При вычитания двух чисел, в которых оба отрицательные, следует знать правило: минус на минус дает плюс. Как и ожидалось, “плюс на минус” дал “минус”. И наконец “минус на минус”, когда $X = (Im \ast R_k)$, а. Как известно, уже в школе всем говорят, что минус на минус дает плюс.
Минус на минус дает плюс . НСОТ решили усовершенствовать
Но у нас, в отличие от бездушной материи, есть свобода, дарованная нам Богом, которая заключается в том, что в нашем распоряжении имеется два варианта поведения — либо сделать свой ход, либо его пропустить. Вы, уверен, достаточно сообразительны, чтобы понять: вместо неживой неразумной природы может выступать живой разумный оппонент. Как, например, в нашем случае. Отсутствие возражений означает согласие, вот и всё.
Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов.
Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать. Эти операции подчиняются одним и тем же законам — как в случае с числами, так и в случае с многочленами. А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда. То же самое и с многочленами. Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды, непрерывные функции...
Наконец, пришло понимание, что если изучить свойства самих операций, то потом результаты можно будет применять ко всем этим совокупностям объектов такой подход характерен для всей современной математики. В итоге появилось новое понятие: кольцо. Это всего-навсего множество элементов плюс действия, которые можно над ними производить. Основополагающими здесь являются как раз правила их называют аксиомами , которым подчиняются действия, а не природа элементов множества вот он, новый уровень абстракции! Желая подчеркнуть, что важна именно структура, которая возникает после введения аксиом, математики говорят: кольцо целых чисел, кольцо многочленов и т.
Отталкиваясь от аксиом, можно выводить другие свойства колец.
Пожаловаться Часто нам приходится слышать такое выражение "минус на минус даёт плюс" и ни кто даже НЕзадумывается какой это бред. Знак минус ещё означает женскую энергию,а женЧина так правильнее,женский чин несёт и ещё одна женчина - получается две женчины,или лезбийская связь,просто ЛГБТ какое-то.
Пример 2.
Пример 3. Деление чисел с одинаковыми знаками Действует тожк правило, что при умножении положительных или отрицательных чисел. Чтобы разделить отрицательное число на отрицательное два отрицательных числа , надо разделить модуль делимого на модуль делителя. Пример 4.
Деление чисел с разными знаками Действует тожк правило, что при делении положительных или отрицательных чисел.
Почему минус на минус - плюс? - на - будет +? Откуда? Чтобы что? Как?
Если отрицательное число будет больше по модулю, чем наше положительное, то результат, конечно же, будет отрицательный. Наверняка, вам интересно, что же такое модуль и зачем он тут вообще. Все очень просто. Модуль — это значение числа, но без знака. Например -7 и 3. По модулю -7 будет просто 7 , а 3 так и останется 3. В итоге мы видим, что 7 больше, то есть выходит, что наше отрицательное число больше. Можно сделать еще проще. Вычитание действуют полностью по такому же принципу.
Минус на минус даёт плюс — это правило, которые мы выучили в школе и применяем всю жизнь. А кто из нас интересовался почему? Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса. Сейчас и без того достаточно информации, которую необходимо «переварить». Но для тех, кого всё же заинтересует этот вопрос, постараемся дать объяснение этому математическому явлению. С древних времён люди пользуются положительными натуральными числами : 1, 2, 3, 4, 5,… С помощью чисел считали скот, урожай, врагов и т. При сложении и умножении двух положительных чисел получали всегда положительное число, при делении одних величин на другие не всегда получали натуральные числа — так появились дробные числа. Что же с вычитанием?
С детских лет мы знаем, что лучше к большему прибавить меньшее и из большего вычесть меньшее, при этом мы опять же не используем отрицательные числа. Получается, если у меня есть 10 яблок, я могу отдать кому-то только меньше 10 или 10. Я никак не смогу отдать 13 яблок, потому что у меня их нет. Нужды в отрицательных числах не было долгое время. Только с VII века н. При решении этого уравнения нам даже не встретились отрицательные числа. Что мы видим? Действия с использованием отрицательных чисел должны привести нас к такому же ответу, что и действия только с положительными числами.
Мы можем больше не думать о практической непригодности и осмысленности действий — они помогают нам решить задачу гораздо быстрее, не приводя уравнение к виду только с положительными числами. В нашем примере мы не использовали сложных вычислений , но при большом количестве слагаемых вычисления с отрицательными числами могут облегчить нам работу. Со временем, после проведения длительных опытов и вычислений удалось выявить правила, которым подчиняются все числа и действия над ними в математике они называются аксиомами. Отсюда и появилась аксиома, которая утверждает, что при умножении двух отрицательных чисел получаем положительное. Слушая учителя математики, большинство учеников воспринимают материал как аксиому. При этом мало кто пытается добраться до сути и разобраться, почему «минус» на «плюс» дает знак «минус», а при умножении двух отрицательных чисел выходит положительное. Законы математики Большинство взрослых не в силах объяснить ни себе, ни своим детям, почему так получается. Они твердо усвоили этот материал в школе, но при этом даже не попытались выяснить, откуда взялись такие правила.
А зря. Зачастую современные дети не столь доверчивы, им необходимо докопаться до самой сути и понять, скажем, почему «плюс» на «минус» дает «минус». А иногда сорванцы специально задают каверзные вопросы, дабы насладиться моментом, когда взрослые не могут дать вразумительного ответа. И совсем уж беда, если впросак попадает молодой учитель... Кстати, следует отметить, что упомянутое выше правило действенно как для умножения, так и для деления. Произведение отрицательного и положительного числа даст лишь «минус. Если речь идет о двух цифрах со знаком «-», то в результате получится положительное число. То же касается и деления.
