первой термоядерной(водородной) бомбы СССР. В чем же разница между атомной и более совершенной водородной бомбой? Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер.
Что произойдет после взрыва ядерной бомбы?
Термоядерные бомбы, в отличие от атомных, используют процесс ядерного синтеза. Ещё дополнительное отличие её от чисто атомной бомбы — это "чистота" взрыва. В результате взрыва водородной бомбы выделяется гораздо меньше радиоактивных веществ, чем в результате взрыва атомной бомбы. Отмечается, что между атомной и водородной бомбами есть существенное различие. Водородная бомба и атомная бомба – это два типа ядерного оружия, но их механизмы действия очень сильно отличаются друг от друга. Ключевое отличие «грязной бомбы» от атомной в том, что она не создает новой радиоактивности (например, из почвы в эпицентре взрыва).
ЯДЕРНОЕ ОРУЖИЕ
Разница между ядерной бомбой и атомной бомбой в следующем: Атомная бомба — это бомба, в основе взрывного и разрушительного действия которой является энергия, выделяемая при распаде радиоактивных изотопов. Ядерной же бомбой является бомба, в основе взрывной волны которой может быть как ядерный распад атомов, так и термоядерный синтез. Различие между термоядерной и атомной бомбами заключается в том, что у первой при термоядерном синтезе происходит слияние ядер атомов с выделением колоссального количества энергии, а при атомной реакции — происходит радиоактивный распад.
Ядерной же бомбой является бомба, в основе взрывной волны которой может быть как ядерный распад атомов, так и термоядерный синтез. Различие между термоядерной и атомной бомбами заключается в том, что у первой при термоядерном синтезе происходит слияние ядер атомов с выделением колоссального количества энергии, а при атомной реакции — происходит радиоактивный распад. На основе термоядерного синтеза, разработан, например, механизм действия водородной бомбы.
Если сравнивать энергию, которая образуется при ядерном делении и ядерном синтезе, то в теории разрыв будет не таким огромным, как думают многие. Это примерно равно энергии взрыва 20 тыс. Из 1 кг дейтерида лития-6 после полного синтеза выделяется энергия, эквивалентная взрыву 60 тыс. Как видите, разница между энергией атомного деления и ядерного синтеза отличается всего в три раза. Хотя разница в теории невелика, в действительности это все равно что сравнивать рай и ад.
Самая мощная атомная бомба, когда-либо созданная людьми, — это атомная бомба мощностью, эквивалентной 450 000 тонн тротила, которая была взорвана в ходе операции «Плющ» в США в 1955 году. Самой мощной водородной бомбой стала царь-бомба, которая была испытана нашей страной во времена Советского Союза в 1961 году. Взрыв этой бомбы поразил всех экспертов в мире. Ее мощность составила 50 миллионов тонн в тротиловом эквиваленте. То есть фактически мощность водородной бомбы была в 111 раз больше самой мощной в мире атомной бомбы. Слева — грибовидное облако водородной бомбы, а справа — грибовидное облако атомной бомбы Почему же если потенциальная энергия ядерного деления урана-235 и ядерного синтеза дейтерид лития-6 отличается всего в 3 раза на деле разница при взрыве оказывается колоссальной? Все дело в различной критической массе ядерного топлива , а также в различии процессов высвобождения энергии. В ядерной бомбе процесс начинается после детонации заряда, расположенного внутри атомной бомбы, в которой находится уран или плутоний. После мини-взрыва, который приводит к детонации, изотопы начинают распадаться, захватывая нейтроны.
А вот водородная термоядерная бомба работает по принципу синтеза. В процессе взрыва, дейтерид лития-6 распадается на дейтерий и тритий, а те соединяются с ядром гелия. Получается, фактически неограниченная мощность взрыва.
Какая бомба мощнее: ядерная или водородная
Ядерная бомба большой разрушительной силы, действие которой основано на использовании энергии, выделяющейся при реакции синтеза лёгких ядер (см. Термоядерные реакции). это два различных типа ядерных боеприпасов, которые имеют разные. Чем отличается ядерная бомба от атомной и водородной бомбы. Чем отличается американская "мать всех бомб" от российского "отца".
ЯДЕРНОЕ ОРУЖИЕ
В водородной бомбе используется энергия не только от деления ядра, но и от последующего термоядерного синтеза, что значительно усиливает мощность взрыва. В отличие от атомной бомбы, при взрыве которой энергия выделяется в результате деления атомного ядра, в водородной бомбе идет термоядерная реакция, подобная той, которая происходит на Солнце. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок.
