Новости м теория вселенной для чайников

2.0 Теория ДВС: Шары для расточки каналов ГБЦ.

Теория струн для чайников

Будем считать, что все атомы неподвижны. В крайнем случае, это можно сделать, опустив температуру объекта до абсолютного нуля. Это три измерения. Cейчас мало кто сомневается в том, что атом атом делим, и состоит из протонов, нейтронов и электронов. В первом пункте мы определили координаты атома в целом, по существу его центра. А вот координаты электрона нам известны приблизительно с точностью до величины его орбиты.

Он то приближается к нашим стержням-координатам, то удаляется. Мы не будем рассматривать, ничего полезного не содержащую, вероятностную модель атома. Чтобы точно определить положение электрона в пространстве желательно построить такую же систему координат в центре атома и по ним измерять положение электрона в атоме. Наблюдатель в атоме будет определять положение электрона по трем координатам, а для наблюдателя пункта 1 положение электрона будет определяться шестью измерениями. Конечно, он мог бы и при определении электрона обойтись тремя измерениями, но так сложнее, хотя принципиально возможно.

И главное он должен знать структуру атома. Для человека, придерживающегося диалектического материализма, нет сомнения, что и электрон из чего-то состоит. Он также делим, как и атом. Тем более это подтверждается практикой. Электрон излучает и поглощает в частности световые фотоны.

Это мы, видим, смотря в монитор или на любой светящийся объект. Этот фотон как-то входил в состав электрона или даже скажем в систему электрон-фотон. А так как фотон, это электромагнитная волна , то очень вероятно, что он как-то двигался в электроне. Или даже если не двигался сам по электрону, то на худой конец вращался вместе с электроном. Вращение электрона подтверждается наличием его спина.

Электрон после излучения уменьшается в размере, следовательно, его субстрат электрические и магнитные вихри движется по радиусу. Для определения положения вихрей тоже можно использовать трехмерные координаты. Эти измерения действительно очень малы относительно нас. Нам, чтобы определить положение вихря, следует провести девять измерений. Мы сделали три шага в сторону минимальных величин, а сейчас посмотрим в противоположную сторону.

Как видится наш мир наблюдателю, находящемуся на Солнце или какой-нибудь планете — Марсе, Юпитере или другой планете? Построив на Солнце систему координат из трех взаимно перпендикулярных осей, мы всегда можем определить мгновенное положение Земли. Наблюдатель в данном случае не видит никаких деталей на Земле, по крайней мере, без определенных приборов и методов. Мы ведь чтобы что-то увидеть на Марсе посылаем туда приборы. Так и наблюдатель из Солнца, должен приблизиться к Земле, чтобы разглядеть мелкую структуру.

Это потому, что гравитация черной дыры настолько сильна, что ее скорость удаления выше скорости света, а свет — самое быстрое в мире явление. Однако раздел науки под названием квантовая механика утверждает, что квантовая информация уничтожена быть не может. Квантовая информация немного отличается от информации, которую мы храним в виде единиц и нулей на компьютере, или информации в нашем мозге. Это связано с тем, что квантовые теории не дают точной информации, например, о том, где будет находиться объект, подобно расчету траектории бейсбольного мяча в механике. Вместо этого такие теории раскрывают наиболее вероятное местонахождение или наиболее вероятный результат какого-либо действия. Другими словами, если вы знаете, чем заканчивается система, вы сможете вычислить, как она началась. Из черной дыры не выходит ничего, кроме медленной струйки теплового излучения, называемого излучением Хокинга.

Насколько известно, нет способа провести обратный расчет, чтобы выяснить, что на самом деле поглотила черная дыра. Информация уничтожается. Однако квантовая теория утверждает, что информация не может быть полностью недосягаемой. В этом заключается информационный парадокс. Что такое темная материя?

Что бран столько, сколько существует измерений? Так измерений действительно бесконечно много. Давайте рассмотрим такую логическую цепочку.

Часть ее будет очевидной, а в некоторую ее часть придется поверить. Уже давно никто не сомневается в том, что почти все состоит из атомов. Раньше считали, что атом это мельчайшая неделимая частица. Возьмем любой объект: монитор, карандаш, человека или что угодно. Водрузим возле него декартову систему координат в виде стержней. Все согласятся, что положение каждого атома этого объекта можно задать этими координатами. Будем считать, что все атомы неподвижны. В крайнем случае, это можно сделать, опустив температуру объекта до абсолютного нуля.

Это три измерения. Cейчас мало кто сомневается в том, что атом атом делим, и состоит из протонов, нейтронов и электронов. В первом пункте мы определили координаты атома в целом, по существу его центра. А вот координаты электрона нам известны приблизительно с точностью до величины его орбиты. Он то приближается к нашим стержням-координатам, то удаляется. Мы не будем рассматривать, ничего полезного не содержащую, вероятностную модель атома. Чтобы точно определить положение электрона в пространстве желательно построить такую же систему координат в центре атома и по ним измерять положение электрона в атоме. Наблюдатель в атоме будет определять положение электрона по трем координатам, а для наблюдателя пункта 1 положение электрона будет определяться шестью измерениями.

Конечно, он мог бы и при определении электрона обойтись тремя измерениями, но так сложнее, хотя принципиально возможно. И главное он должен знать структуру атома. Для человека, придерживающегося диалектического материализма, нет сомнения, что и электрон из чего-то состоит. Он также делим, как и атом. Тем более это подтверждается практикой. Электрон излучает и поглощает в частности световые фотоны. Это мы, видим, смотря в монитор или на любой светящийся объект. Этот фотон как-то входил в состав электрона или даже скажем в систему электрон-фотон.

А так как фотон, это электромагнитная волна , то очень вероятно, что он как-то двигался в электроне. Или даже если не двигался сам по электрону, то на худой конец вращался вместе с электроном. Вращение электрона подтверждается наличием его спина. Электрон после излучения уменьшается в размере, следовательно, его субстрат электрические и магнитные вихри движется по радиусу.

Впрочем, если верить теории струн, на деле формы дополнительных измерений выглядят куда сложнее кувшина. Как устроен мир Науке сегодня известен набор чисел, которые являются фундаментальными постоянными Вселенной. Именно они определяют свойства и характеристики всего вокруг нас. Среди таких констант, например, заряд электрона, гравитационная постоянная, скорость света в вакууме...

