Ученые предложили чаще использовать нейростимуляцию спинного мозга электричеством с помощью небольшого вживляемого стимулятора. Z-новости. В РФ создали препарат со стволовыми клетками для лечения травмы спинного мозга. Врачи соединили мозг парализованного человека со спинным в обход повреждённого участка — он начал ходить Они вживили ему несколько имплантов, которые образовали беспроводную связь между головным и спинным мозгом Новости Несколько имплантов. «Естественная ходьба после травмы спинного мозга с использованием интерфейса мозг-позвоночник» представляет ситуацию Герта-Яна, 40 лет, который получил травму спинного мозга после велосипедной аварии, в результате которой он был парализован. Первых испытателей компания отберет из числа пациентов с параличом из-за травмы шейного отдела спинного мозга или бокового амиотрофического склероза, говорится в сообщении Neuralink.
Прорыв в лечении поврежденного спинного мозга
Проще говоря, если пучок нервных волокон перерезать сверхтонким скальпелем, то нервные волокна довольно быстро прорастут навстречу друг другу и соединятся. Правда соединятся, скорее всего, не все клетки — не все «разлученные» аксоны найдут друг друга. Из-за этого пучок нервных волокон немного уменьшит свою пропускную способность, однако при небольшом порезе пальца вряд ли проявятся какие-либо побочные эффекты. Но спинной мозг выполняет намного более сложные функции, чем простые периферические нейронные пути, поэтому травма позвоночника приводит к тяжелым последствиям, например повреждение самых крупных двигательных нейронов приводит к параличу ниже места травмы. Существуют перспективные технологии по «сплавлению» нейронов, например с помощью полиэтиленгликоля PEG или полисахарида хитозана. В ходе многочисленных лабораторных экспериментов, проводимых с 1999 года, эти вещества, введенные точно в место повреждения позвоночника, смогли частично восстановить функциональность спинного мозга. В частности в 2000 году был проведен эксперимент на свиньях, в ходе которого в спинной мозг животного спустя 8 часов после травмы ввели PEG.
Проблема этих, казалось бы очень успешных, экспериментов в том, что в них позвоночник травмируется сверхострыми лезвиями, что радикально ускоряет процесс сращивания аксонов, особенно в присутствии PEG или стволовых клеток. В реальности травмы мозга обычно связанны с обширным повреждением нервной ткани позвоночника, с гибелью участков протяженностью в 0,5-1 см. Полностью соединить такой разрыв нервных путей ученые до сих пор не могут. Поиск решения Казалось бы, при нынешнем уровне развития техники «перебросить» набор электрических импульсов от одного нервного пучка к другому не очень сложно. К сожалению, имплантация и присоединение электродов ко множеству нейронов спинного мозга еще долгое время будет фантастикой и гораздо перспективнее найти способ «заставить» организм самостоятельно излечить травму. Определенные успехи в этой области уже есть.
В ноябре 2012 года команда ученых из Кембриджа и Центра регенеративной медицины Университета Эдинбурга опубликовала результаты эксперимента по исцелению подопытных собак с тяжелым повреждением спинного мозга. Ученые проводили опыты на 34 собаках, в основном на таксах. Уникальность этих экспериментов в том, что они были максимально приближены к тем условиям, что могут возникнуть в реальных случаях травм у людей. Другими словами, были взяты обычные домашние собаки, которые в различное время получили травмы позвоночника, связанные с разрывом нервных путей и потерей части нервных клеток. После травм собаки в течение 12 месяцев и более не могли использовать свои задние ноги и потеряли чувствительность задней части туловища. Надо отметить, что у такс часто возникают такие же повреждения спинного мозга, как и у людей: связанные со смещением позвонков относительно друг друга.
Кроме того, у крыс не было признаков членовредительства, что указывало на снижение уровня стресса и подтверждало эффективность лечения. Ожидается, что испытания на людях состоятся в конце 2024 или начале 2025 года в Израиле, США и Канаде. Каждый год от 250. Около 90 процентов случаев связаны с несчастным случаем, падением или насилием. Экзосомы, также известные как внеклеточные везикулы, представляют собой наночастицы, естественным образом присутствующие в организме и выделяемые клетками.
