Новости сколько солнц во вселенной

Сообщается, что ученым впервые удалось обнаружить следы взрывов самых первых звезд, появившихся во Вселенной. В настоящее время считается, что причиной возникновения Солнца и Солнечной системы послужил взрыв одной или нескольких сверхновых звёзд.

Телескоп «Джеймс Уэбб» нашел гигантскую красную планету с двумя Солнцами

Звезда намного моложе Солнца, ей всего от 600 до 750 миллионов лет. Другими словами, общее количество материи в наблюдаемой Вселенной в 66 септиллионов (66000 миллиардов миллиардов) раз больше массы Солнца, сообщил AFP ведущий автор исследования астрофизик из Калифорнийского университета в Риверсайде Мохамед Абдулла. Учитывая количество звезд во вселенной, весьма вероятно, что сверхновые образуются каждый день (может быть каждый час или минуту). Эта невероятное количество энергии излучается благодаря тому, что масса вещества, в сотни тысяч раз больше, чем масса Солнца, и вращается она со скоростью, близкой к скорости самого света. Учитывая количество звезд во вселенной, весьма вероятно, что сверхновые образуются каждый день (может быть каждый час или минуту). Таинственный космический луч, наблюдаемый в штате Юта, пришел из-за пределов нашей галактики, утверждают ученые, у которых накопилось немало вопросов к этому феномену.

Связанные вопросы

  • «Сколько нам осталось?»: учеными доказано, что Вселенная испаряется | 07.06.2023 |
  • Сколько галактик во Вселенной?
  • Телескоп «Джеймс Уэбб» нашел гигантскую красную планету с двумя Солнцами
  • Остатки самых первых звезд Вселенной обнаружены в далеком космосе - Российская газета
  • Самый яркий объект во вселенной поглощает по одному Солнцу каждый день | Техкульт
  • КРИЗИС В АСТРОФИЗИКЕ

У Земли было два Солнца. Неожиданное открытие астрофизиков

Сколько лет Солнцу? Ответ на вопрос, сколько Солнечных систем в Галактике, довольно прост — одна.
СКОЛЬКО ВСЕЛЕННЫХ ВО ВСЕЛЕННОЙ? | Наука и жизнь Его количества, по расчетам исследователей, вполне хватало, чтобы объяснить существование всех излишков лития во Вселенной.
Сколько атомов во вселенной? (Александр Ивашкевич) / Проза.ру Сколько всего Солнц во всей Вселенной и что происходит после того как Солнце полностью погибло с его остатками?
Звезда на пике. Астроном предупредил о солнечной супербуре Сообщается, что ученым впервые удалось обнаружить следы взрывов самых первых звезд, появившихся во Вселенной.

Что мы знаем о космосе?

Астрономы обнаружили самое массивное сверхскопление: 26 квадриллионов Солнц Типичная масса сверхскоплений превышает массу Солнца в 6 млн раз Международная группа учёных под руководством астрономов Тартуской обсерватории Тартуского университета обнаружила множество сверхскоплений во Вселенной. Одним из этих сверхскоплений является «Сверхскоплением Эйнасто», которое было названо в честь профессора Яана Эйнасто, новатора в этой области исследований, который отметил свое 95-летие 23 февраля. Источник: Shishir Sankhyayan Сверхскопления представляют собой самые большие и массивные скопления галактик во Вселенной. Результаты исследования значительно расширили понимание этих структур, а также помогли в поисках ответов на вопросы об их формировании. В ходе исследования учёные определили, что типичная масса сверхскоплений превышает массу Солнца в 6 миллионов раз, а средний размер составляет 200 миллионов световых лет. Для сравнения, эти сверхскопления в 2000 раз превосходят размеры нашей галактики Млечный Путь.

Для массивных звёзд, где после выгорания водорода внутренне давление уже не может противостоять собственной гравитации, всё заканчивается куда эффектне - взрывом Сверхновой и превращением остатков звезды в нейтронную, а если масса совсем большая - то даже превращением в чёрную дыру.

Однако, развитие радиоизотопного метода в начале ХХ века позволило надежно установить, что возраст Земли, а значит и Солнца, несколько миллиардов лет. Впрочем, выделение тепла за счет гравитационного сжатия все-таки играет важную роль в образовании звезд из межзвездного газа на ранних этапах формирования. Более точно возраст Солнца можно было бы оценить сравнивая содержание водорода и гелия в ядре Солнца и его внешней оболочке. Но это соотношение оценивается очень приблизительно и определяет возраст Солнца в 4. Это согласуется с возрастом Солнечной Системы, хотя не исключено, что Солнце на 1-2 миллиарда лет старше. Данные о «продолжительности жизни» Солнца, приведенные в начале этой истории, взяты из справочной литературы и основаны на так называемой Стандартной Солнечной Модели.

Нонагинтиллион - это число, у которого 273 нуля после единицы. Дуцентдуомилианонгентновемдециллион - 10308760 нулей. Десять в степени числа, которое равно десять в степени 100 - гуголплекс. Можете представить себе такое количество чего-либо? И это правильно! Людей на Земле сейчас около 8 умноженных на 1 000 000 000. Всего 9 нулей 10 в девятой степени. Молекул в стакане воды 6,7 умноженные на 10 в 24-й степени. Атомов в солнечной системе порядка 3 умноженных на 10 в 57-й степени. Атомов в нашей галактике примерно 1 на 10 в 69-й степени. Атомов во всей наблюдаемой вселенной порядка 1 на 10 в 80-й степени.