И если мы изменим эти числа даже в незначительное число раз — последствия будут катастрофическими. Предположим, мы увеличили силу электромагнитного взаимодействия. Что же произошло? Мы можем вдруг обнаружить, что ионы стали сильнее отталкиваться друг от друга, и термоядерный синтез, который заставляет звезды светить и излучать тепло, вдруг дал сбой. Все звезды погаснут. Но причем здесь теория струн с ее дополнительными измерениями? Дело в том, что, согласно ей, именно дополнительные измерения определяют точное значение фундаментальных констант. Одни формы измерений заставляют одну струну вибрировать определенным образом, и порождают то, что мы видим, как фотон.

В других формах струны вибрируют по-другому, и порождают электрон. Воистину бог кроется в «мелочах» — именно эти крошечные формы определяют все основополагающие константы этого мира. Теория суперструн В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. Всего за несколько лет возникло целых пять версий теории струн. И хотя каждая из них построена на струнах и дополнительных измерениях все пять версий объединены в общую теорию суперструн — NS , в деталях эти версии расходились значительно. Так, в одних версиях струны имели открытые концы, в других — напоминали кольца. А в некоторых вариантах теория даже требовала не 10, а целых 26 измерений. Парадокс в том, что все пять версий на сегодняшний день можно назвать одинаково верными.

Но какая из них действительно описывает нашу Вселенную? Это очередная загадка теории струн. Именно поэтому многие физики снова махнули рукой на «сумасбродную» теорию. Но самая главная проблема струн, как уже было сказано, в невозможности по крайней мере, пока доказать их наличие экспериментальным путем. Некоторые ученые, однако, все же поговаривают, что на следующем поколении ускорителей есть очень минимальная, но все же возможность проверить гипотезу о дополнительных измерениях. Хотя большинство, конечно, уверено, что если это и возможно, то произойти это, увы, должно еще очень нескоро — как минимум через десятилетия, как максимум — даже через сотню лет. Красивым поэтическим словосочетанием «теория струн» названо одно из направлений в теоретической физики, объединяющее в себе идеи теории относительности и квантовую механику. Данное направление физики занимается изучением квантовых струн — то есть одномерных протяженных объектов.

В этом состоит его основное отличие от множества других разделов физики, в которых изучается динамика точечных частиц. В своей основе Теория струн отрицает и утверждает, что Вселенная существовала всегда. То есть, Вселенная представляла собой не бесконечно малую точку, а струну с бесконечно малой длиной, при этом теория струн гласит о том, что мы живем в десятимерном пространстве, хотя ощущаем всего лишь 3-4. Остальные существуют в свернутом состоянии, и если вы решили задать вопрос: «Когда же они будут разворачиваться, и произойдет ли это вообще когда-нибудь? Математика его попросту не нашла — струнную теорию невозможно доказать опытным путем. Правда, были попытки разработать универсальную теорию, чтобы можно было проверять ее практически. Но чтобы это случилось, ее нужно сделать настолько упрощенной, чтобы она доходила до нашего уровня восприятия реальности. Тогда идея проверки полностью лишается смысла.

Основные критерии и понятия теории струн Теория относительности говорит о том, что наша Вселенная — это плоскость, а квантовая механика заявляет, что на микроуровне происходит бесконечное движение, из-за которого искривляется пространство. А теория струн пытается соединить эти два предположения, и в соответствии с ней, элементарные частицы представляются в виде специальных компонентов в составе каждого атома — оригинальных струн, являющихся своеобразными ультрамикроскопическими волокнами. Элементарные частицы при этом обладают свойствами, которые объясняет резонансное колебание образующих эти частицы волокон. Подобными типами волокон осуществляются вибрации в бесконечном количестве. Для более точного понимания сути, простой обыватель может представить себе струны обычных музыкальных инструментов, которые могут в разное время натягиваться, успешно сворачиваться, постоянно вибрировать. Такими же свойствами обладают нити, взаимодействующие друг с другом при определенных вибрациях. Сворачиваясь в стандартные петли, нити образуют более крупные разновидности частиц — кварки, электроны, чья масса уже будет напрямую зависеть от уровня натянутости и частоты вибрации волокон. Так что энергию струн соотносят именно с этими критериями.

Масса элементарных частиц будет выше при большем количестве излучаемой энергии. Насущные проблемы теории струн При изучении теории струн ученые многих стран периодически сталкивались с целым рядом проблем и нерешаемых вопросов. Самым важным моментом можно считать недостаток математических формул, поэтому придать теории завершенный вид специалистам пока не удается. Второй существенной проблемой является подтверждение сутью теории наличия 10-ти измерений, когда на самом деле ощутить мы можем всего 4 из них. Предположительно остальные 6 из них существуют в скрученном состоянии, и в реальном времени ощутить их не представляется возможным. Поэтому, хотя опровержение теории в корне невозможно, экспериментальное подтверждение пока тоже представляется довольно затруднительным. При этом исследование теории струн стало явным толчком для развития оригинальных математических конструкций, а также топологии. Физика с ее теоретическими направлениями довольно прочно укоренилась в математике также с помощью изучаемой теории.

Более того, сущность современной квантовой гравитации и материи смогли досконально понять, начав изучать гораздо глубже, чем было возможно до этого. Поэтому исследования теории струн продолжаются непрерывно, а результатом многочисленных экспериментов, включая испытания на Большом адронном коллайдере, могут стать недостающие понятия и элементы. В этом случае физическая теория будет абсолютно доказанным и общепринятым явлением. Теория относительности представляет Вселенную «плоской», но квантовая механика утверждает, что на микроуровне происходит бесконечное движение, искривляющее пространство. Теория струн объединяет эти идеи и представляет микрочастицы как следствие объединения тончайших одномерных струн, которые будут иметь вид точечных микрочастиц, следовательно, не могут наблюдаться экспериментально. Данная гипотеза позволяет представить элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами. Все свойства элементарных частиц объясняются резонансным колебанием волокон, их образующих. Эти волокна могут совершать бесконечное множество вариантов вибраций.