Первый размещен над областью мозга, отвечающей за управление движениями ног, и может декодировать электрические сигналы, возникающие, когда мы думаем о ходьбе.
Аналогичным образом второй имплантат размещается над частью спинного мозга, которая управляет ногами. Ученые заявили, что революционная технология "превращает мысли в действия", восстанавливая нарушенную связь между головным мозгом и областью спинного мозга, контролирующей движения. Первым пациентом стал 40-летний голландец, инженер Герт-Ян Оскам, который получил травму спинного мозга после аварии на велосипеде во время работы в Китае в 2011 году. Он остался парализованным, но уже через несколько дней после того, как хирурги откалибровали имплантаты, он заметил улучшения. В течение пяти минут я мог управлять своими бедрами". Герт-Ян Оскам С тех пор, после долгих тренировок, пациент смог ходить, подниматься по лестнице и преодолевать пандусы.
Хирурги, которые специализируются на болезнях позвоночника, обсуждают передовые методы лечения, делятся опытом и изучают новые образцы оборудования. За последнее десятилетие это направление медицины заметно продвинулось. Сегодня врачи успешно справляются с последствиями травм, которые еще не так давно приводили к инвалидности. Хирург-вертебролог — от латинского «позвоночник». Это направление объединяет в себе и нейрохирургов и ортопедов-травматологов.
Благодаря соединению специальностей в Центре нейрохирургии им. Бурденко удалось помочь Эдуарду. У него удалили очень редкую опухоль. Болезнь редкая, история обычная. Третий день после операции, выписка через два дня.
Science: Ученые заставили мышей пойти после повреждения спинного мозга
Без этого животное или человек с полностью разорванным спинным мозгом будет оставаться парализованным. То есть, необходимо было выполнить три условия: включить рост аксонов на генетическом уровне; обеспечить рост волокон на молекулярном уровне; проложить нейронам след из своего рода белковых «хлебных крошек», чтобы они росли в определенном направлении. Все эти условия выполняются, пока ребёнок развивается в утробе матери. Но после рождения данные процессы останавливаются. Ученые задались целью найти и включить гены, контролировавшие процессы роста нервных клеток в период развития плода.
Эффективность метода была установлена при эксперименте, в ходе которого была смоделирована контузионная травма спинного мозга у свиньи на уровне 11-го грудного позвонка. По словам ученых, такая травма соответствует повреждению, которое встречается в клинических условиях при переломе позвонка и смещении его отломков в сторону спинномозгового канала. Кроме того, авторы метода учли, что пациент обычно не сразу попадает на операционный стол, поэтому у него успевают сформироваться компрессия спинного мозга отломками позвонков и гематома. Исследователи ввели свинье две инъекций везикул: первую сделали через одну неделю после травмы, вторую - через три. Результаты показали, что площадь сохранной ткани увеличивалась на 27 процентов, а суммарная площадь патологических полостей, которые образуются после травмы, уменьшилась на 29 процентов в каудальном направлении от места травмы - это область спинного мозга, которая подвергается наибольшим дегенеративным изменениям после воздействия.
Первый размещен над областью мозга, отвечающей за управление движениями ног, и может декодировать электрические сигналы, возникающие, когда мы думаем о ходьбе.
Аналогичным образом второй имплантат размещается над частью спинного мозга, которая управляет ногами. Ученые заявили, что революционная технология "превращает мысли в действия", восстанавливая нарушенную связь между головным мозгом и областью спинного мозга, контролирующей движения. Первым пациентом стал 40-летний голландец, инженер Герт-Ян Оскам, который получил травму спинного мозга после аварии на велосипеде во время работы в Китае в 2011 году. Он остался парализованным, но уже через несколько дней после того, как хирурги откалибровали имплантаты, он заметил улучшения. В течение пяти минут я мог управлять своими бедрами". Герт-Ян Оскам С тех пор, после долгих тренировок, пациент смог ходить, подниматься по лестнице и преодолевать пандусы.