Ученые впервые взвесили гало темной материи древних галактик

В течение следующих нескольких дней телескопы со всего мира были направлены на этот свет, изучая его в рентгеновском, ультрафиолетовом, оптическом и радиодиапазоне, чтобы выяснить, что может выбрасывать такое количество энергии. В новом исследовании ученые сообщают о наиболее вероятной версии. Сигнал назвали AT 2022cmc, скорее всего, он исходил от черной дыры, расположенной примерно в 8,5 миллиардах световых лет от нас. Этот сверхмассивный монстр поглотил звезду, которая подошла слишком близко, отбросив часть материи, что и сформировало вспышку света. Хотя подобные события наблюдались много раз в прошлом, это самое яркое и самое далекое из когда-либо обнаруженных.

Ее просто испепелит. Буйствовать Солнце будет приблизительно несколько миллионов лет, а потом постепенно начнет остывать. В итоге остынет до размера белого карлика. Чей радиус не будет превышать 10 километров.

Вот и вся судьба. Что же случится с человечеством? Ну, во-первых, эволюцию никто не отменял, так что человечество в том виде, в котором мы сейчас пребываем, возможно, и не сохранится. Да и местом обитания разумные земляне, скорее всего, выберут что-то не такое опасное.

В самом центре находится ядро , в котором происходит энерговыделение; по протяжённости оно занимает 0,2 радиуса Солнца. После него вплоть до расстояния 0,66 радиуса Солнца следует лучистая зона , в которой вещество находится в состоянии гидростатического равновесия, а поток энергии передаётся в радиальном направлении от нижних слоёв к верхним за счёт поглощения и последующего излучения фотонов , Рис. Схема строения Солнца. Перевод подписей и обозначения: БРЭ. Вся эта внутренняя часть Солнца вращается как твёрдое тело с периодом около 27 суток. Далее, в узком слое на расстоянии от 0,68 до 0,72 радиуса Солнца, который называется тахоклином , происходит резкий переход к дифференциальному вращению, близкому к тому, что наблюдается на поверхности Солнца, и от механизма лучистого переноса энергии к конвективному.

По современным представлениям, тахоклин играет важнейшую роль в генерации переменных магнитных полей на Солнце. Начиная с тахоклина, где температура составляет примерно 2 млн К, температура солнечной плазмы продолжает уменьшаться, а её непрозрачность возрастает настолько, что лучистый перенос уже оказывается неспособен переносить наверх поток энергии, выработанной в ядре, и с уровня 0,72 радиуса Солнца возникает развитая конвективная зона. Здесь перенос энергии производится тепловой конвекцией , т. Такой перенос энергии оказывается в несколько раз более эффективным, чем лучистый, и поэтому у поверхности Солнца поток тепла переносится к фотосфере почти целиком за счёт конвекции. Дифференциальное вращение Солнца легко прослеживается в фотосфере по наблюдениям за перемещением по диску различных индикаторов солнечных пятен , факелов , волокон на разных широтах. Для невидимой глазу конвективной зоны распределение угловой скорости вращения с глубиной и гелиоширотой рис.

Пятый факт, — это то, что имеется стабильность излучения Солнца! В процессе от термоядерных взрывов не может быть стабильности излучения. Доказательства справедливости предлагаемой теории в том, что присутствуют решающие факторы, подтверждающие эту теорию. А при Термоядерной Реакции непонятно откуда взялся магнетизм. И он ей абсолютно не нужен. И второй факт, это то, что Солнце интенсивно вращается вокруг своей оси! И это никакого значения для протекания Термоядерной Реакции не имеет. А природа очень экономичная и все явления, и всё имеет огромное значение для существования. Прибор имел металлический диск, из-за которого, при вращении диска, отклонялась магнитная стрелка. И он, диск, мог быть, необязательно, медным. Сам факт вращения Солнца вокруг своей оси от обращения планет спутников по орбитам вокруг Солнца доказывается таким образом: Так же, как Луна вращает Землю вокруг её Земли собственной оси, так и Земля вращает Солнце вместе с другими планетами Солнечной Системы вокруг его, Солнца, собственной оси. Природа, повторяем, любит одинаковые схемы. Допустить, что внутри Солнца имеются постоянные магниты, почти невозможно. А электромагнетизм — это, полная уверенность, что он возникает из-за вращения Солнца вокруг своей оси. Закон Ф. Только интенсивно вращающиеся небесные тела обладают электромагнетизмом. Уточнение: Магнетизм, намагниченность тела, сложно создать и очень сложно прекратить, нужны специальные сложные устройства, а электромагнетизм прекратить просто — достаточно выключить подачу электроэнергии, в нашем случае прекратить вращение и электромагнетизм прекратится. Это электромагнетизм на Солнце и на планетах, имеющих спутников, потому что он пропадает, выключается при отсутствии вращения, и включается при наличии вращения. Так доказал Ф.

ГРАНИ ЭПОХИ

На волнах короче 200 нм интенсивность непрерывного спектра Солнца резко падает, появляются эмиссионные линии. Интенсивность излучения Солнца в УФ- и рентгеновском диапазонах очень сильно меняется с изменением уровня солнечной активности. УФ-излучение Солнца возникает в хромосфере Солнца — следующем за фотосферой слое солнечной атмосферы толщиной около 2000 км и температурой 8—15 тыс. Рентгеновское излучение также исходит из хромосферы, содержащей горячие волокна-выбросы, и расположенной над нею ещё более горячей около 1—2 млн К , но сильно разреженной и чрезвычайно протяжённой короны Солнца. Кроме того, Солнце является мощным источником радиоизлучения.