Данная теория предполагает объединение идей квантовой механики и теории относительности. Но из-за наличия множества проблем в подтверждении мыслей заложенных в ее основе большая часть современных ученых считают, что предложенные идеи не более чем самая обыкновенная профанация или другими словами — теория струн для чайников, то есть для людей, которые совершенно не разбираются в науке и строении окружающего мира. Свойства ультрамикроскопических волокон Чтобы понять их суть, можно представить струны музыкальных инструментов — они могут вибрировать, изгибаться, сворачиваться. Тоже происходит и с этими нитями, которые издавая определенные вибрации, взаимодействуют друг с другом, сворачиваются в петли и образуют более крупные частицы электроны, кварки , масса которых зависит от частоты вибрации волокон и их натянутости — эти показатели определяют энергию струн. Чем больше излучаемая энергия, тем выше масса элементарной частицы. Инфляционная теория и струны Согласно инфляционной гипотезе, Вселенная была создана благодаря расширению микро пространства, размером в струну длина Планка. По мере увеличения этой области растягивались и так называемые ультрамикроскопические волокна, теперь их длина соизмерима с размерами Вселенной. Они точно так же взаимодействуют между собой и производят те же вибрации и колебания.

Выглядит это как производимый ими эффект гравитационных линз, искажающих лучи света дальних галактик. А продольные колебания порождают гравитационное излучение. Математическая несостоятельность и другие проблемы Одной из проблем считается математическая несостоятельность теории — физикам, изучающим ее, не хватает формул для приведения ее в завершенный вид. А вторая заключается в том, что данная теория полагает, о существовании 10 измерений, но мы ощущаем всего 4 — высота, ширина, длина и время. Ученые предполагают, что остальные 6 — в скрученном состоянии, наличие которых не ощущается в реальном времени. Также проблемой является не возможность экспериментального подтверждения этой теории, но и опровергнуть ее никто не может. Приходила ли вам в голову мысль, что вселенная похожа на виолончель? Правильно - не приходила.

Потому что вселенная не похожа на виолончель. Но это не означает, что у нее нет струн. Конечно, струны мироздания едва ли похожи на те, которые мы себе представляем. Эти нити похожи, скорее, на крошечные "Резинки", способные извиваться, растягиваться и сжиматься на все лады.

История и свойства М-теории

Большой взрыв или вечный отскок : новые открытия меняют начало нашей Вселенной Различные теории о функционировании Вселенной зачастую зависят от понимания гравитации — единственной силы в физике, воздействующей на материю в весьма серьезных масштабах.
Астрономы оказались на пороге открытия неразгаданных тайн Вселенной: «Огромная новость» Согласно наиболее популярной теории эволюции Вселенной, смерть последней будет холодной. |.
Тёмная вселенная - это конец? М-теория. Теория струн. Вселенная обладает определенным количеством энергии, но, когда эта энергия будет израсходована, согласно теории, Вселенная станет постепенно замедляться.
Стивен Хокинг возлагал надежды на «М-Теорию», чтобы полностью объяснить Вселенную В теории, предложенной профессором Влатко Ведрал (Vlatko Vedral)из Оксфорда, основным компонентом Вселенной является не материя и не энергия, а "бит" – самая крошечная единица информации, который используется в компьютере.
Большой взрыв или вечный отскок : новые открытия меняют начало нашей Вселенной | Конечно, это описание Мироздания является очень упрощённым, можно сказать, что это – «Мироздание для чайников», которыми мы все с вами пока ещё являемся.

1. Размер Вселенной

  • Происхождение Вселенной. Какие новые версии предлагает наука и религия?
  • Просто невероятно: как устроена Вселенная, почему желания сбываются.
  • Новая теория: Вселенная могла начаться с темного Большого взрыва
  • Новая модель Вселенной

М-теория – модель Вселенной

В настоящее время этому существует два объяснения: Дополнительные измерения шесть из них свернулись, или, в терминологии теории струн, компактифицировались до невероятно малых размеров, воспринять которые никогда не удастся. Мы застряли в 3-мерной бране, а другие измерения простираются вне ее и для нас недоступны. Важным направлением исследований среди теоретиков является математическое моделирование того, как эти дополнительные координаты могут быть связаны с нашими. Последние результаты предсказывают, что ученые в скором времени смогут обнаружить эти дополнительные измерения если они существуют в предстоящих экспериментах, так как они могут быть больше, чем ожидалось ранее. Понимание цели Цель, к которой стремятся ученые, исследуя суперструны — «теория всего», т. В случае успеха она могла бы прояснить многие вопросы строения нашей вселенной. Объяснение материи и массы Одна из основных задач современных исследований — поиск решения для реальных частиц. Теория струн начиналась как концепция, описывающая такие частицы, как адроны, различными высшими колебательными состояниями струны. В большинстве современных формулировок, материя, наблюдаемая в нашей вселенной, является результатом колебаний струн и бран с наименьшей энергией. Вибрации с большей порождают высокоэнергичные частицы, которые в настоящее время в нашем мире не существуют. Масса этих элементарных частиц является проявлением того, как струны и браны завернуты в компактифицированных дополнительных измерениях.

Например, в упрощенном случае, когда они свернуты в форме бублика, называемом математиками и физиками тором, струна может обернуть эту форму двумя способами: короткая петля через середину тора; длинная петля вокруг всей внешней окружности тора. Короткая петля будет легкой частицей, а большая — тяжелой. При оборачивании струн вокруг торообразных компактифицированных измерений образуются новые элементы с различными массами. Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Свернутые измерения здесь гораздо сложнее тора, но в принципе они работают также. Возможно даже, хотя это трудно представить, что струна оборачивает тор в двух направлениях одновременно, результатом чего будет другая частица с другой массой. Браны тоже могут оборачивать дополнительные измерения, создавая еще больше возможностей. Определение пространства и времени Во многих версиях теория суперструн измерения сворачивает, делая их ненаблюдаемыми на современном уровне развития технологии. В настоящее время не ясно, сможет ли теория струн объяснить фундаментальную природу пространства и времени больше, чем это сделал Эйнштейн. В ней измерения являются фоном для взаимодействия струн и самостоятельного реального смысла не имеют.

Предлагались объяснения, до конца не доработанные, касавшиеся представления пространства-времени как производного общей суммы всех струнных взаимодействий. Такой подход не отвечает представлениям некоторых физиков, что привело к критике гипотезы. Конкурентная теория петлевой квантовой гравитации в качестве отправной точки использует квантование пространства и времени. Некоторые считают, что в конечном итоге она окажется лишь другим подходом ко все той же базовой гипотезе. Квантование силы тяжести Главным достижением данной гипотезы, если она подтвердится, будет квантовая теория гравитации. Текущее описание силы тяжести в ОТО не согласуется с квантовой физикой. Последняя, накладывая ограничения на поведение небольших частиц, при попытке исследовать Вселенную в крайне малых масштабах ведет к возникновению противоречий.