Новое исследование показывает , что он может быть связан с воспалением, которое нашли в спинномозговой жидкости. Пациенты жалуются на проблемы с памятью, мышлением и обучением. Однако последние исследования помогают лучше понять проблему. У большей части из них были когнитивные нарушения. Все испытуемые перенесли коронавирус в легкой форме, им не потребовалась госпитализация.
Что такое опухоль спинного мозга
- Технологии Долголетия, новости – Telegram
- Содержание
- Спинной мозг также может обучаться и запоминать
- Содержание
- Спинной мозг подсоединили к головному и вернули человеку с травмой позвоночника подвижность
- Спинной мозг подсоединили к головному и вернули человеку с травмой позвоночника подвижность
Ученые КФУ изучают эффективные способы помощи пациентам с травмой спинного мозга
Новости Казахстана. Спинной мозг обладает собственными нейронными сетями, которые выполняют просчёт движений на месте. Потому что через так называемый гематоэнцефалический барьер, который отделяет мозг от кровотока, проникают не все противовирусные лекарства. Суть заключается в многоуровневой стимуляции спинного мозга в сочетании со специальными упражнениями. Создан препарат со стволовыми клетками для лечения спинного мозга. Первых испытателей компания отберет из числа пациентов с параличом из-за травмы шейного отдела спинного мозга или бокового амиотрофического склероза, говорится в сообщении Neuralink.
Всего одна субпопуляция нейронов помогла пациентам начать ходить после паралича
Дата публикации: 29 мая 2023 г. Изображение: источника. Цифровой мост позволил ему восстановить естественный контроль над движением его парализованных ног, что позволяет ему стоять, ходить и даже подниматься по лестнице.
Так удалось выделить 36 субпопуляций, основанных на работе маркерных генов. Чтобы выделить ту субпопуляцию, которую исследователи искали принимающую участие в реабилитации , биологи использовали метод приоритезации. Алгоритм машинного обучения Augur выделил в построенном атласе те нейроны, экспрессия которых больше всего менялась при реабилитации. Оказалось, что есть группа нейронов, которая меняет свою экспрессию в ответ на все параметры терапии. Эти клетки экспрессировали маркеры Vsx2 и Hoxa10 и принадлежали к группе возбуждающих интернейронов. Их назвали по этим генам и происхождению из спинного мозга spinal cord — SCVsx2::Hoxa10. Далее исследователи проверили, действительно ли эти клетки принимают участие в рутинной ходьбе до травмы и в самом процессе реабилитации.
Для этого в обоих случаях активность клеток искусственно подавили и проверили, как это повлияло на движения.
Первые подтверждения перспективности такого подхода получены при анализе образцов сыворотки крови пациентов из биобанка Научно-технологического парка биомедицины Сеченовского Университета». Для оценки рисков возникновения заболевания необходимо ввести в разработанную компьютерную программу результаты анализа элементного профиля по заданным параметрам. Анализ проводится с помощью масс-спектрометрии с индуктивно-связанной плазмой. После ввода показателей анализа система, основанная на статистических моделях, просчитывает риск наличия патологического процесса и предоставляет результат.
В дальнейшем в соответствии с этим результатом врач может принять решение о целесообразности проведения углубленного обследования. Сейчас ученые Центра биоэлементологии и экологии человека продолжают исследования иономных профилей совместно с ведущими врачами из России и других стран.
