последовательно изучайте представленные ниже темы, а затем проверяйте свои знания с помощью онлайн-тестирования. При возникновении трудностей в самостоятельной подготовке вы можете воспользоваться услугами наших репетиторов. Они проведут с вами индивидуальные или групповые онлайн-занятия, проверят задания 2 части контрольных измерительных материалов ОГЭ и ЕГЭ, предоставят полное описание недостатков решений, подскажут, на что обратить особое внимание.
Неживая среда: Неживая среда состоит из неорганических компонентов, таких как вода, воздух, почва. Она обеспечивает условия для существования и развития всех живых организмов в экосистеме. Неживая среда также играет роль в передаче питательных веществ и энергии между организмами.
Взаимодействие между продуцентами, потребителями и разлагателями является основой функционирования экосистемы. Благодаря этому в экосистемах поддерживается равновесие и энергетический обмен. Как происходит взаимодействие между организмами в экосистеме? В экосистеме взаимодействие между организмами играет ключевую роль в поддержании равновесия и устойчивости данной системы. Организмы в экосистеме взаимодействуют друг с другом, обмениваясь энергией, веществами и информацией.
Существует несколько видов взаимодействия между организмами: Пищевая цепь и пищевая пирамида. Взаимодействие внутривидовое и межвидовое. Симбиоз и паразитизм. Взаимодействие с окружающей средой. Пищевая цепь и пищевая пирамида представляют собой основное средство передачи энергии и веществ в экосистеме.
Они показывают, как энергия и вещества передаются от одного организма к другому через потребление продуктов питания. В пищевой цепи каждый организм служит источником питания для организма, находящегося на уровень выше. Пищевая пирамида представляет собой иерархическую структуру, где на каждом уровне находится организм, потребляющий организмы на уровень ниже. Взаимодействие внутривидовое и межвидовое включает в себя взаимодействие организмов одного вида между собой внутривидовое и взаимодействие организмов разных видов межвидовое. Внутривидовое взаимодействие включает в себя такие процессы, как размножение, конкуренцию за ресурсы и уход за потомством.
Межвидовое взаимодействие включает в себя взаимодействие хищник-жертва, симбиоз и паразитизм. Биологическая конкуренция возникает из-за конкуренции организмов за ресурсы, такие как пища, пространство и свет. Она является ключевым фактором, влияющим на приспособление организмов и эволюцию видов. В результате конкуренции доминирующие организмы получают больше ресурсов, в то время как слабые организмы обречены на ограниченные ресурсы. Симбиоз и паразитизм являются формами взаимодействия, где два организма живут вблизи друг друга и зависят друг от друга.
В случае симбиоза оба организма получают выгоду от взаимодействия, тогда как в случае паразитизма один организм получает выгоду за счет повреждения другого организма. Взаимодействие организмов с окружающей средой включает в себя такие процессы, как адаптация к климатическим условиям, использование ресурсов окружающей среды и воздействие на нее. Организмы вырабатывают различные адаптационные механизмы, чтобы выжить в своей среде и использовать доступные ресурсы. Таким образом, взаимодействие между организмами в экосистеме играет важную роль в поддержании равновесия и устойчивости этой системы. Оно обеспечивает передачу энергии и веществ, конкуренцию за ресурсы, симбиоз, паразитизм и адаптацию к окружающей среде.
Роль вещественного обмена в экосистеме Вещественный обмен играет важную роль в экосистеме, обеспечивая перераспределение веществ и энергии между живыми организмами и их окружающей средой.
Один круг кровообращения, сердце двухкамерное, холоднокровные. Органы дыхания: жабры, защищены жаберными крышками. Органы выделения: почки, 2 мочеточника, мочевой пузырь. Раздельнополые животные. Оплодотворение наружное в воде - нерест.
Класс земноводные или амфибии. Отделы тела: голова, туловище, передние и задние конечности. Кожа голая и покрыта слизью. В позвоночнике выделяют шейный, туловищный, крестцовый и хвостовой отделы. Череп состоит из черепной коробки и челюсти. Подвижное сочленение черепа, один шейный позвонок.
Мышцы развиты хорошо. Появляются ягодичные, бедренные и икроножные мышцы. Как у рыб - пищеварит. Два круга кровообращения. Кровь смешанная, сердце трехкамерное. Оба круга начинаются от желудочка.