Ты создаешь Жизнь. Ты создаешь Вселенную. Реализуя свой энергетический потенциал — ты живешь!

Масштаб взаимодействия определяется интенсивностью обмена энергией и информацией. Следствие: Чем интенсивнее ты взаимодействуешь, чем больше обмениваешься энергией и информацией, чем сильнее проявляешь свой потенциал — тем больше ты творишь. Отданная тобой энергия никогда не исчезает проcто так. Она создает мир. И поскольку любое взаимодействие есть обмен — мир всегда вернет тебе отданное. Только не жди обмена «баш на баш»! Ведь Вселенная едина в своей основе. Возврат может прийти от любой ее составляющей. Источник получения может быть неожиданным. Чем больше ты отдаешь — тем больше получаешь!

Следствие: Энергия созидает везде. Творит энергия твоих действий. Творит энергия твоих слов. В «тонких» мирах творит энергия твоих чувств и мыслей. Более того, именно из мыслей и чувств рождаются действия. Ведь по правилам «тонких» миров — без предшественника в «тонком» мире физическая «материализация» объекта невозможна! Ты создаешь Вселенную энергией каждой своей мысли, слова и действия. Нет «позитивной» или «негативной» энергии, есть лишь информация, которая «материализуется» с помощью энергии. Следствие: Энергия — это инструмент для «материализации» информации, а информацией может управлять сознание. Поэтому только ты определяешь, какую информацию «материализуешь» при помощи собственной энергии.

Твое влияние на Мироздание — лишь твоя ответственность. Только ты решаешь — какую именно Вселенную ты создаешь! Энергетическая спираль: движение вверх и вниз Именно вследствие действия законов энергии ты движешься по энергетической спирали. Движешься вверх или вниз. Энергетически развиваешься или деградируешь. Идешь по пути эволюции или инволюции. Как выглядит движение вверх по энергетической спирали? Прежде всего, ты ищешь источник энергии внутри себя. Раскрываешь и используешь часть собственного безграничного потенциала. В результате ты наполняешься энергией.

Энергия просто изливается из тебя, и ты щедро делишься ей с миром. Делишься действуя, создавая Жизнь и себя.

Согласно ему, когда инфляция закончилась, она заполнила Вселенную частицами и излучением, но не темной материей. Более того, физики предполагают, что осталось какое-то квантовое поле, которое не исчезло. По мере расширения и охлаждения Вселенной это неизвестное квантовое поле в конечном итоге трансформировалось, вызвав образование темной материи.

Иными словами, новый подход к теории Большого взрыва отделяет эволюцию темной материи от эволюции "нормальной" материи, то есть той материи, которую мы можем увидеть, услышать, пощупать и т. Это означает, что эволюция обоих видов материи идет отдельными друг от друга путями. Ученые также выдвинули идею о том, что на самом деле могло произойти два Больших взрыва, причем второй был "темным", и именно он породил в конечном итоге темную материю. Моделирование указывает на то, что второй Большой взрыв мог произойти позже первого - примерно тогда, когда Вселенной было меньше месяца.

В 2020 году, имея данные за 12 лет, ученые-наногравитаторы начали замечать намеки на этот гравитационный гул и обратились к отдельным командам в Европе, Индии, Китае и Австралии, каждая из которых согласилась использовать свои собственные данные для независимого подтверждения. Доктор Стивен Тейлор отметил, что вероятность того, что последние результаты являются случайными, близка к одному из 10 000, что делает их убедительным доказательством, хотя это не соответствует золотому стандарту физики "один на миллион" для утверждения о доказательствах нового явления. Существует также элемент неопределенности относительно источника гравитационных волн. Полученные результаты изложены в серии статей, опубликованных в четверг в Astrophysical Journal Letters.

Строение и развитие Вселенной для «чайника»

Обнаружена серьезная проблема для современной модели Вселенной: Наука: Наука и техника: создать единую теорию поля или, попросту говоря, теорию всего, т.е. такую теорию, которая бы на фундаментальном уровне могла объяснить сущность мироздания и законы Вселенной.
Новая теория Вселенной и психики В статье рассказывается о Вселенной, теориях ее происхождения, свойствах.
60 удивительных фактов о Вселенной, которые вы должны знать «М-теория является единственным «кандидатом» на законченную теорию Вселенной.
Параллельная Вселенная: существует ли она, теории | РБК Тренды Сам Эйнштейн выдвинул теорию статической Вселенной, она подверглась критике и была потом практически забыта.

Просто невероятно: как устроена Вселенная, почему желания сбываются и зачем смотреть «Матрицу»

Введение в M-теорию Измерения, сделанные с помощью WMAP, т. е. микроволнового анизотропного зонда Уилкинсона, посвященного современной плотности и геометрии Вселенной, поддерживают теорию Большой Заморозки.
Строение и развитие Вселенной для «чайника» РИА Новости, 19.07.2023.
Новости по тегу вселенная, страница 1 из 12 Физик Макс Тегмарк о методах объяснения Вселенной, открытиях звезд и математических свойствах электронов.

Сны о чём-то большем: Как ученые и мультивселенная подарили человечеству научное обоснование мечты

В предыдущей теории мы говорили о том, как Вселенная превратилась в трехмерную. Тем не менее существует гораздо больше измерений. Согласно теории Суперструн, их существует не менее 10. Вот как это работает: первое измерение — это всего лишь одна линия. Второе измерение — высота. Третье — глубина, а четвертое — время. Давайте с этого поподробнее. Мы привыкли считать время чем-то уходящим, для нас есть прошлое и будущее. В теории струн время — это такое же измерение, как и глубина или высота. Каждый объект во Вселенной может находиться в каком-то конкретном отрезке времени, точно так же как он имеет координаты пространства.

Например, вас можно найти на Земле в такой-то координате пространства в 2020-ом году. Здесь время выступает дополнительной четвертой координатой. Там, где начинает становиться немного странно, это пятое измерение. Именно здесь вступает в действие теория Мультивселенной. В пятом измерении есть Вселенная, очень похожая на нашу, и мы смогли бы найти сходства и различия наших миров. Шестое измерение — это множество параллельных Вселенных с одинаковыми начальными условиями. Итак, если наша Вселенная началась с Большого Взрыва, то все остальные Вселенные в шестом измерении также ведут начало с Большого взрыва, просто в каждый новый момент времени различия между ними возрастают. Другими словами, это все возможные варианты развития Вселенной начиная от Большого взрыва. Этих Вариантов бесконечно много, а в каком-то из них, возможно, не существует нашего Солнца, а в каком-то существуете вы, и вы миллионер, а может быть и наоборот — нищий.