В чем отличие атомной, ядерной и водородной бомб друг от друга?
Грубо говоря, кусок плутония массой больше этого значения не может существовать - он сразу дает цепную реакцию, то есть взрыв. В атомной бомбе установлены несколько кусков плутония, масса каждого из которых немного меньше критической. Эти куски подогнаны по форме так, что если их соединить, получится единое целое. Они выстреливаются друг в друга и образуют большой кусок массой намного больше критической. Водородная бомба - это бомба, в которой происходит реакция ядерного синтеза. То есть наоборот, из двух легких атомов получается один тяжелый. Изотопы водорода дейтерий и тритий на выходе дают гелий и еще более колоссальное количество энергии.
Самый первый термоядерный реактор, также называемый «водородным», испытание взрывного устройства выявило точно такое же количество энергии, как примерно 10 000 000 тонн тротила. Что такое водородная бомба?
Водородное взрывное устройство или даже водородная бомба, оружие, содержащее значительную часть своего энергетического уровня за счет ядерной смеси изотопов водорода. В ядерном взрывном устройстве уран, так же как и плутоний, фактически разделен на менее тяжелые факторы, которые вместе весят меньше, чем исходные атомы, а остальная масса вырабатывается как энергия. В отличие от этой конкретной бомбы деления, водородная бомба работает по особому принципу термоядерного синтеза или комбинирования друг с другом, связывая менее тяжелые элементы непосредственно с более существенными элементами. Конечный элемент снова весит примерно меньше, чем его элементы, основная разница снова проявляется в форме энергии. Просто потому, что для запуска термоядерных реакций обычно требуются очень высокие температуры, конкретная водородная бомба дополнительно упоминается как термоядерная бомба. Самое первое термоядерное взрывное устройство было взорвано в 1952 году в Эниветоке Соединенными Штатами. Ряд других стран, возможно, получили исследованные термоядерные продукты, а также заявляют, что они способные генерировать их, тем не менее, формально состояние, в котором они просто не сохраняют запас этого оружия.
Технически говоря, нейтронная бомба очень похожа на небольшое термоядерное оружие, но без урановой оболочки для второй ступени. В результате обычная детонация вызывает реакцию деления, которая направляется на вторую стадию, полную дейтерия трития. Без урановой оболочки процесс синтеза не вызывает последующих реакций деления.
В результате получается гораздо меньшая детонация — возможно, радиусом всего несколько сотен метров, — но мощный выброс нейтронного и гамма-излучения. Это суть тактического ядерного оружия, используемого против вражеской бронетехники и пехоты, поскольку приводит к облучению и уничтожению всего живого, сохраняя при этом строения и механизмы. На развитие проекта Совершая небольшое пожертвование вы помогаете проекту существовать и дальше. Спасибо, за понимание и поддержку! Выбор читателей Черная дыра — самый загадочный объект в космосе, это область в пространстве-времени, гравитационное притяжение которого… by Super User Бытует мнение, что титан является самым прочным и самым твердым металлом, превосходящим сталь во всех… by Super User Надо сказать, что такие вопросы люди задают и довольно часто. Значит интерес есть. Значит можно… by Super User.
В теории, используя ударный беспилотник "Сириус" или С-70 "Охотник" российская армия может поразить цель в любом уголке Украины. Вероятность использования такого оружия по целям в черте города крайне низка — слишком высок шанс поражения мирного населения. Человеческий организм поражается не только ударной волной, но также и тепловым воздействием. Особенно уязвимы внутренние органы, а также органы слуха. Поражение происходит вплоть до 600 метров от эпицентра взрыва. В эпицентре действия бомбы также сгорает весь кислород — выжившие, находящиеся в помещении быстро задыхаются от дефицита воздуха. В 1976 году ООН назвало подобные бомбы негуманным средством. Стоит отметить также удобство работы такими боеприпасами по позициям противника, находящимся в относительной близости от позиций своих войск. Блиндажи или иные укрытия не способны защитить живую силу противника от последствий мощного взрыва, а вот осколочное поле от ОДАБ незначительное, что снижает вероятность поражения своих подразделений.
Ядерные испытания
- Атомная и водородная бомбы,какая мощнее? И в чём их отличие?
- Водородная бомба и ядерная бомба отличия
- Самая мощная бомба в мире сильнее ядерной
- Следующие этапы советской программы
- Чем отличается атомная бомба от ядерной?