Хромосфера Солнца излучает радиоволны в миллиметровом и сантиметровом диапазонах, солнечная корона — дециметровые и метровые радиоволны. В радиоизлучении Солнца выделяют две составляющие — постоянную и переменную. Первая соответствует радиоизлучению спокойного Солнца, вторая отражает явления солнечной активности и проявляется в виде всплесков и шумовых бурь. Это радиоизлучение имеет нетепловую природу и при солнечных вспышках возрастает в тысячи и миллионы раз по сравнению с радиоизлучением спокойного Солнца.

Долгое время наблюдению с Земли была доступна лишь видимая часть солнечного спектра. С наступлением космической эры в последней трети 20 в. В настоящее время наблюдениям доступно как длинноволновое солнечное излучение, т.

Чей радиус не будет превышать 10 километров. Вот и вся судьба. Что же случится с человечеством? Ну, во-первых, эволюцию никто не отменял, так что человечество в том виде, в котором мы сейчас пребываем, возможно, и не сохранится. Да и местом обитания разумные земляне, скорее всего, выберут что-то не такое опасное. Напомню, до этого ждать еще несколько миллиардов лет.

Можете представить, как это долго? Вот и мы не можем и не хотим.

При наличии нескольких тел на гравитационно хаотичной орбите, одно из них однажды выбрасывается, оставляя другие более тесно связанными. Это происходит в шаровых скоплениях с течением времени и объясняет, почему они настолько компактны, а также почему существует так много слившихся воедино старых звезд в ядрах этих древних реликтов. В космосе все не так просто. Будет ли космос существовать всегда Гравитационный выброс происходит примерно в 100 раз чаще случайного слияния, а значит наша звезда и остальные связанные планеты, вероятно, будут выброшены в бездну уже пустого пространства примерно через 1019 лет. Но ничто не вечно, даже космос. Каждая орбита — даже гравитационные орбиты в общей теории относительности — медленно распадаются со временем.

Может потребоваться очень много времени, возможно, 10150 лет, но в конечном итоге орбиты Земли развалятся и она устремится по спирали к центральной массе нашей Солнечной системы. Такой будет наша судьба, если нас выбросит. В космосе многое красиво, но все опасно. Но если мы остаемся в гигантской галактике, в которую превратится Млекомеда, нам не суждено оказаться в черной дыре в центре галактике. Чтобы это произошло, потребуется 10200 лет, но черные дыры столько не живут. Они медленно испаряются в виде излучения Хокинга. Благодаря этому распаду, даже самые массивные черные дыры во Вселенной будут жить не больше 10100 лет, а черная дыра солнечной массы — каких-то 1067 лет. Подписывайтесь на наш канал в Яндекс Дзен.

Там можно найти много всего интересного, чего нет даже на нашем сайте. После распада черной дыры останется только темная материя, а значит, Земля устремится к черному карлику, который однажды был нашим Солнцем. Вне зависимости от того, сколько раз наш мир мог оказаться и оказывался в огне, наша конечная судьба — замерзнуть в холодной, пустой Вселенной.

То, чем на самом деле является данный объект, попробовал описать доцент Кристиан Вольф. По его словам, это нечто диаметром 7 световых лет. Крошечная, если так можно сказать, точка в середине массой около 17 миллиардов Солнц, окружена неимоверным облаком из газа и распадающейся под чудовищным давлением материи. Подсчитано, что каждые сутки квазар J0529-4351 поглощает объем вещества, равный нашему Солнцу.

Ученые впервые взвесили гало темной материи древних галактик

Таким образом, в воспринимаемой нами вселенной количество звёзд примерно 10 в 23-й степени. Буйствовать Солнце будет приблизительно несколько миллионов лет, а потом постепенно начнет остывать. одна вселенная Единственный осмысленный ответ на вопрос о том, сколько существует вселенных, — это одна, только одна вселенная. Международная команда ученых обнаружила самый яркий объект во Вселенной — квазар J059-4351, расположенный в созвездии Живописца. Международная группа астрофизиков из Италии, Японии и США обнаружила свидетельства существования в нашей галактике Млечный Путь самых мощных из известных источников излучения во Вселенной.

Телескоп «Хаббл» показал как погибнет Солнце

На волнах короче 200 нм интенсивность непрерывного спектра Солнца резко падает, появляются эмиссионные линии. Интенсивность излучения Солнца в УФ- и рентгеновском диапазонах очень сильно меняется с изменением уровня солнечной активности. УФ-излучение Солнца возникает в хромосфере Солнца — следующем за фотосферой слое солнечной атмосферы толщиной около 2000 км и температурой 8—15 тыс. Рентгеновское излучение также исходит из хромосферы, содержащей горячие волокна-выбросы, и расположенной над нею ещё более горячей около 1—2 млн К , но сильно разреженной и чрезвычайно протяжённой короны Солнца.

Кроме того, Солнце является мощным источником радиоизлучения. Хромосфера Солнца излучает радиоволны в миллиметровом и сантиметровом диапазонах, солнечная корона — дециметровые и метровые радиоволны. В радиоизлучении Солнца выделяют две составляющие — постоянную и переменную.

Первая соответствует радиоизлучению спокойного Солнца, вторая отражает явления солнечной активности и проявляется в виде всплесков и шумовых бурь. Это радиоизлучение имеет нетепловую природу и при солнечных вспышках возрастает в тысячи и миллионы раз по сравнению с радиоизлучением спокойного Солнца. Долгое время наблюдению с Земли была доступна лишь видимая часть солнечного спектра.

С наступлением космической эры в последней трети 20 в. В настоящее время наблюдениям доступно как длинноволновое солнечное излучение, т.

Там они подобны вечной, очень мелкозернистой, но очень горячей песчаной буре в атмосфере. Наблюдение за планетой является важным шагом на пути к пониманию природы появления таких массивных объектов.