В какой-то параллельной Вселенной Вы врач, в какой-то грабитель. И с каждой секундой появляется множество новых параллельных миров, в одном из них вы дочитываете эту статью до конца, в другой сейчас закрываете страницу. Седьмое измерение ещё сложнее. Это миры с различными начальными условиями. Если наш мир начался с Большого Взрыва, то в седьмом измерении Вселенные возникают разными способами, о которых остаётся только догадываться. Восьмое измерение описывает совокупность всех Вселенных со всевозможными начальными условиями, в каждом из которых существуют бесконечное множество разветвлений.

Авторы работы предполагают, что Большой взрыв был не один - вместе с ним произошел еще и темный Большой взрыв, который наполнил все окружающее нас пространство частицами таинственной темной материи. Статья исследователей доступна на сервере препринтов arXiv, а коротко о новой теории рассказывает Science Alert. В стандартной космологии происхождение Вселенной неразрывно связано с так называемым Большим взрывом. Считается, что он дал начало процессу расширения Вселенной, который продолжается до сих пор. Считается также, что в первые минуты существования Вселенной частицы начали собираться в первые протоны и нейтроны. Это был процесс, известный как нуклеосинтез Большого взрыва - столп современной космологии, поскольку легшие в его основу расчеты точно предсказывают количество водорода и гелия в космосе. Однако в последние годы было проведено немало исследований загадочной темной материи.

Во-вторых, телескоп получит возможность быстро менять ориентацию, чтобы получать изображения переходных процессов: взрывов сверхновых, слияния звёзд, джеты чёрных дыр и нейтронных звёзд и других энергетических явлений. Это станет ценнейшим дополнением к гравитационно-волновым наблюдениям неба, когда крайне сложно выявить источник гравитационной волны. При обзоре неба в ультрафиолете мы сможем увидеть самые горячие объекты в ней. Прежде всего, это молодые и старые звёзды, когда процессы в ядрах находятся на критических стадиях активности. Также данные в ультрафиолетовом диапазоне позволят увидеть галактики с низким содержанием металлов и ряд других объектов. Телескоп будет рассчитан на два года научной работы. Главные детали миссии уже проработаны, как и есть технико-экономическое обоснование проекта. Через год-два должно стартовать производство аппарата и его научных приборов. Что появилось раньше? Мы видим, как массивные звёзды превращаются в чёрные дыры — это доказанный факт. Одновременно с этим мы замечаем в ранней Вселенной присутствие сверхмассивных чёрных дыр, которые просто не успели бы вырасти до регистрируемых масс. Источник изображения: The Astrophysical Journal Letters На днях в журнале The Astrophysical Journal Letters была опубликована работа , в которой группа учёных из Университета Джона Хопкинса в США и Университета Сорбонны во Франции собрала данные «Уэбба» по обнаруженным в ранней Вселенной чёрным дырам и представила больше доказательств в пользу гипотезы об одновременном рождении звёзд и чёрных дыр. Эти данные будут набираться и дополняться новыми наблюдениями, что позволит со временем создать стройную теорию эволюции объектов во Вселенной и её самой. Учёные обратили внимание, что «Уэбб» обнаружил одну сверхмассивную чёрную дыру через 470 млн лет после Большого взрыва, а другую — через 400 млн лет. Масса последней была определена на уровне 1,6 млн солнечных. Она находилась в центре галактики, которая была легче, чем дыра в её сердцевине. Чёрная дыра подобной массы не могла вырасти до фиксируемого значения. Из того, что мы наблюдали, чёрные дыры возникали после коллапса умирающих звёзд массой свыше 50 солнечных. Ничего подобного в ранней Вселенной не могло произойти, чтобы проявился наблюдаемый там эффект — крошечная галактика, собранная вокруг СЧД. Исследователи делают вывод, что первичные чёрные дыры образовались одновременно с первыми звёздами или чуть раньше из облаков первичной материи. Центры облаков коллапсировали и возникшая в каждом из них чёрная дыра начинала испускать ветер, запускающий и ускоряющий процесс звездообразования. Фактически первичные чёрные дыры стали тем инструментом, который собрал и превратил галактики в те структуры, которые мы наблюдаем. Как показало моделирование, иногда это может быть не так и планета на ранних стадиях зарождения вполне может оказаться достаточно плоской формы. Источник изображения: ИИ-генерация Кандинский 3. В целом преобладает мнение, что от начала до конца зародыш планеты растёт равномерно и имеет шарообразную форму. Менее поддержана гипотеза так называемого нестабильного диска: на ранних стадиях эволюции центральная область зарождающейся планеты имеет скорее плоскую форму, чем сферическую. Когда-нибудь наши телескопы станут достаточно чувствительными, чтобы напрямую изучать планеты на всех этапах их эволюции. В принципе, на примере планет-гигантов это можно делать уже сейчас, достаточно найти подходящих кандидатов. Кстати, космический телескоп им. Джеймса Уэбба занимается, в том числе, и такой задачей. Но пока достаточных для наблюдения данных нет, приходится проводить моделирование на компьютере. Моделирование протопланеты, формирующейся методом нестабильного диска. Вид сверху и сбоку Источник изображения: UCLan Моделирование показало, что когда планеты формируются с помощью процесса нестабильности диска, они не демонстрируют равномерный сферический рост. Наоборот, на полюсах в таких случаях собирается больше вещества, чем в экваториальной зоне, что превращает их в «сплюснутый сфероид» или, говоря проще, на этом этапе формирования молодая планета похожа на сильно приплюснутое яйцо. В итоге она всё равно становится сферической формы, но определённый этап с некоторой натяжкой может считаться периодом плоской земли. Статья опубликована в одном из самых престижных астрономических журналов — Astronomy and Astrophysics Letters. Сверхмассивная чёрная дыра СЧД в центре галактики Markarian 817 около года испускала сверхбыстрый ветер из частиц, оставаясь при этом в стадии средней активности. Раньше подобное наблюдалось только для сверхактивных СЧД и случалось крайне редко. Художественное представление чёрной дыры, испускающей ветер из заряжённых частиц. Это прекращает звездообразование и, по сути, определяет облик и судьбу галактики-хозяина. Для астрономов важно наблюдать подобные явления, что позволяет выяснить механизм взаимодействия СЧД и приютившей её галактики и, в конечном итоге, больше узнать об эволюции этих объектов и Вселенной. Галактика Markarian 817 на удалении 430 млн световых лет от нас с СЧД массой 81 млн солнечных явно выделилась на фоне всех остальных событий такого рода. Об активности чёрной дыры в её центре отчётливо должно было сигнализировать рентгеновское излучение, испускаемое перегретым веществом в аккреционном диске. Как позже оказалось, ветер от чёрной дыры блокировал рентгеновское излучение, и по факту оно было достаточно сильным. Анализ данных показал, что активность наблюдалась по обширному пространству аккреционного диска, что привело к образованию, как минимум трёх отдельных потоков ветра из заряжённых частиц, каждый из которых развил скорость до нескольких процентов от скорости света в вакууме. Это продолжалось около года и особым образом дало понять, как чёрные дыры и галактики могут влиять друг на друга. Тот факт, что Markarian 817 создавал эти ветры около года, не находясь в особо активном состоянии, предполагает, что чёрные дыры могут изменять форму своих галактик-хозяев гораздо сильнее, чем считалось ранее», — сообщили авторы исследования в статье, опубликованной в журнале Astrophysical Journal Letters. В галактиках других типов эти процессы не встречаются, но, как показало новое исследование, мы просто не умели находить такие события. Астрономы из США показали пример , как случаи «жестокой расправы» чёрных дыр со звёздами обнаруживать повсеместно. Приливное разрушение звезды чёрной дырой в представлении художника. Kornmesser Когда звезда оказывается в опасной близости от чёрной дыры, она теряет большую часть своего вещества в процессе так называемого приливного разрушения. Вещество звезды образует диск вокруг чёрной дыры и запускает процесс аккреции вещества — его падение на чёрную дыру. Гравитация, трение и нагрев вещества вызывают выбросы энергии как от внутренней стороны аккреционного диска, так и с полюсов чёрной дыры, куда вещество из диска забрасывается мощными магнитными полями этого объекта. Эти выбросы энергии мы регистрируем в основном в оптическом и рентгеновском диапазонах.