Вот они: — Почти всегда остается надежда на восстановление по крайней мере некоторых из утраченных функций. Анализ медицинской статистики штата Колорадо показал, что только 1 из 7 полностью парализованных после травмы пациентов смог добиться значительной степени восстановления движения. Для тех, кто сразу после травмы сохранил хотя бы слабую способность к движению конечностей, эта пропорция значительно выше: 3 из 4 таких пациентов добиваются существенных улучшений. Что касается тех, кто ощущал только легкое прикосновение, ходить сможет примерно 1 из 8 таких пострадавших. Как правило, если мышцы становятся способны функционировать лишь через несколько недель, это с большей вероятностью будут мышцы рук, а не ног. Сколько длится тот период, в который можно надеяться на существенное улучшение, будь то пациент с неполным или полным повреждением спинного мозга? Как долго можно жить надеждой?
На этот вопрос нет однозначного ответа. Понятно, что после двух или трех лет паралича, шансы на то, что мышцы заработают без посторонней помощи, практически ничтожны. Что же касается месяца, двух, полугода после травмы — прогноз сделать сложнее, однако есть два правила, которые помогут сориентироваться: — Если есть постоянные улучшения, если все новые мышцы постепенно восстанавливают функцию, значит, высок шанс дальнейшего значительного прогресса. Что ж, эти факты внушают умеренный оптимизм даже тем, кто пострадал от обширного поражения спинного мозга. Еще больший оптимизм внушают научные разработки, которые в перспективе могут сделать паралич излечимым или, по крайней мере, создать условия для значительной адаптации пострадавших от травм спинного мозга к нормальной жизни. Почва для оптимизма Фото с сайта students4bestevidence. Все изменилось 12 июля 2006 года: его сбила машина, после чего он оказался полностью обездвижен. И хотя у него сохранялась некоторая чувствительность в нижней части туловища, прогноз был неутешительным. Врачи сказали, что ходить Роб никогда не сможет.
В конце XX века история на этом бы и закончилась, но в наше время медицина все быстрее переходит от научной теории к практике. Робу Саммерсу и еще трем молодым людям с повреждениями спинного мозга предложили инновационную терапию — эпидуральные стимуляторы, имплантируемые в спинной мозг. Все четыре пациента, парализованные, по крайней мере, от груди и до кончиков ног, теперь в состоянии двигать ногами. Роб Саммерс первым получил экспериментальное лечение, разработанное доктором Регги Эдгертоном из Калифорнийского университета Лос-Анджелес и доктором Сьюзан Харкема из Университета Луисвиля Кентукки при участии наших соотечественников из Института физиологии имени Павлова Санкт-Петербург.
Всего одна субпопуляция нейронов помогла пациентам начать ходить после паралича
Яркое доказательство — результаты экспериментов на насекомых с удаленной головой, в которых их ноги «обучали» избегать неприятного внешнего воздействия. Эти опыты говорят о важности для обучения не только центральной, но и периферической нервной системы. Но как это происходит на уровне клеток и нейронных связей, оставалось непонятным. Сейчас исследователи из Японии и Бельгии разработали похожую экспериментальную схему, где подопытными были уже не насекомые, а млекопитающие — лабораторные мыши. При тестировании задние лапы подопытных мышей свободно свисали, и если лапа слишком сильно опускалась вниз, то подвергалась удару электрического тока. Лапы контрольных мышей также стимулировали током, но делали это неупорядоченно.
Это позволило предположить, что восстановлением активности после паралича занимается другая группа нейронов, которая не выполняет рутинную двигательную функцию. Чтобы проверить эту гипотезу, исследователи создали мышиную модель травмы спинного мозга, а также и терапевтическую систему стимуляции и механической поддержки веса тела при ходьбе. Чтобы исследовать, как нейроны мышей реагируют на терапию, ученые создали целый атлас клеток, основанный на экспрессии их генов и расположении в спинном мозге. Для этого биологи использовали секвенирование РНК в каждом из ядер клеток отдельно snRNA-seq и нанесли результаты секвенирования на проекцию спинного мозга. Так удалось выделить 36 субпопуляций, основанных на работе маркерных генов.