И оказалось, что вроде бы все в порядке, и нет уже более никаких неучтенных возмущений — и Уран, и Нептун двигаются теперь по своим расчетным орбитам без опозданий и опережений. А раз так, то вся эта история с Плутоном — чистой воды недоразумение, и мы долгих 75 лет величали космическую каменюгу планетой по ошибке в расчетах… Что ж… бывает… Но планеты, это еще далеко не все, что населяет Солнечную систему.

Я уже упоминал об открытии Галилео Галилеем 4-х спутников планеты Юпитер 1608 год при помощи своего первого в истории телескопа. Подобные открытия вскоре стали систематическими, и у Марса были открыты 2 спутника кстати говоря, они — Фобос и Деймос — были в значительной степени предугаданы учеными — по принципу: «раз у Земли спутник один Луна , а у Юпитера четыре, то у Марса просто обязаны найтись два спутника. И нашлись, но к настоящей науке это предугадывание отношения не имеет» , у Сатурна очень скоро спутников обнаружилось больше чем у Юпитера, а у вновь открытых Урана, Нептуна и Плутона спутники, хоть и не так скоро и много, но тоже в обязательном порядке отыскались. История со спутниками планет обрела второе дыхание в эпоху исследования планет-гигантов с помощью космических аппаратов и сейчас даже страшно подумать сколько десятков «сателлитов» у каждого из этих газо-жидких планет. Кроме того, у всех планет-гигантов были открыты кольца — тоже своего рода спутники, но крайне многочисленные, мелкие и равномерно распределенные в пределах некоторого пространства. В процессе исследования движения и эволюции спутников планет оказалось, что некоторые из них были захвачены гигантами, а в прошлом это — типичные представители пояса астероидов. Нашлись также и примеры потери спутников и по всей видимости Плутон некогда был спутником Нептуна, но со временем «сбежал» и стал самостоятельным объектом Солнечной системы.

Об этом свидетельствует орбитальный резонанс периодов обращения Нептуна и Плутона. Похожая ситуация предполагается в обоюдном прошлом Венеры и Меркурия — есть предположение, что Меркурий — это утерянный Венерой спутник. Также астрономы предрекают в отдаленном будущем освобождение Луны от гравитационной связи с Землей — Луна ежегодно удаляется от нашей планеты на 4 сантиметра. И скорость удаления только увеличивается. Но «сбежит» от Земли Луна очень не скоро — при нас этого точно не случится. Согласно ряду моделей, Луна не покинет сферу гравитационного влияния Земли вовсе, а её удаление прекратится с достижением вращательно-осевого резонанса, в результате которого не только Луна будет смотреть на Землю лишь одной своей стороной, но и Земля на Луну — тоже. Долгое время и даже в телескопическую эпоху исследования небес был целый класс объектов, к которым астрономы не знали как подойти.

Это — кометы. Безусловно, кометы были видны преимущественно ночью и среди звезд, но вот причислить их к космическим объектам удалось далеко не сразу — уж очень непредсказуемо вели себя кометы, вид имели ни на что не похожий, и во многом смахивали на явления атмосферные — ну, может это облака такие, ведь и атмосферу Земли мы изучили не сразу всю — кто их знает… Внезапно разгораясь в ночи, распуская павлиний хвост, кометы ярко демонстрировали свою непланетную природу, как в отношении внешнего вида, так и — характера движения. В те далекие годы, когда астрономы искали им место в своей науке, было немыслимым признать, что какие-то небесные тела могут двигаться по таким — совсем не круговым траекториям. А поскольку появления комет были кратковременны, то изучить хоть одну из них ученые не успевали — только она появится, как ее уже нет. Первым предположил, что кометы являются полноправными членами Солнечной системы, английский астроном и математик Эдмунд Галлей. Галлей проанализировал упоминания о появлениях всех известных в то время комет в том числе и в древних сказаниях и преданиях разных народов и обнаружил, что среди разнородных и неповторяющихся примеров есть одно устойчивое повторение с периодом в 75-76 лет. Ученый предположил, что это одна и та же комета, периодически возвращающаяся к Солнцу.

Он осмелился предсказать ее очередное возвращение в 1758 году. Сам Эдмунд Галлей до подтверждения своего пророчества не дожил — он умер в 1742 году — за 16 лет до возвращения кометы названной впоследствии его именем. Его расчеты оказались верными, орбита кометы вычисленная Галлеем значительно отличалась от всех известных тогда орбит небесных тел — она оказалась очень и очень вытянутым эллипсом, в одном из фокусов которого находилось Солнце, а второй фокус находился далеко за орбитой Сатурна. Впоследствии такая характерная черта кометных орбит подтверждалась в отношении большинства комет, но также нашлись исключения — некоторые кометы двигаются по почти круговым орбитам, а есть и те, чьи орбиты представляют незамкнутую кривую и путь их лежит в бесконечность — совершая крутой вираж около Солнца они уходят из Солнечной системы навсегда, никогда больше не возвращаются и может быть случайно развернут свой хвост только в планетной системе другой звезды… Откуда берутся эти тела Солнечной системы? Происхождение комет — и по сей день вопрос нерешенный, и есть мнение, согласно которому, кометы прилетают в пределы Солнечной системы из межзвездных просторов так же как некоторые улетают туда. Но все же более правдоподобной считается сейчас гипотеза о том, что на самых дальних окраинах Солнечной системы, далеко за пределами орбит Плутона и Эриды, есть так называемое Облако Оорта развил гипотезу о существовании этого образования Солнечной системы голландский астрофизик Ян Оорт — там во хладе абсолютного нуля по Кельвину медленно дрейфуют ледяные ядра потенциальных комет. Они бы дрейфовали там вечно, но, возможно близко проходящие звезды ведь речь уже зашла о поистине межзвездных расстояниях — размеры Облака Оорта оцениваются в пару световых лет своим уже и Вам известным гравитационным возмущением нарушают равновесие в движении этих ледяных глыб, и глыбы срываются с круговых дальних орбит, устремляясь в центральные части Солнечной системы, проще говоря — падают на Солнце.