- Что такое атомная бомба
Чем отличается атомная бомба от водородной
Полигон остался «чистым листом», на нем исчезли все возвышенности. Здания в секунду превращались в песок. В радиусе 800 километров был слышен ужасный взрыв. Если вы думаете, что атомная боеголовка является самым страшным оружием человечества, значит еще не знаете об водородной бомбе. Мы решили исправить эту оплошность и рассказать о том, что же это такое. Мы уже рассказывали о и.
Немного о терминологии и принципах работы в картинках Разбираясь в том, как выглядит ядерная боеголовка и почему, необходимо рассмотреть принцип ее работы, основанный на реакции деления. Сначала в атомной бомбе происходит детонация. В оболочке располагаются изотопы урана и плутония. Они распадаются на частички, захватывая нейтроны. Далее разрушается один атом и инициируется деление остальных.
Делается это при помощи цепного процесса. В конце начинается сама ядерная реакция. Части бомбы становятся одним целым. Заряд начинает превышать критическую массу. При помощи такой структуры освобождается энергия и происходит взрыв.
Кстати, ядерную бомбу еще называют атомной. А водородная получила название термоядерной. Поэтому вопрос, чем отличается атомная бомба от ядерной, по сути своей является некорректным. Это одно и то же. Отличие ядерной бомбы от термоядерной же заключается не только в названии.
Термоядерная реакция основана не на реакции деления, а сжатия тяжелых ядер. Ядерная боеголовка является детонатором или запалом для водородной бомбы. Другими словами, представьте себе огромную бочку с водой. В нее погружают атомную ракету. Вода представляет собой тяжелую жидкость.
Тут протон со звуком замещается в ядре водорода на два элемента - дейтерий и тритий: Дейтерий представляет собой один протон и нейтрон. Их масса вдвое тяжелее, чем водород; Тритий состоит из одного протона и двух нейтронов. Они тяжелее водорода в три раза. Испытания термоядерной бомбы , окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. Разрушительная сила атомного оружия начала привлекать каждую из сторон.
США первыми сделали и испытали ядерную бомбу. Но вскоре стало понятно, что она не может иметь больших размеров. Поэтому было решено попробовать сделать термоядерную боеголовку. Тут снова же преуспела Америка. Советы решили не проигрывать в гонке и испытали компактную, но мощную ракету, которую можно перевозить даже на обычном самолете Ту-16.
Тогда все поняли, чем отличается ядерная бомба от водородной. Для примера, первая американская термоядерная боеголовка была такой высокой, как трехэтажный дом. Ее нельзя было доставить небольшим транспортом. Но потом по разработкам СССР размеры были уменьшены. Если проанализировать , можно сделать вывод, что эти ужасные разрушения были не такими уж и большими.
В тротиловом эквиваленте сила удара была всего несколько десятком килотонн. Поэтому здания были уничтожены только в двух городах, а в остальной части страны услышали звук ядерной бомбы. Если это была бы водородная ракета, всю Японию бы разрушили полностью всего одной боеголовкой. Ядерная бомба со слишком сильным зарядом может взорваться непроизвольно. Начнется цепная реакция и произойдет взрыв.
Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Ведь термоядерную боеголовку можно сделать какой угодно мощности, не боясь самопроизвольного подрыва. Это заинтересовало Хрущева, который приказал сделать самую мощную водородную боеголовку в мире и таким образом приблизиться к выигрышу гонки. Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн.
Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров.
По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте. Современные опасности использования водородной бомбы Отличие атомной бомбы от термоядерной мы уже рассмотрели.
Как обсуждается, атомная бомба подвергается процессу деления. Изотопы урана-235 в дополнение к плутонию-239 были выбраны просто потому, что они удобно делятся. Конкретная процедура деления станет самоподдерживающейся, поскольку нейтроны, создаваемые определенным взрывом атома, сталкиваются с ядрами, а также генерируют намного больше деления. Это то, что называется последовательной реакцией, и она также является источником хорошего атомного взрыва. Всякий раз, когда атом урана-235 ассимилирует нейтрон в дополнение к делению непосредственно на пару новых атомов, это производит около трех новых нейтронов и немного энергии связи. Пара нейтронов обычно не вызывает реакции, учитывая, что они потеряны или даже поглощены атомом урана-238. С другой стороны, один нейтрон может столкнуться с использованием атома урана-235, который, в свою очередь, делится, а также испускает 2 нейтрона и некоторую энергию связи. Каждый из этих нейтронов сталкивается с атомами урана-235, потому что в обоих вариантах происходит деление и разряд между одним и тремя нейтронами и так далее. Это вызовет ядерную последовательность событий.