Чтобы выделить ту субпопуляцию, которую исследователи искали принимающую участие в реабилитации , биологи использовали метод приоритезации. Алгоритм машинного обучения Augur выделил в построенном атласе те нейроны, экспрессия которых больше всего менялась при реабилитации. Оказалось, что есть группа нейронов, которая меняет свою экспрессию в ответ на все параметры терапии.
Участников более 700. Оказывается, с болезнями позвоночника очень многое связано. Тема съезда «Противоречия в вертебрологии и опыт смежных специальностей». Одно из противоречий — ситуация, в которой направление оказалось в условиях санкций, но все постепенно успешно решается. Белорусская компания, уверяют хирурги, по техническому уровню не уступает, по цене выигрывает. Юрий Палатенко, коммерческий директор «Медбиотех»: «Нам часто задают вопрос, почему мы не работаем с западными странами, с западными фирмами. Ответ очень простой: имея рядом такой огромный рынок, как Россия, было бы смешно уходить на сторону». Уральские производители оборудования горды своей продукцией настолько, что готовы открыто и заслужено хвалиться. Дмитрий Егоров, заместитель генерального директора уральского завода «ООО Медин-Урал» : «Все сделано из наших российских материалов, а данный компрессор и дистрактор сделаны их уральского титана, вся продукция Уральского региона. Можно сказать, даже узко, не российский, а уральский производитель».
В результате обучения цифровой интерфейс помог пациенту делать то, что ему стало недоступно после травмы — ходить по пересечённой местности и удерживать баланс с костылями. Платформа работала хорошо также в домашних условиях, а не только под присмотром врачей. Более того, часть путей нейронов в головном мозге смогла перестроиться, и пациент ряд действий мог совершать даже без искусственной стимуляции. Когда-нибудь, отмечают исследователи в своей статье в Nature, подобные технологии смогут вернуть к активной жизни людей с травмами позвоночника. Если это работает на одном пациенте, то может быть повторено с другими. Вечерний 3DNews Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы.
Парализованный мужчина начал ходить с помощью "моста" между головой и спинным мозгом
Первых испытателей компания отберет из числа пациентов с параличом из-за травмы шейного отдела спинного мозга или бокового амиотрофического склероза, говорится в сообщении Neuralink. «Естественная ходьба после травмы спинного мозга с использованием интерфейса мозг-позвоночник» представляет ситуацию Герта-Яна, 40 лет, который получил травму спинного мозга после велосипедной аварии, в результате которой он был парализован. спинного мозга выделяют полный поперечный и парциальный поперечный миелит, а на основании протяженности патологических изменений — продольно распространенный поперечный и продольно ограниченный поперечный миелит [3]. «Функциональность имплантов спинного мозга была изучена с использованием тестов in vivo на лабораторных животных, которые показали высокую эффективность предлагаемой технологии для мониторинга и стимуляции нейрональной активности у млекопитающих». Статья Спинной мозг, Травмы, Выпущено вживляемое в тело устройство для реабилитации людей с травмами спинного мозга, Вышло портативное устройство для поддержки дыхания пациентов с травмами спинного мозга. Теперь нейробиологи восстановили связи так, чтобы волокна соединялись с поврежденными зонами. Исследователи провели опыт на мышах с относительно легкими травмами, а также на грызуне с серьезным повреждением спинного мозга.
Автор обзора
- Ученые восстановили разрушенный спинной мозг
- Нейроинтерфейс между спинным и головным мозгом позволил ходить паценту с травмой позвоночника
- Ученые создали имплант спинного мозга — он вылечил 80 процентов случаев хронического паралича мышей
- Ученые КФУ разработали новый метод восстановления спинного мозга - Российская газета
- Ученые создали имплант спинного мозга — он вылечил 80 процентов случаев хронического паралича мышей
- Автор обзора
Человеческому мозгу вернули контроль над парализованными ногами
Лучший Telegram-канал про технологии возможно Два импланта располагались в области мозга, отвечающей за контроль движение. Они передавали сигналы мозга желания Герта-Яна на сенсоры в специальном шлеме, который пациент надевал на голову. Через другой имплант, который находился в спинном мозге, эти сигналы благодаря алгоритму преобразовывались в инструкции для мышц ног. Таким образом, учёные смогли обойти повреждённый участок спинного мозга в шейном отделе позвоночника и восстановить связь между мозгом и телом. По сути, был создан беспроводной интерфейс между головным и спинным мозгом, используя технологию интерфейса мозг-компьютер, которая преобразует мысли в действия. Помимо того, что импланты позволили восстановить повреждённые связи в центральной нервной системе, они выполняли ещё одну важную роль.