Но при падении они развивают скорости, упасть с которыми на Солнце нельзя — кометы промахиваются, совершают разворотный вираж по сверхвытянутому эллипсу и возвращаются обратно в свое облако с тем, чтобы затормозившись в нем на сотни или тысячи лет вновь начать свое падение к Солнцу… Некоторые из таких ледяных кометных ядер при кратких визитах во внутреннюю часть Солнечной системы пролетают мимо Юпитера, Сатурна и других планет-гигантов, и те своим притяжением меняют кометную орбиту — она становится менее вытянутой, а период обращения по ней — короче. Так, по всей видимости, и завелись тут все короткопериодические кометы, что нам известны. Приближаясь к Солнцу кометное ядро разогревается, вскипает и из него в виде хвоста устремляются прочь гонимые солнечным ветром так называется в широком смысле солнечная радиация, солнечное излучение, в том числе и световое мельчайшие и многочисленные частицы-пылинки, что когда-то вмерзли в это ядро. А при удалении от Солнца поток частиц прекращается — ядро остывает. И так каждый раз, при каждом возвращении к Солнцу. Надо ли говорить, что за некоторое количество таких возвращений комета «выдыхается», разрушается, теряет способность отращивать хвост. Именно по этой причине давно известные нам кометы и Галлея в их числе уже не представляют собой былого фейерверка.

Зато иногда радуют новые гостьи внезапно свалившиеся на нас из Облака Оорта. Орбиты старых, «потрепанных» комет наполняются кометной пылью и если случается нашей планете пройти вблизи такой запыленной кометной орбиты, то мы видим метеорный поток — периодически вспыхивающие, пролетающие среди звезд и гаснущие искорки — это в атмосферу Земли влетела частичка кометы. Размер такой частички обычно с бусинку или булавочную головку и она не долетает до поверхности — сгорает в верхних слоях атмосферы. Бывает, конечно, что от кометы отвалится что-нибудь покрупнее. Тогда, если это камешек с кулак, этот обломок может выпасть на поверхность Земли в виде метеорита. Тунгусский метеорит феномен тоже, по всей видимости, был просто крупным обломком одной из разрушающихся комет, но такие метеориты — редкость. Чтобы закончить перечисление современного актуального населения Солнечной системы надо обязательно вспомнить и об объектах искусственного происхождения — космических аппаратах, счет коих уже пошел на десятки тысяч и это не предел.

Человечество за полвека космической эры вывело на околоземные и межпланетные орбиты тонны и даже сотни тон отработавшего свое космического мусора, и не считаться с этим уже невозможно. Именно поэтому сейчас всеми космическими службами ведется учет и мониторинг всего того, что болтается в космосе — без этого вряд ли возможны безопасные новые старты — ведь, не ровен час, можно столкнуться с каким-нибудь спутником или станцией, которая отработала свое, сигналов не подает, но опасность для пилотируемых кораблей представляет. Некоторые из земных автоматических станций ушли из Солнечной системы в пассивное межзвездное плавание, и могут быть обнаружены жителями планетных систем других звезд. И хотя такое обнаружение маловероятно, эти аппараты в свое время были снабжены специальными картинами рассказывающими о Земле и ее жителях. Правда, никто сейчас не возьмется однозначно и утвердительно ответить на такой вопрос: «А хорошо ли то, что о нас узнают жители других миров? Что мы о ней узнали? В Солнечной системе на сегодняшний день известно 8 больших планет.

Который покупает, продает, то есть творит эту самую экономику. Далее, если присмотреться внимательнее, в физике ведь тоже сплошные вероятности. Квантовая механика вся построена на идее, что ничего определенного нет. Аналогию не улавливаете? Если построить физику на жестко очерченных законах, которые «двигают» бездушные камни, не получилось… не обладают ли «камни» сознанием?

Проблемы только начинаются. Итак, мы говорим, что «все обладает сознанием». Но что такое «все», и что такое «сознание»? По поводу «всего» лучше всего сказал Филипп Гофф в своей статье 2019 года: «Ваши носки не разумны, но они состоят из атомов, которые разумны». Хорошо, но почему носки не разумны, а Солнце разумно?

Ответ дает классик панэкспериментализма Гэйлен Стросон: Солнце создалось естественным путем, а носки сделали люди. Отсюда, кстати, следует, что ИИ неразумен пока. Еще сложнее определить сознание, это так и называется, «трудная проблема сознания». Я знаю биологов, которые всерьез отвергают сознание у животных, хотя в целом современная биология движется к признанию братьев наших меньших за полноправных партнеров. Только ли мозг способен на такое?

Мы не знаем. Положение отчасти спасает теория интегрированной информации, в свое время предложенная Джулио Тонони. Она по крайней мере позволяет записать этот «опыт» в виде числа «число фи» , а с числами наука работать умеет. Наш мозг — система с высоким «числом фи». Можно представить другую систему, с меньшим «фи»: она будет «глупее» мозга.

У носков, наверное, фи равно нулю хотя я иногда сомневаюсь. Уже понятно, что «фи» тем выше, чем выше сложность системы. В мозгу миллиарды нейронов. Вычисление «фи» для мозга пока невозможно: нашим компьютерам потребуется больше времени на расчеты, чем существует Вселенная. Но «трудную проблему» пытаются решить и с другого конца.