Водородные бомбы, с другой стороны, основаны на ядерном синтезе и намного мощнее атомных бомб, высвобождая энергию, эквивалентную миллионам тонн тротила. Наконец, нейтронные бомбы предназначены для испускания большого количества нейтронного излучения при минимальных взрывах и тепловых эффектах, что делает их потенциально полезными для военных целей. Однако разработка и развертывание ядерного оружия имеют серьезные этические, политические и экологические последствия. Использование атомных бомб в Хиросиме и Нагасаки во время Второй мировой войны привело к гибели сотен тысяч людей и оставило долгосрочные последствия для здоровья из-за радиационного облучения. Продолжающееся обладание ядерными арсеналами и их модернизация несколькими странами сопряжены со значительным риском случайного или преднамеренного применения, что приведет к глобальным разрушениям и человеческим жертвам. Кроме того, при производстве, испытаниях и хранении ядерного оружия образуется большое количество радиоактивных отходов, что представляет долгосрочную угрозу для здоровья населения и окружающей среды. Ядерное оружие также отвлекает ресурсы от социального и экономического развития, усугубляя нищету, неравенство и конфликты. Поэтому крайне важно, чтобы международное сообщество работало над достижением цели ядерного разоружения и нераспространения, чтобы уменьшить риск ядерной катастрофы и содействовать построению более мирного и устойчивого мира. В заключение, атомная, водородная и нейтронная бомбы — это все виды ядерного оружия, различающиеся по своей взрывной силе, механизму детонации и радиационному воздействию. Это оружие имеет серьезные этические, политические и экологические последствия и представляет серьезную угрозу глобальной безопасности и стабильности.
Современное термоядерное оружие выбрасывает радиоактивный материал высоко в стратосферу, что может привести к осадкам по всему миру. Макет бомбы «Малыш», сброшенной на Хиросиму. Источник: U. National Archives Риск радиоактивных осадков наиболее высок в течение 48 часов после взрыва. За это время область, которая первоначально подвергалась воздействию 1000 рентген в час, будет подвергаться только 10 рентгенам в час. Около половины людей, получивших общую дозу облучения около 350 рентген в течение нескольких дней, скорее всего, умрут от острого радиационного отравления. Для сравнения — типичная КТ брюшной полости подвергает людей менее 1 рентген. Выжившие, которые попадут под радиоактивные осадки, подвергаются высокому риску развития рака на протяжении всей оставшейся жизни. Экологическая катастрофа Радиоактивные осадки, осевшие на посевных угодьях, могут оказаться в пищевой цепи. Например, радиоактивный йод, попавший в детский организм с коровьим молоком, вызывает рак щитовидной железы. Пепел и сажа, выброшенные в атмосферу во время ядерной войны, могут охладить климат, если будет сброшено достаточное количество бомб.
Термоядерная бомба и ядерная отличия
Сущностное отличие ядерной и термоядерной бомб. Ядерной (атомной) бомбой принято называть такое устройство взрывного типа, где основная доля высвобождаемой энергии при взрыве выделяется за счёт ядерной реакции деления, а водородной (термоядерной). В принципе, водородная бомба основана на легком ядерном синтезе, также известном как термоядерный синтез. Разница в реакции ядерного деления между этими зарядами, делает водородную бомбу разрушительнее атомной в сотни раз. Водородной бомбы, которая также называется термоядерной оружием или водородной бомбы, это оружие, которое получает свое взрывное устройство и разрушительную силу от ядерного синтеза. это два различных типа ядерных боеприпасов, которые имеют разные принципы работы и поразительные характеристики. Отличие водородной бомбы от атомной: список различий, история создания.
ЯДЕРНОЕ ОРУЖИЕ
Чем отличаются атомная, ядерная и водородная бомбы. Согласно сообщениям новостей, Северная Корея угрожает протестировать водородную бомбу над Тихим океаном. Отмечается, что между атомной и водородной бомбами есть существенное различие. термоядерное оружие колоссальной разрушительной силы, использующее в качестве источника энергии синтез тяжёлых ядер дейтерия и трития. Однако есть сложность: чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру — лишь тогда атомные ядра начнут реагировать. Поэтому главное отличие ядерной и термоядерной бомбы заключаются в принципе достижения взрыва.