Больше всего повезло тем собакам , у которых были нарушены связи между близкорасположенными нейронами, что соответствует тонкому хирургическому разрезу или несильному сдвигу позвонков. Тем не менее, уже это является большим достижением. Один из хозяев собаки, отмечает, что это похоже на чудо: «До инъекции наш пес Джаспер не мог ходить и ползал, волоча задние ноги, а теперь он носится вокруг нашего дома и не отстает от других собак». В настоящее время ученые работают над созданием матриц, которые «укажут» клеткам OEC куда надо расти, чтобы восстановить связь в позвоночнике. Подобная технология сможет обеспечить восстановление нейронных связей даже при потере большого количества нейронов, как бывает, например, в случае компрессионных переломов. Пока идет работа над полным излечением травм спинного мозга, ученые из Case Western Reserve University и клиники Кливленда пытаются хотя бы частично улучшить состояния людей с очень серьезными повреждениями нервной ткани. В случае с обширной потерей нейронов пока почти нет надежды на полное исцеление, но для пациентов было бы большим облегчением восстановить хотя бы частичную функциональность парализованной части туловища. Успехи в этой области уже есть, и они весьма существенные. Американским ученым удалось восстановить у подопытных крыс контроль над мочевым пузырем, причем потеря контроля произошла в результате серьезной травмы позвоночника: полного перерезания позвоночного столба с массивной потерей нейронов. С помощью двух десятков нервных волокон ученые соединили разорванный спинной мозг. На рисунке видны нервные волокна и тонкий металлический проводок, защищающий новое нервное соединение от обрыва Ученые не ставили перед собой задачу полностью вернуть подопытным мышам подвижность — это было невозможно при такой серьезной травме. Вместо этого была проделана кропотливая работа по пересадке нервной ткани из груди крыс в место повреждения в позвоночнике. Спустя много месяцев нейроны, подпитанные специальными химическими веществами и факторами роста, смогли прорасти навстречу разорванным участкам спинного мозга и соединить его через огромный по медицинским меркам разрыв шириной более 5 мм. В итоге получилось тонкое, всего в примерно 20 нервных волокон, соединение, которое, конечно, не могло полностью восстановить функциональность спинного мозга. Тем не менее, впоследствии, мыши восстановили некоторый контроль над потерянными функциями организма, в частности смогли контролировать мочевой пузырь. Потенциально, данная методика может помочь восстановить множество других функций, в частности 2 года назад с ее помощью у крыс с менее тяжелыми повреждениями мозга восстановили контроль над дыхательными мышцами. Возможно, в перспективе с помощью подобной технологии все же можно будет ремонтировать обширные повреждения спинного мозга и полностью восстанавливать его функциональность. Также, в мае 2012 года ученые из Федеральной политехнической школы Лозанны сообщили об открытии совершенно нового пути лечения травм позвоночника. Эксперименты на крысах показали, что в случае травмы нижняя часть позвоночника, отделенная от головного мозга, может взять на себя управление движением нижних конечностей.