Радикальные трактовки квантовой механики предполагают, что для высокого «фи» не нужны миллиарды нейронов: сознание есть даже у элементарных частиц. Эту ересь давным-давно предложил математик Альфред Норт Уайтхед. Он говорил, что мир вообще состоит не из материи, а из событий в вульгарной трактовке — «из информации», но событие Уайтхеда — это больше, чем информация. По его мнению, источник сознания — время, которое связывает «раньше» и «позже» и в конечном счете наделяет наше бытие смыслом. Его последователи предложили термин «холон».

Это система, которая состоит из разумных систем, и сама разумна — но умнее своих компонентов. Итак, Солнце разумно, потому что разумны составляющие его атомы. А носки? Да что мы привязались к этим носкам. И электромагнитных волн.

Развитие идеи Уайтхеда привело к пониманию, что время выражается через поля гравитация, электричество , в которые погружено все сущее.

Сколько галактик во Вселенной?

Поскольку астрономы изучали большое количество галактик за последние несколько десятилетий, они обнаружили много вещей, но не игнорировали масштабность Вселенной. Солнечная система неизбежно разрушится из-за гибели Солнца и влияния других звёзд, заключили учёные. По иронии судьбы свет исходил от самого темного объекта во Вселенной. Ни Земля, ни Солнце, ни наша Галактика не оказались центром Вселенной. Великое Центральное Солнце сердце всей Вселенной, по ощущениям оно очень огромное с очень мощной энергией. "Используя Млечный Путь в качестве модели, мы можем умножить количество звезд в среднестатистической галактике (100 млрд звезд) на количество галактик во Вселенной (2 триллиона).

Звезда на пике. Астроном предупредил о солнечной супербуре

Ученые впервые взвесили гало темной материи древних галактик Главная» Новости» Джеймс вебб последние новости.
Сколько галактик во Вселенной? Другими словами, общее количество материи в наблюдаемой Вселенной в 66 септиллионов (66000 миллиардов миллиардов) раз больше массы Солнца, сообщил AFP ведущий автор исследования астрофизик из Калифорнийского университета в Риверсайде Мохамед Абдулла.
Телескоп «Хаббл» показал как погибнет Солнце В нашей Галактике примерно 120-200 миллиардов звёзд (это примерная оценка), а всего во Вселенной порядка 100 миллиардов галактик.

Что мы знаем о космосе?

Энергия солнечного излучения возникает от преобразования энергии вращения СОЛНЦА вокруг своей оси в электрическую энергию. The observed and predicted Solar Cycle is depicted in Sunspot Number in the top graph and F10.7cm Radio Flux in the bottom graph. In both plots, the black line represents the monthly averaged data and the purple line represents a 13-month weighted, smoothed version of the monthly averaged data. Подсчитано, что каждые сутки квазар J0529-4351 поглощает объем вещества, равный нашему Солнцу. Необыкновенные звезды и галактики Вселенной. 1:58:18. В этом видео наглядно показаны невообразимые размеры космоса, сравнение планет и далее звёзд внутри и за пределами Солнечной системы. Ученые раскрыли загадку экстремальной яркости квазаров — активных ядер далеких галактик, которые выделяют рекордное количество лучистой энергии по сравнению со всеми другими космическими объектами во Вселенной.

Опрос: подписки Mail.ru

  • Телескоп «Джеймс Уэбб» нашел гигантскую красную планету с двумя Солнцами
  • Опрос: подписки Mail.ru
  • NASA открыло второе Солнце во Вселенной
  • Читайте также
  • Александр Файнлейб. Великое Центральное Солнце Вселенной

Сколько лет Солнцу и откуда нам известен возраст

Что же мы имели к началу XVII века? Примерно то же самое, что и на протяжении всех предшествующих веков и тысячелетий: Солнце — ярчайшее небесное светило, обходящее небосвод ровно за год собственно, так и появился в нашем летоисчислении год , Луна — второе по яркости и меняющее свой лик ото дня ко дню светило, оно замыкает свой небесный круг за месяц и именно благодаря Луне мы имеем в своей календарной системе такую временную единицу. Далее — пять ярких и блуждающих светил, оказавшихся огромными шарами, светящимися отраженным как и Луна солнечным светом, медленно совершали свои движения с разной скоростью — Меркурий — Бог торговли и обмана — этот был, как и положено, шустрее всех; Венера — богиня Любви и Красоты и это чистая правда — оторвать взор от сияния в сумеречных небесах "Вечерней Звезды" очень трудно, невозможно — она хоть и отстает от Меркурия, но тоже очень быстра; Марс — Бог Войны — отличается заметной кровавой, вызывающей окраской, и движется уже медленно, и слава богу — очевидно, что у древних, придумавших эти параллели, быстрее зажигались чувства любви, чем месть и обида. Две последних из известных тогда планет — Юпитер и Сатурн — откровенно едва ползут и за жизнь человеческую делают лишь несколько оборотов. В XVII веке к этому хороводу небесных объектов добавилась лишь Земля, но для человечества это было очень важным событием в процессе осмысления своего положения во Вселенной — это положение стало рядовым, ничем не выделенным, Впрочем, как я не раз говорил уже сегодня, ничего в мире не случается в один день и мирилась общественность с потерей своего центрально-космического положения довольно долго. В самом начале XVII века произошло еще одно важно событие в астрономии — итальянец Галилео Галилей создал первый в истории телескоп и применил его в наблюдениях. Результаты были революционны — действительно, планеты оказались подобны Земле — на Луне обнаружились горы, Венера меняла фазы, а Юпитер оказался окруженным свитой из 4-х спутников, что свидетельствовало об относительности любого и предполагаемых центров во Вселенной.