В чем разница между атомной, водородной и нейтронной бомбой?
Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма-излучение, порождённые первичным взрывом, могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию обжатие и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма. Взрыв «Джордж» В 1951 году была проведена серия испытаний под общим наименованием Операция «Парник» англ.
Operation Greenhouse , в ходе которой отрабатывались вопросы миниатюризации ядерных зарядов при увеличении их мощности. Одним из испытаний в этой серии стал взрыв под кодовым наименованием « Джордж » англ. George , в котором было взорвано экспериментальное устройство, представлявшее собой ядерный заряд в виде тора с небольшим количеством жидкого водорода, помещённым в центре.
Основная часть мощности взрыва была получена именно за счёт водородного синтеза, что подтвердило на практике общую концепцию двухступенчатых устройств. Ivy Mike было проведено полномасштабное испытание двухступенчатого устройства с конфигурацией Теллера-Улама. Мощность взрыва составила 10,4 мегатонны, что в 450 раз превысило мощность бомбы, сброшенной в 1945 году на японский город Нагасаки.
Устройство общей массой 62 тонны включало в себя криогенную ёмкость со смесью жидких дейтерия и трития и обычный ядерный заряд, расположенный сверху. По центру криогенной ёмкости проходил плутониевый стержень, являвшийся «свечой зажигания» для термоядерной реакции. Оба компонента заряда были помещены в общую оболочку из урана массой 4,5 тонны, заполненную полиэтиленовой пеной, игравшей роль проводника для рентгеновского и гамма-излучения от первичного заряда к вторичному.
Монтаж боеголовок Смесь жидких изотопов водорода не имела практического применения для термоядерных боеприпасов, и последующий прогресс в развитии термоядерного оружия связан с использованием твёрдого топлива — дейтерида лития-6. В 1954 эта концепция была проверена на атолле Бикини в ходе испытаний « Bravo » из серии Операция «Замок» при взрыве устройства под кодовым названием «Креветка» от англ «Shrimp». Реальность оказалась гораздо более драматичной: при расчётной мощности в 6 мегатонн реальная составила 15, и это испытание стало самым мощным взрывом из когда-либо произведённых Соединёнными Штатами [11].
К 1960 году на вооружение были приняты боеголовки мегатонного класса W47, развёрнутые на подводных лодках, оснащённых баллистическими ракетами Поларис. Боеголовки имели массу 320 кг и диаметр 50 см.
То же стоит сказать и о современных машинах: завести их не получится. Третьим фактором поражения, опасным для человека, является проникающая радиация, или — иначе — ионизирующее излучение. Радиус поражения проникающей радиации при взрывах в атмосфере меньше, чем радиусы поражения от светового излучения и ударной волны, поскольку она сильно ею поглощается. Проникающая радиация поражает людей только на расстоянии двух-трёх километров от места взрыва, даже для больших по мощности зарядов.
Поэтому бояться её просто не стоит, уж если вы попали в область поражения воздухом, нагретым до семи тысяч градусов, опасаться проникающего излучения уже нет смысла. Радиоактивное заражение — это результат выпадения из поднятого в воздух облака значительного количества радиоактивных веществ. Три основных источника радиоактивных веществ в зоне взрыва — продукты деления начинки бомбы, не вступившая в реакцию часть ядерного заряда и радиоактивные изотопы, образовавшиеся в грунте и других материалах под воздействием нейтронов. Именно этот фактор служит причиной острой лучевой болезни, от которой в Хиросиме и Нагасаки погибла едва ли не большая часть попавших под удар по подсчётам — 80 000 человек , а спустя несколько лет общее количество умерших превысило 160 000 человек и, по некоторым подсчётам, подошло вплотную к 200 000 человек. С радиоактивным заражением просто: если вы оказались после взрыва в помещении, где остались стёкла а в Японии ударной волной окна выбило на расстоянии 14 километров от эпицентра , то можете закрыть форточку и оставаться дома. Если есть возможность попасть в плотно закрытый подвал без сквозняков, лучше попасть туда.
Зная, какие обычно в России подвалы, проще остаться дома, постаравшись заклеить и закрыть все возможные вентиляционные отверстия. Не нужно мучить себя питьём йода в том виде, который лежит у вас в аптечке: он не поможет. Лучше откупорить бутылочку вина и успокоиться. Кроме того, большинство ядерных боеголовок в настоящий момент термоядерные, они относятся к так называемой чистой категории ядерного оружия. Специалисты считают, что уже спустя несколько часов радиационный фон уменьшится настолько, что начнётся эвакуация. Поэтому радиации стоит бояться меньше, чем других поводов.