Прежде чем перейти к изучению нейронных связей, исследователи разработали экспериментальную установку, которая позволила им изучить процесс адаптации спинного мозга мыши. Под процессом понимается как обучение, так и запоминание без участия головного мозга. В каждом тесте участвовали экспериментальная и контрольная мыши, чьи задние лапы свободно свисали. Если задняя лапа экспериментальной мыши опускалась слишком низко, она получала электрическую стимуляцию, импульс, которого мышь хотела бы избежать. Контрольная мышь получала такую же стимуляцию в то же время, но без привязки к положению ее задней лапы. Уже через 10 минут наблюдались результаты моторного обучения, но только у подопытных мышей: их лапки оставались высоко поднятыми, избегая электрической стимуляции. Этот результат показал, что спинной мозг может ассоциировать неприятные ощущения с положением ног и адаптировать свою двигательную активность таким образом, чтобы избежать неприятных ощущений. И все это без участия мозга.
Удалось восстановить способность передвигаться с ходунками, но дальнейших улучшений не было. Установка имплантатов заняла немного времени, после каждой операции пациента выписывали в течение суток, и в последующие 20 месяцев наблюдений требовалась лишь нечастая повторная калибровка. Уже после пятиминутной первичной калибровки BSI поддерживал непрерывный контроль активности мышц-сгибателей бедра нарушения затронули их в наибольшей степени. Мышечная активность увеличилась в пять раз по сравнению с попытками без BSI. Восстановился интуитивный контроль движений ног: Герт-Ян смог стоять, ходить, подниматься по лестнице и даже пересекать пешком сложные ландшафты. После программы нейрореабилитации определенные улучшения наблюдались и при выключенном BSI видео. Улучшились не только двигательные показатели, но и чувствительность к легким прикосновениям. Можно надеяться, что цифровой мост создает основу для восстановления естественного контроля движений. В предыдущих исследованиях авторы уже использовали электрическую стимуляцию спинного мозга для восстановления двигательной активности у людей. И установили в параллельных экспериментах на животных, что движение восстанавливается благодаря интернейронам спинного мозга; подробнее на PCR. Отличие нового исследования от предыдущих заключается в том, что здесь авторы декодируют движения по активности мозга, а не по остаточным движениям, которые регистрируют датчики, прикрепленным к телу.
Новости партнеров
- Симптоматика
- Журнал Forbes Kazakhstan
- Спинной мозг: истории из жизни, советы, новости, юмор и картинки — Горячее | Пикабу
- Вводимый через шприц имплант восстановил подвижность у мышей с параличом
- Открытие ученых о регенерации нейронов спинного мозга
Ученые восстановили разрушенный спинной мозг
Создан препарат со стволовыми клетками для лечения спинного мозга. Столь необычный способ управления кресла в первую очередь предназначен для страдающих повреждением спинного мозга, передают американские СМИ. Читайте самые интересные и обсуждаемые посты по теме Спинной мозг. Статья Спинной мозг, Травмы, Выпущено вживляемое в тело устройство для реабилитации людей с травмами спинного мозга, Вышло портативное устройство для поддержки дыхания пациентов с травмами спинного мозга. После этого у животного с контузионной травмой спинного мозга была зафиксирована положительная динамика его состояния, в частности, частично восстановилась двигательная активность.
Российский нейроимплант поможет двигаться пациентам с травмами спинного мозга
При частичном повреждении спинной мозг может передавать некоторые сигналы в головной мозг и наоборот, поэтому такие пациенты обладают некоторой чувствительностью и даже некоторыми моторными функциями ниже пораженной области. Потому что через так называемый гематоэнцефалический барьер, который отделяет мозг от кровотока, проникают не все противовирусные лекарства. Россиянин Спиридонов оценил новость о пересадке мозга хирургом Канаверо.
В России проведена операция по установке нейростимулятора в спинной мозг
Новости 16 апреля. Травмы спинного мозга сегодня практически не поддаются лечению, ежегодно обрекая тысячи людей на жизнь в инвалидном кресле. Эти детали могут быть полезны для понимания принципов регенерации поврежденных аксонов спинного мозга", — рассказывает Роман Борисюк из Института математических проблем биологии РАН, чьи слова приводит пресс-служба заведения. Здесь Технологии Долголетия публикуют наиболее важные и актуальные новости о продлении жизни человека и событиях, связанных с этой тематикой.