Если последнее отлично описывается уравнениями Эйнштейна, первое с необычайной точностью прогнозируется так называемой Стандартной моделью фундаментальных взаимодействий. Наше нынешнее понимание состоит в том, что взаимодействие между физическими объектами описывается четырьмя фундаментальными силами. Две из них — гравитация и электромагнетизм — проявляются для нас на макроскопическом уровне, мы имеем с ними дело каждый день. Остальные две — слабое и сильное взаимодействие — проявляются на очень малых масштабах и только когда мы имеем дело с субатомными процессами. Стандартная модель фундаментальных взаимодействий обеспечивает единую структуру для трех из этих сил, но гравитация никак не хочет вписываться в эту картину. Несмотря на точное описание крупномасштабных явлений, таких как поведение планеты на орбите или динамика галактик, общая теория относительности перестает работать на очень коротких дистанциях. Согласно Стандартной модели, все силы опосредуются определенными частицами. В случае с гравитацией работу выполняет гравитон. Но когда мы пытаемся рассчитать взаимодействия этих гравитонов, появляются бессмысленные бесконечности в уравнениях. Полноценная теория гравитации должна быть рабочей в любых масштабах и принимать во внимание квантовую природу фундаментальных частиц. Это позволило бы уместить гравитацию в объединенной структуре с тремя другими фундаментальными взаимодействиями, тем самым создав пресловутую теорию всего. Конечно, с тех пор, как умер Альберт Эйнштейн в 1955 году, был проделан значительный прогресс в этой области.

Навигация по записям

  • Астрономы оказались на пороге открытия неразгаданных тайн Вселенной: «Огромная новость»
  • 6 секретов Вселенной, которые вас удивят - Блог «Альпины»
  • Что такое энтропия Вселенной?
  • Загадочные «нечастицы» способны расколоть Вселенную
  • Тёмная сторона Вселенной: что такое тёмная материя и как ее найти
  • Строение и развитие Вселенной для «чайника» — Best Beauty World — красота повсюду!

Законы энергии Вселенной: как работает энергия в нашем мире — 11 главных законов

Информация как истинная основа мира. Наша реальность возникает из Абсолютной реальности за счет постоянного обмена информацией между объектом и окружающим миром. Такой обмен информацией происходит при взаимодействии. Именно так описывает возникновение реальности теория декогеренции. Энергия как инструмент для «материализации» информации. Мир представляет собой информационно-энергетическую структуру. Именно энергия обеспечивает возможность взаимодействия и информационного обмена.

Тем самым она позволяет «заякорить» информацию, превратить ее в материальный объект. Многоуровневость Мироздания. В процессе декогеренции происходит несколько стадий выделения полностью обособленного, «физического» объекта из изначальной квантовой реальности. Поэтому между Абсолютом и «физическим» миром совершенно неизбежно возникают промежуточные, или «тонкие» миры. Эти миры есть такая же объективно существующая часть Мироздания, как и наш «физический» мир. Глубже разобраться в сущности мироздания тебе помогут статьи о квантовых экспериментах , квантовой реальности, возникновении тонких миров и информационно-энергетической структуре мира.

А теперь разберем «энергетические» законы Вселенной, и следствия из этих законов. Эти следствия напрямую влияют лично на тебя и на твою жизнь! Энергия является проекцией Абсолюта как чистого знания. Следствие: Для всей Вселенной информация первична. Энергия и материя — только ее проекции. Твоей истинной основой является сознание.

Следствие: Без энергии никакое творение невозможно. Именно твоя энергия определяет возможность влияния на мир. Абсолютно каждое твое проявление — это генерируемый тобой импульс энергии. Тебе необходима энергия для жизни и созидания. Следствие: Сейчас тебе доступна лишь малая часть твоего безграничного энергетического потенциала. Эту малую часть, которая тебе доступна и которую ты можешь использовать, можно назвать твоим «освоенным» энергетический потенциалом.

Этот потенциал различен в разные моменты времени. Но твой истинный потенциал остается безграничным. Внутри тебя скрыт безграничный источник энергии. То есть близостью сознания к Абсолюту. Следствие: За счет роста сознания ты расширяешь свой освоенный энергетический потенциал. Чем выше уровень твоего сознания, чем ближе оно к сознанию Абсолюта — тем выше твой освоенный потенциал.