Кровь - венозная, артериальная, смешанная. Холоднокровные животные. Органы дыхания - парные легкие. Имеется кожное дыхание. Выделительная с-ма - парные почки, мочеточники, клоака, мочевой пузырь. Головной и спинной мозг с нервами.
Глаза с верхними и нижними веками. У бесхвостых оплодотворение - наружное, у хвостатых - внутреннее. Класс пресмыкающиеся рептилии. Кожа сухая. Наружные слои эпидермиса - ороговевшие. Хорошо развит - шейный отдел.
Пояснично - грудной отдел позвоночника соединен с ребрами с грудиной. Появляются межреберные мышцы. Как у земноводных - пищеварительная с-ма. Дышат кислородом с помощью легких. Кожное дыхание отсутствует. Кровеносная система замкнута.
Сердце трехкамерное. Увеличиваются размеры мозжечка. Возникает первичная кора. Оплодотворение внутреннее. Яйца откладывают на суше. Класс птицы Обтекаемая форма тела.
Голова, туловище, шея, передние конечности - крылья, задние - ноги. Зубы отсутствуют. Два круга. Кровь не смешивается. Сердце 4-камерное. Дыхание двойное.
Увеличение больших полушарий. Хорошо развиты орган слуха и зрения. Свойственно цветное зрение. Раздельнополы животные. Половой диморфизм. Классификация птиц: Оседлые - воробьи, галки, голуби, сороки Кочующие - совы, снегири, синицы, грачи.
Перелетные - иволги, соловьи, утки, скворцы, журавли. Класс млекопитающие Наличие волосяного покрова на теле. В коже много желез: сальные, потовые, млечные. Зубы и слюнные железы. Эритроциты не имеют ядра. Дышат атмосферным воздухом.
Органы дыхания - легкие. Имеется диафрагма. Появляется ушная раковина. Клетки бактерий: Шаровидные - кокки, палочковидные - бациллы; дугообразно изогнуты - вибрионы. Спиралеобразные - спиреллы. Колонии бактерий: диплококки, стрептококки.
Строение бактерий. Оболочка -2 слоя. Ядерное вещество представлено в виде замкнутой в кольцо молекулы ДНК. Рибосомы - синтезируют белок. Клеточные включения - крахмал, гликоген жиры. Грибы Плесневые, дрожжи, шляпочные: трубчатые, пластинчатые.
Имеют клеточные стенку. Мало подвижны. Неограниченный рост, размножение спорами и вегетативно, частями грибницы. Содержится хитин. Запасное пит. Тело состоит из отдельных нитей.
Представлены одноклеточными и многоклеточными формами. Лишайники Накипные - слоевище имеет вид налетов или корочек, плотно прилегающих к субстратам. Листоватые - слоевище в виде пластинок, прикреплены к субстрату гифами -ксантория.
Для выяснения частот встречаемости тех или иных генов и генотипов используется закон Харди-Вайнберга. Биохимический Был описан выше, применяется и как частный метод в генетике.
Позволяет обнаружить нарушения в обмене веществ, вызванные изменением генов и, как следствие, изменением активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена сахарный диабет , обмена аминокислот, липидов, минералов и др. Методы селекции как науки. Теоретической основой селекции является генетика, так как именно знание законов генетики позволяет целенаправленно управлять закреплением мутаций, предсказывать результаты скрещивания, правильно проводить отбор гибридов. В результате применения знаний по генетике удалось создать более 10 тысяч сортов пшеницы на основе нескольких исходных диких сортов, получить новые штаммы микроорганизмов, выделяющих пищевые белки, лекарственные вещества, витамины и т.
Для закрепления полезных наследственных свойств необходимо повысить гомозиготность нового сорта. Иногда для этого применяют самоопыление перекрёстноопыляемых растений. Неродственное аутбридинг -внутрисортовое внутрипородное -межсортовое межпородное Метод межлинейной гибридизации, при котором часто наблюдается эффект гетерозиса: гибриды первого поколения обладают высокой урожайностью и устойчивостью к неблагоприятным воздействиям. Гетерозис характерен для гибридов первого поколения, которые получаются при скрещивании не только разных линий, но и разных сортов и даже видов. Эффект гетерозиготной или гибридной мощности бывает сильным только в первом гибридном поколении, а в следующих поколениях постепенно снижается.