Таким образом в составе Солнечной системы начали прибавляться новые небесные жители, в данном случае таковыми оказались спутники Юпитера Ио, Европа, Ганимед, Каллисто , но главное — человечество стало зорче, и это открыло новые возможности в изучении окружающего мира, а в частности, с помощью точных оптических приборов стало возможным измерение параллаксов и получение представления о расстояниях до планет — далеко ли они от нас находятся — раньше об этом можно было только догадываться. Будет не лишним упомянуть о размерах планетных орбит. С момента вселения Земли на третий уровень в порядке исчисления от Солнца, в астрономии появилась очень важная и удобная единица измерения расстояний — одна астрономическая единица — среднее расстояние от Земли до Солнца. Радиусы других планетных орбит различались очень значительно, например Меркурий в среднем был ближе к Солнцу чем Земля в два с половиной раза, а Сатурн — в 10 раз дальше. И по этому поводу просто необходимо вспомнить об одном интересном математическом наблюдении. С древнейших времен человечество пыталось не только получить информацию об окружающем мире, не только узнать что и как, но понять почему — осознать, разобраться в причинах и закономерностях.

Так же и с размерами планетных орбит — многие астрономы не только пытались измерить их размеры, но и понять, по какому закону и подчиняясь каким правилам они сложились именно такими. Суть наблюдения вот в чем: Давайте выпишем в ряд такие числа: 0, 3, 6, 12, 24, 48, 96 это если не брать во внимание первое число — обычная геометрическая прогрессия с первым членом равным тройке и коэффициентом равным двум каждый следующий член прогрессии, после этой тройки, в два раза больше предыдущего. Теперь прибавим к каждому члену нашей прогрессии число 4. Получим: 4, 7, 10, 16, 28, 52, 100 далее правило Тициуса-Боде его назвали в честь этих двух астрономов-математиков предлагает поделить каждый член прогрессии на 10, но и без этого уже видно, что получившийся ряд чисел кратен радиусам планетных орбит. Посмотрите сами: 4 0,4 — радиус орбиты Меркурия 7 0,7 — радиус орбиты Венеры 10 1,0 — радиус орбиты Земли 16 1,6 — радиус орбиты Марса 28 2,8 —... А раз так, и правило оказалось не абсолютным, ему в свое время 1766-1772 не придали большого значения.

В 1781 году английский музыкант по профессии и астроном по увлечению Уильям Гершель исследовал небо в самодельный телескоп и обнаружил, как ему показалось, доселе неизвестную туманность — слабое, чуть зеленоватое пятно маячило где-то среди звезд созвездия Тельца. От ночи к ночи оно немного смещалось и Гершель принял его за комету, о чем и сообщил в Английское Королевское Общество. Вскоре, по результатам наблюдений других астрономов и вычислению орбиты вновь открытого небесного тела, оказалось, что Гершель обнаружил планету, далекую и огромную — сравнимую по размерам с Сатурном или даже Юпитером. Это было сенсационное открытие, ведь за последние несколько тысяч лет в числе известных планет увеличения не происходило если, конечно, не считать провозглашения планетой самой Земли! Тут-то астрономы вспомнили о казавшемся им сомнительным правиле Тициуса-Боде и решили продолжить ряд: 0, 3, 6, 12, 24, 48, 96, 192 4, 7, 10, 16, 28, 52, 100, 196 — Уран так назвали новую планету оказался точно на орбите предсказанной правилом 19,22 а. Это обстоятельство заставило астрономов отнестись к правилу Тициуса-Боде серьезнее и задуматься теперь и о пустующей орбите с радиусом в 2,8 астрономической единицы.

И действительно, совсем скоро была обнаружена малая планета Церера 1801 г. Тициус и Боде получили заслуженное признание, а астрономы, наоборот, потеряли комплекс ощущения того, что все планеты в Солнечной системе давно открыты. С этим ли в связи или по другим причинам, но открытия малых планет посыпались как снег зимой в России за Уралом.

Потому что наше Солнце тоже не висит на месте, оно движется себе по собственной орбите вокруг центра Галактики. Вместе с нами, соответственно, и вообще со всем семейством. Точно так же ведут себя и другие звёзды, окружённые планетами.

И иногда бывает, что звёзды оказываются чуть ближе друг к другу, чем обычно, и своей гравитацией малость нарушают установленный порядок. Некоторые мелкие камешки вследствие этого чуть меняют траекторию. Иные, может быть, вообще улетают из семьи куда-то в пустоту, иные переезжают в другую звёздную систему, а есть такие, которые просто несколько по-иному выстраивают отношения с родительской звездой: раньше они болтались в сферическом облаке, а теперь их понесло по удивительной овальной орбите: то приближаются к Солнцу так, что их поверхность "дымится", то удаляются снова на огромные расстояния. Наличие этого двойного облака Оорта пока ещё не доказанный факт. Вероятно, чтобы его доказать, нужно отправить космический аппарат за пределы Солнечной системы, чтобы он запечатлел картину, так сказать, со стороны. А лететь, как бы это получше сказать, далеко: считается, что облако Оорта находится на расстоянии целого светового года, то есть на том расстоянии, которое свет преодолевает за год.

Для сравнения: от Солнца к Земле он летит всего восемь минут. Один световой год — это четверть того, что отделяет нас от ближайшей к нам соседней звезды — Проксимы Центавра. Но — во всяком случае, теоретически — теперь вроде бы всё ясно: кометы прилетают из облака Оорта. Ан нет. Снова загадка. Дело в том, что, по расчётам учёных, в этом облаке получается как-то чересчур много всего.