Ты раскрываешь свой истинный потенциал самостоятельно. За счет роста сознания ты получаешь доступ к той энергии, которая изначально заложена в тебе. По мере роста сознания расширяется твой доступ к энергии. Ты раскрываешь свой потенциал Творца.

Зная формулировку общей теории относительности Эйнштейна, каждый физик-теоретик мечтал примирить наше понимание бесконечно малого мира атомов и частиц с бесконечно большим масштабом космоса. Хотя последнее эффективно описывается уравнениями Эйнштейна, первое из них с необычайной точностью прогнозируется так называемой Стандартной моделью фундаментальных взаимодействий. Наше нынешнее понимание состоит в том, что взаимодействие между физическими объектами описывается четырьмя фундаментальными силами.

Два из них — гравитация и электромагнетизм — актуальны для нас на макроскопическом уровне, мы имеем дело с ними в нашей повседневной жизни. Два других, называемые сильными и слабыми взаимодействиями, действуют в очень небольших масштабах и становятся актуальными только при рассмотрении субатомных процессов. Стандартная модель фундаментальных взаимодействий обеспечивает единую структуру для трех из этих сил, но гравитация не может быть последовательно включена в эту картину. Несмотря на точное описание крупномасштабных явлений, таких как орбита планеты или динамика галактик, общая теория относительности разрушается на очень коротких расстояниях. Согласно стандартной модели, все силы опосредуются определенными частицами. Для гравитации частица, называемая гравитоном, выполняет свою работу. Но, пытаясь рассчитать, как взаимодействуют эти гравитоны, появляются бессмысленные бесконечности.

Согласованная теория гравитации должна быть действительной в любом масштабе и должна учитывать квантовую природу основных частиц. Это позволило бы приспособить гравитацию в единой структуре с другими тремя фундаментальными взаимодействиями, тем самым обеспечив знаменитую теорию всего. Конечно, с момента смерти Эйнштейна в 1955 году был достигнут большой прогресс, и в настоящее время лучший кандидат для этого выходит в свет под именем М-теории. Струнная революция Чтобы понять основную идею М-теории, нужно вернуться к 1970-м годам, когда ученые поняли, что вместо описания Вселенной, основанной на точечных частицах, вы можете описать ее в терминах крошечных колеблющихся струн трубок энергии.

Эту сложную задачу, математическую инверсию, ученые решили в конце 1990-х годов. Они получили диаграмму распределения масс, на которой галактики обозначены пиками, — но присутствуют также пики там, где галактик вроде бы не видно.

Это невидимая материя, которой в 40 раз больше, чем видимой, а раз она невидима и не сияет, то ее назвали темной. Оказалось, что в галактиках гораздо больше темной материи, чем материи самих галактик. Темная материя состоит не из обычных протонов и нейтронов, а из других элементарных частиц. Она везде, а раз так, мы можем провести эксперимент здесь, на Земле, чтобы ее найти. Можно попробовать зафиксировать взаимодействие какой-нибудь массивной темной частицы с обычной частицей. Этому мешает естественный радиационный фон, поэтому такие эксперименты проводятся глубоко под землей.

Такие детекторы расположены в разных частях земного шара, но пока что они не зафиксировали ничего, что можно было бы однозначно трактовать как темную материю. Можно еще попробовать создать темную материю в лабораторных условиях — для этого у нас есть Большой адронный коллайдер. Глядя на диаграмму выше, мы можем подсчитать общую массу, массу видимых галактик и массу темной материи. Можно было бы сделать вывод, что наша Вселенная открытая и будет расширяться бесконечно. Но здесь есть подвох: все эти подсчеты касаются только галактик и их скоплений. А то, что находится между ними, мы взвесить не можем.

Так что нам нужен какой-нибудь другой объект для измерения. Геометрия Вселенной Когда мы глядим на Вселенную, то чем дальше смотрим, тем в более глубокое прошлое заглядываем. Можно было бы предположить, что где-то там виден и Большой взрыв, — но между нами и Большим взрывом стена. В самом начале Вселенная была настолько жаркой и плотной, что свет не мог покинуть ее. Потом Вселенная постепенно охлаждалась и, когда ей было 379 тысяч лет, стала электрически нейтральной замедлившиеся электроны начали соединяться с протонами и альфа-частицами , образуя атомы водорода и гелия. Этот момент — самая ранняя точка, которую мы видим, оглядываясь назад во времени.

Вот так она выглядела это проекция Мольвейде , которая также часто используется в картографии : Реликтовое излучение, которое фиксируют детекторы, находящиеся на Земле, исходит от условной поверхности последнего рассеяния , которое видится нам как окружающая нас на очень далеком расстоянии сфера. На этой поверхности видны более горячие участки — там, где 379 тысяч лет назад были сгустки материи. Мы знаем их максимально возможный размер он зависит от скорости гравитации , а ее значение равно скорости света — 100 млн световых лет. Сравнивая эти цифры с тем, что мы наблюдаем, можно сделать вывод о том, в какой Вселенной мы живем: в закрытой Вселенной сгустки из-за искривления пространства казались бы нам меньше, чем на самом деле; в открытой — больше, а в плоской Вселенной никаких искривлений нет и сгустки выглядели бы на свои 100 млн световых лет. С помощью аэростатов радиотелескоп поднимался на высоту 42 тысячи метров, где мог фиксировать реликтовое излучение без потерь, в то время как в атмосфере оно поглощается микроволнами. Энергия пустого пространства В пустом пространстве, в ничто.

Звучит, конечно, глупо, но пустое пространство не такое уж и пустое. Вот так выглядит то, что происходит внутри протона: постоянно что-то бурлит, появляются и исчезают различные частицы: Мы не «видим» их, потому что они возникают на очень непродолжительное время, но при этом они составляют основную часть массы протона. А раз так, то, возможно, они появляются в открытом пространстве и дают какую-то энергию. Может быть, вакуум тоже что-то весит? Еще когда я учился в университете, было предположение, что энергия вакуума — это единица со 120 нулями, но этого просто не может быть: будь это так, Вселенная была бы другой и нас бы просто не существовало. Мы ждали какого-то математического чуда, которое бы позволило нам сократить это число; предполагали даже, что энергия пустого пространства равна нулю.