Основная причина гетерозиса заключается в устранении в гибридах вредного проявления накопившихся рецессивных генов. Другая причина — объединение в гибридах доминантных генов родительских особей и взаимное усиление их эффектов. Отдаленная гибридизация Отдаленная гибридизация домашних животных менее эффективна, чем растений. Межвидовые гибриды животных часто бывают бесплодными. При этом восстановление плодовитости у животных представляет более сложную задачу, поскольку получение полиплоидов на основе умножения числа хромосом у них невозможно.
Правда, в некоторых случаях отдаленная гибридизация сопровождается нормальным слиянием гамет, обычным мейозом и дальнейшим развитием зародыша, что позволило получить некоторые породы, сочетающие ценные признаки обоих использованных в гибридизации видов. Искусственный отбор Первоначально в основе селекции лежал искусственный отбор, когда человек отбирает растения или животных с интересующими его признаками. До XVI—XVII веков отбор происходил нерегулярно и неметодично: для посева отбирали лучшие плоды на посадку или особи для воспроизводства просто рассчитывая на повторение результата; забавно, что это соседствовало с теологической убеждённостью неизменности «божьих созданий». Только в последние столетия, ещё не зная законов генетики, стали использовать отбор сознательно и целенаправленно, скрещивая экземпляры с ярко выраженными полезными свойствами. Массовый отбор Отбор особей по фенотипу без проверки генотипа.
Для перекрёстноопыляемых растений применяют массовый отбор особей с желаемыми свойствами. В противном случае невозможно получить материал для дальнейшего скрещивания. Таким образом получают, например, новые сорта ржи. Эти сорта не являются генетически однородными. Индивидуальный отбор Прием искусственного отбора, который проводится на основе индивидуальной наследственной изменчивости особи.
В селекции животных применяют жесткий индивидуальный отбор по хозяйственно ценным признакам, выносливости, экстерьеру. В селекции растений индивидуальный отбор используют при работе с самоопыляющимися растениями, при этом выделяются чистые линии — потомство одной самоопыляющейся особи. Благодаря индивидуальному отбору от одного вида дикого сизого голубя выведено около 150 пород домашних голубей; от одного вида собаки получено все разнообразие пород. Большинство сортов пшеницы, ячменя, овса были получено методом индивидуального отбора. Полиплоидизация Получают искусственные полиплоиды при помощи химических веществ, которые разрушают веретено деления, в результате чего удвоившиеся хромосомы не могут разойтись, оставаясь в одном ядре.
Одно из таких веществ — колхицин. Полиплоиды отличаются быстрым ростом, крупными размерами и высокой урожайностью. В сельскохозяйственной практике широко используются триплоидная сахарная свекла, четырёхплоидный клевер, рожь и твердая пшеница, а также шестиплоидная мягкая пшеница. Один из путей преодоления стерильности межвидовых гибридов. Искусственный мутагенез Путём искусственного мутагенеза и последующего отбора мутантов были получены новые высокоурожайные сорта ячменя и пшеницы.
Этими же методами удалось получить новые штаммы грибов, выделяющие в 20 раз больше антибиотиков, чем исходные формы. За последние 70 лет выведено более 2250 сортов сельскохозяйственных растений, созданных при помощи физического и химического мутагенеза. Методы исследования эволюции Палеонтологические методы Практически все методы палеонтологии применимы для изучения эволюционных процессов. Важнейшие из этих методов: выявление ископаемых промежуточных форм, восстановление филогенетических рядов и обнаружение последовательности ископаемых форм. Наибольшую информацию палеонтологические методы дают о состоянии биосферы на различных этапах развития органического мира вплоть до современности, о последовательности смен флор и фаун.
Биогеографические методы Биогеографические методы основаны на анализе распространения ныне существующих видов. Особое значение имеет изучение распространения реликтовых форм. Даёт информацию о местонахождении очагов происхождения таксонов, путях их расселения, влиянии климатических условий и изоляции на развитие видов. Эмбриологический Данный метод основан на проявлении закономерностей эмбрионального развития, таких как закон зародышевого сходства и биогенетический закон Выявление зародышевого сходства.