Около ста миллиардов объектов. Плюс транснептуновые объекты покрупнее, к коим нынче записали и Плутон. Плюс подозрения, что где-то там прячется таинственная планета, которая в случае её обнаружения станет девятой в наших учебниках вместо Плутона. Исследователи старательно моделировали, как должна была сформироваться Солнечная система. А формироваться она начала, напомним, эдак четыре с половиной миллиарда лет назад. Так вот, получается, что гравитации одного Солнца маловато, чтобы накопить вокруг себя такое количество всякой всячины.

Вот так штука.

Основное доказательство того, откуда берётся энергия для расплава металла — это не само наличие у планет сильного магнетизма. Магнетизм планеты, Звезды — индикатор наличия тока — доступная наблюдению и измерению характеристика изучаемого объекта, позволяющая судить о других его характеристиках, недоступных непосредственному исследованию И это доказал Ф. Араго в 1825 году. Источник тепла может разогреть до свечения небесное тело. Так как на Солнце, металлический материал расплавлен.

В расплавленном металлическом материале связи ослаблены, в этом случае ток протекает легко, почти не встречая сопротивления. И поэтому величина тока очень большая. Обратим внимание: величина тока в формуле тепла в квадрате. Представляете, какое количество будет выделяться калорий. И Солнце может долго стабильно излучать энергию. Потому что почти не тратится, не сгорает вещество Солнца, а тратится огромная энергия вращения Солнца вокруг своей оси.

Как у теплового электроприбора, не тратится, не сгорает вещество спирали, а тратится энергия электростанции. Энергия тратится на создание огромного электрического тока. А ту часть, всё-таки утрачиваемого вещества, пополняют метеориты, астероиды. Справка: Считается, что метеоритов на Землю падает 2 тысячи тонн в год. Солнце в 300 тысяч раз массивнее Земли. Прикиньте: сколько же метеоритов падает на Солнце!

Горение — экзотермическая реакция окисления горючего вещества. Окисление — Химическая реакция соединения какого-л.

Хорошо, но почему носки не разумны, а Солнце разумно?

Ответ дает классик панэкспериментализма Гэйлен Стросон: Солнце создалось естественным путем, а носки сделали люди. Отсюда, кстати, следует, что ИИ неразумен пока. Еще сложнее определить сознание, это так и называется, «трудная проблема сознания».

Я знаю биологов, которые всерьез отвергают сознание у животных, хотя в целом современная биология движется к признанию братьев наших меньших за полноправных партнеров. Только ли мозг способен на такое? Мы не знаем.

Положение отчасти спасает теория интегрированной информации, в свое время предложенная Джулио Тонони. Она по крайней мере позволяет записать этот «опыт» в виде числа «число фи» , а с числами наука работать умеет. Наш мозг — система с высоким «числом фи».

Можно представить другую систему, с меньшим «фи»: она будет «глупее» мозга. У носков, наверное, фи равно нулю хотя я иногда сомневаюсь. Уже понятно, что «фи» тем выше, чем выше сложность системы.

В мозгу миллиарды нейронов. Вычисление «фи» для мозга пока невозможно: нашим компьютерам потребуется больше времени на расчеты, чем существует Вселенная. Но «трудную проблему» пытаются решить и с другого конца.

Радикальные трактовки квантовой механики предполагают, что для высокого «фи» не нужны миллиарды нейронов: сознание есть даже у элементарных частиц. Эту ересь давным-давно предложил математик Альфред Норт Уайтхед. Он говорил, что мир вообще состоит не из материи, а из событий в вульгарной трактовке — «из информации», но событие Уайтхеда — это больше, чем информация.

По его мнению, источник сознания — время, которое связывает «раньше» и «позже» и в конечном счете наделяет наше бытие смыслом. Его последователи предложили термин «холон». Это система, которая состоит из разумных систем, и сама разумна — но умнее своих компонентов.

Итак, Солнце разумно, потому что разумны составляющие его атомы. А носки? Да что мы привязались к этим носкам.

И электромагнитных волн. Развитие идеи Уайтхеда привело к пониманию, что время выражается через поля гравитация, электричество , в которые погружено все сущее. Эта бредятина — с точки зрения физики — пришлась по вкусу нейробиологам.

Так, Сьюзан Покетт выдвинула идею «разумной эмоции»: дескать, иные пласты информации и волны в нашем мозгу обладают собственным сознанием. Не отсюда ли феномен «вредоносных мыслей»? Всего, однако, насчитывается не менее восьми трактовок того, как именно мозг через волны общается с тоже разумным внешним миром.

А раз так, ясно, что общепринятого подхода у науки еще нет. Но вернемся к Солнцу. Пионер «разумных звезд» Грег Мэтлоф утверждает, что звезды, стремясь занять то или иное место в галактике, корректируют свое движение с помощью реактивных струй.

Его гипотезу несложно проверить статистическими методами, и астрономы заняты этим сейчас. Мэтлоф полагает, что разум звезд не сильнее, чем у ночной бабочки, которая летит на свет.

Какой конец ждет Солнечную систему?

5 Ответы@: Сколько СОЛНЦ во Вселенной? 6 Солнечная система — центр вселенной. В нашей Галактике примерно 120-200 миллиардов звёзд (это примерная оценка), а всего во Вселенной порядка 100 миллиардов галактик. Учитывая количество звезд во вселенной, весьма вероятно, что сверхновые образуются каждый день (может быть каждый час или минуту). В настоящее время считается, что причиной возникновения Солнца и Солнечной системы послужил взрыв одной или нескольких сверхновых звёзд.

Похожие новости:

Оцените статью
Добавить комментарий