А затем решили не полагаться на теоретиков: если у пустого пространства есть энергия, ее можно измерить. Но как? Гравитация в большинстве случаев притягивает объекты друг к другу, но вакуум создает антитяготение. Чтобы рассчитать его, необходимо понять, расширяется ли наша Вселенная с ускорением или с замедлением. Первые попытки определить это сделал Эдвин Хаббл в 1929 году, но сейчас мы знаем, что его расчеты были неверны из-за того, что, в частности, не учитывали эволюцию галактик и связанные с ней изменения светимости. Так что нам нужны были какие-то другие объекты с известной яркостью.

Это изображение галактики, расположенной в 7 млн световых лет от нас. В левом нижнем углу виден яркий объект — можно предположить, что в кадр случайно попала звезда из нашей Галактики, но нет: это сверхновая, которая светится как сто миллиардов звезд. Потом она тускнеет, но в первый месяц она светится с яркостью, которая нам известна. Сверхновые появляются в Галактике примерно раз в сто лет. Можно выдать каждому студенту по галактике, и пусть постоянно смотрит на нее — за сто лет как раз напишет диссертацию. Но на самом деле галактик очень много: если соединить пальцы в кружок размером с пятирублевую монету и посмотреть через него на небо, в этом кружочке будут сотни галактик.

А значит, в небе постоянно взрываются сверхновые, так что мы легко можем использовать их, чтобы рассчитывать расстояния до отдаленных галактик и скорости, с которыми эти расстояния увеличиваются. Эти расчеты были проведены в 1998 году, и результатом стал вот такой график: Если бы темпы расширения Вселенной были одинаковыми, то в его нижней части была бы просто прямая линия. Астрономы ожидали, что все сверхновые будут либо на этой линии, либо ниже. Но большая часть таких звезд оказалась выше линии — это могло быть только в том случае, если бы темпы расширения Вселенной увеличивались. Тогда все сходится. В 2011 году Нобелевскую премию по физике получили ученые, обнаружившие, что Вселенная расширяется с ускорением, а большая часть массы находится в пустом пространстве.

И мы понятия не имеем, как это возможно. Вероятно, это как-то связано с самой природой пространства и времени и причинами возникновения Вселенной. Но теперь понятно, что ее будущее будет определяться не материей и даже не геометрией, а энергией пустого пространства. Много шума из ничего Что будет, если подбросить монетку? Скорее всего, она упадет, но если забросить ее достаточно далеко, она улетит и не вернется. В итоге все сводится к своего рода бухгалтерскому учету: если вторая величина больше первой, монетка упадет на землю, если наоборот — улетит.

И если мы можем сделать подобные расчеты для монетки, значит, можем сделать их и для всей Вселенной. На этом изображении — происхождение Вселенной: Со всеми галактиками происходит примерно одно и то же, так что, чтобы определить их будущее, достаточно определить будущее одной из галактик — например, той, которая обозначена вопросительным знаком.

Здесь же математики отталкиваются от идеи, что Вселенная имеет границу. Это тоже пока дискуссионный вопрос: какой формы Вселенная и конечна ли она. Разные физики-теоретики предлагают разные варианты: плоская, как лист, сферическая, в форме бублика, цилиндра и др. В любом случае, утверждают авторы новой теории, именно на границе Вселенной мир будет плоским, двумерным, как голограмма, которая обычно со стороны кажется нам трехмерной. Там-то, по мнению авторов открытия, и рождается квантовая гравитация то есть сходятся расчеты для ее формулирования. В качестве приятного дополнения эта новая концепция может также объяснить работу темной энергии, расширяющей Вселенную. Когда мы ищем ответы на вопросы в физике, часто приходим и к новым открытиям в математике. Это особенно заметно при поиске квантовой гравитации, где крайне сложно проводить эксперименты», — говорит математик из Университета Чалмерса Дэниел Перссон.

На сайте могут быть использованы материалы интернет-ресурсов Facebook и Instagram, владельцем которых является компания Meta Platforms Inc.

ТОП-10 необъяснимых загадок Земли

  • Строение вселенной
  • Что ждет Вселенную в будущем?
  • Навигация по записям
  • 10 самых загадочных и необъяснимых тайн Вселенной | Компьютерра

Просто невероятно: как устроена Вселенная, почему желания сбываются и зачем смотреть «Матрицу»

создать единую теорию поля или, попросту говоря, теорию всего, т.е. такую теорию, которая бы на фундаментальном уровне могла объяснить сущность мироздания и законы Вселенной. В рамках общей теории относительности и удовлетворяющей ее уравнениям космологической модели, называемой Вселенной Фридмана, для такого ускорения требуется экзотический источник, называемый сейчас темной энергией. Приверженцов первой теории было намного больше, нежели второй, утверждающей, что всего во Вселенной 11 измерений. Виттен и стажёр Хофава обнаружили, что для теории E-гетеротической струны существует описание в терминах 11-мерной теории. Согласно общепринятой теории, Вселенная родилась вместе с Большим взрывом и выглядела как очень горячая и плотная точка. Именно эти противоречия сподвигли Эйнштейна на создание Общей Теории Относительности (ОТО), которая должна была «поправить» Ньютоновскую теорию гравитации и объяснить устройство бесконечно существующей Вселенной.

Новая модель Вселенной

Согласно наиболее популярной теории эволюции Вселенной, смерть последней будет холодной. |. Устройство мироздания: самые необычные концепции Вселенной. Они не доказывают окончательно, что теория отскакивающей Вселенной неверна, но подчеркивают проблемы с некоторыми версиями этой теории. В статье рассказывается о Вселенной, теориях ее происхождения, свойствах. А в теории человек мог бы переместиться в другую Вселенную, если бы она существовала?

Тёмная сторона Вселенной: что такое тёмная материя и как ее найти

Теория Большого взрыва по-прежнему является доминирующей космологической моделью, объясняющей происхождения Вселенной. это увлекательная концепция, объединяющая различные теории, такие как струнная теория и супергравитация, чтобы понять природу Вселенной на самом глубоком уровне. Результаты нового исследования, опубликованного в Classical and Quantum Gravity, позволяют предположить, что теория о расширении Вселенной может быть ошибочной. Именно эти противоречия сподвигли Эйнштейна на создание Общей Теории Относительности (ОТО), которая должна была «поправить» Ньютоновскую теорию гравитации и объяснить устройство бесконечно существующей Вселенной. Звучание Вселенной для человеческого уха недоступно, поскольку в условиях космоса молекулы вещества не сталкиваются друг с другом и не создают вибрацию, привычную для нашей барабанной перепонки.

Похожие новости:

Оцените статью
Добавить комментарий