Бежать ли в бомбоубежище? Для того чтобы бомбоубежища действительно эффективно сработали, требуется, чтобы на момент взрыва люди уже находились там. Порождения Второй мировой войны, они по-прежнему эффективны при обычных артобстрелах и бомбёжках, в этом можно убедиться, посмотрев репортажи с Украины. Однако в случае полномасштабной ядерной войны система ГЗ, скорее всего, просто не успеет отработать, люди не добегут до укрытий, в конечном счёте это приведёт к ещё большему количеству смертей. Кроме того, как показывают современные исследования, инвентаризацией было установлено наличие в казне Российской Федерации 16 271 объекта защитных сооружений, государственное финансирование на содержание которых не осуществлялось на протяжении более 20 лет. На данный момент большинство из них просто закрыты, не функционируют, там нет воды и запаса пищи, чтобы пересидеть положенное время для уменьшения влияния радиационного заражения.
В состоянии боевой готовности бомбу можно было держать тоже не более 48 часов, после чего приходилось менять аккумуляторы, питающие систему подрыва. В разобранном состоянии содержались в Сарове и первые советские атомные бомбы чрезвычайного государственного запаса, приведение которых в боеготовое состояние тоже требовало немалых регламентных хлопот. Русский вернисаж Что касается СССР, то фотографии первой отечественной авиабомбы с зарядом РДС-1, испытанным в 1949 году, были рассекречены примерно 30 лет назад. Эта бомба, хотя и имела прототипом американского «Толстяка», заметно от него отличалась внешне.
А вообще, 501-я живо напоминала нечто вроде самовара. Это была не просто механическая система подвески: первые атомные бомбы были изделиями, требующими весьма деликатного обращения. Между прочим, вооружение тяжелого бомбардировщика Ту-95В супербомбой АН602 принято считать чисто экспериментальным. Мол, и самолет был всего лишь специально оборудованным единичным образцом серийной машины Ту-95, и «Кузькина мать» представляла собой штучное изделие, которое Хрущев решил показать Западу.
При этом всего через несколько дней после того, как была завершена сборка первой бомбы, советская разведка уже доставила её схему в Москву. Японский город Хиросима, август 1945 года AFP На фоне успехов ядерной программы, в которой помимо США активное участие принимали Великобритания и Канада, западные лидеры стали делать недвусмысленные намёки на переговорах с Иосифом Сталиным. При этом они даже не могли себе представить, насколько хорошо советское руководство осведомлено об их реальных достижениях. В 1945 году военно-политическое руководство стран Запада начало разработку планов атомной бомбардировки СССР. К концу года было определено 20 крупнейших городов Советского Союза, которые должны были повторить судьбу Хиросимы и Нагасаки. В 1947—1948 годах был разработан целый ряд новых военных планов. Согласно документу под названием «Чариотир», принятому летом 1948-го, 133 ядерные бомбы должны были упасть сразу на 70 городов Советского Союза. За атомным ударом могли последовать массированные бомбардировки обычными боеприпасами. План «Дропшот», разработанный в 1949 году, был ещё более масштабным: предполагалось уничтожить сразу 100 млн советских граждан 300 атомными бомбами. Советский ответ Внести кардинальные коррективы в своё военное планирование властям США и Великобритании пришлось осенью 1949 года.
Речь шла о термоядерной... Однако полностью проблему обеспечения безопасности СССР это не решило — американцы всё ещё располагали более внушительным ядерным арсеналом и более совершенными средствами доставки. Теперь многое зависело от того, кто окажется лидером гонки в области разработки значительно более мощного термоядерного или водородного оружия. В обычной атомной бомбе происходит детонация находящегося внутри заряда, состоящего из изотопов урана или плутония, которые, распадаясь, выделяют огромное количество энергии. В свою очередь, в водородной бомбе энергия высвобождается в результате реакции термоядерного синтеза тяжёлого водорода — дейтерия и трития — и получения более тяжёлых элементов. Основное преимущество термоядерного оружия в том, что в отличие от атомного у него теоретически нет ограничений по мощности. Первый в мире термоядерный заряд испытали американцы. Это произошло 1 ноября 1952 года на атолле Эниветок.