Если одно из чисел будет отрицательным, то частное тоже будет со знаком «-». Для объяснения правильности этого закона математики, необходимо сформулировать аксиомы кольца. Но для начала следует понять, что это такое. В математике кольцом принято называть множество, в котором задействованы две операции с двумя элементами. Но разбираться с этим лучше на примере. Кроме того, для каждого C есть противоположный элемент, который можно обозначить, как -C. Выведение аксиом для отрицательных чисел Приняв приведенные выше утверждения, можно ответить на вопрос: «"Плюс" на "минус" дает какой знак? Для этого придется вначале доказать, что у каждого из элементов существует лишь один ему противоположный «собрат».
Рассмотрим следующий пример доказательства. Давайте попробуем представить, что для C противоположными являются два числа - V и D. Вспоминая о переместительных законах и о свойствах числа 0, можно рассмотреть сумму всех трех чисел: C, V и D. Попробуем выяснить значение V. Для того чтобы понять, почему все же «плюс» на «минус» дает «минус», необходимо разобраться со следующим. Так, для элемента -C противоположными являются C и - -C , то есть между собой они равны. А это значит, что прибавление произведения 0 х V никак не меняет установленную сумму.
Но для тех, кого всё же заинтересует этот вопрос, постараемся дать объяснение этому математическому явлению. С древних времён люди пользуются положительными натуральными числами: 1, 2, 3, 4, 5,… С помощью чисел считали скот, урожай, врагов и т. При сложении и умножении двух положительных чисел получали всегда положительное число, при делении одних величин на другие не всегда получали натуральные числа — так появились дробные числа. Что же с вычитанием? С детских лет мы знаем, что лучше к большему прибавить меньшее и из большего вычесть меньшее, при этом мы опять же не используем отрицательные числа. Получается, если у меня есть 10 яблок, я могу отдать кому-то только меньше 10 или 10. Я никак не смогу отдать 13 яблок, потому что у меня их нет. Нужды в отрицательных числах не было долгое время. Только с VII века н. При решении этого уравнения нам даже не встретились отрицательные числа. Что мы видим? Действия с использованием отрицательных чисел должны привести нас к такому же ответу, что и действия только с положительными числами. Мы можем больше не думать о практической непригодности и осмысленности действий — они помогают нам решить задачу гораздо быстрее, не приводя уравнение к виду только с положительными числами. В нашем примере мы не использовали сложных вычислений, но при большом количестве слагаемых вычисления с отрицательными числами могут облегчить нам работу. Со временем, после проведения длительных опытов и вычислений удалось выявить правила, которым подчиняются все числа и действия над ними в математике они называются аксиомами. Отсюда и появилась аксиома, которая утверждает, что при умножении двух отрицательных чисел получаем положительное. Слушая учителя математики, большинство учеников воспринимают материал как аксиому. При этом мало кто пытается добраться до сути и разобраться, почему «минус» на «плюс» дает знак «минус», а при умножении двух отрицательных чисел выходит положительное. Законы математики Большинство взрослых не в силах объяснить ни себе, ни своим детям, почему так получается. Они твердо усвоили этот материал в школе, но при этом даже не попытались выяснить, откуда взялись такие правила. А зря. Зачастую современные дети не столь доверчивы, им необходимо докопаться до самой сути и понять, скажем, почему «плюс» на «минус» дает «минус». А иногда сорванцы специально задают каверзные вопросы , дабы насладиться моментом, когда взрослые не могут дать вразумительного ответа. И совсем уж беда, если впросак попадает молодой учитель...
Если у нас есть два числа, одно из которых положительное, а другое отрицательное, то результат умножения этих чисел будет отрицательным. Теперь рассмотрим случай, когда мы умножаем два отрицательных числа: -3 х -2. Очевидно, что в этом случае результат умножения будет положительным числом. Почему это происходит? Чтобы это объяснить, воспользуемся представлением отрицательных чисел на числовой оси. Ноль находится посередине между положительными и отрицательными числами. Когда мы перемножаем два отрицательных числа, каждое из них находится слева от нуля. Из геометрической точки зрения, умножение двух отрицательных чисел означает увеличение расстояния между ними и нулем. И чем дальше числа находятся от нуля, тем больше они становятся. Таким образом, при умножении двух отрицательных чисел, мы получаем положительный результат, потому что происходит увеличение расстояния от нуля. Вернемся к исходному вопросу: почему минус на минус дает плюс? Если мы выражаем это в терминах умножения, то можем записать -1 х -1. Именно поэтому минус на минус дает плюс — это особое свойство математики, которое определено правилами умножения. Это правило позволяет нам объяснить результат, который может показаться неочевидным. Знаки и их математическое значение Знак минуса обычно используется для обозначения отрицательных чисел или разности двух чисел. Например, если мы имеем число -5, то минус перед числом указывает на то, что это число меньше нуля. Также, если мы имеем выражение 6 — 3, то минус обозначает вычитание чисел, то есть 6 минус 3 равно 3. Теперь давайте рассмотрим, почему минус на минус даёт плюс. В математике минус на минус всегда равно плюсу. Это связано с тем, что умножение числа на отрицательное число приводит к изменению его знака.
Когда мы имеем дело с отрицательными числами, многие забывают, что отрицательное число впрочем, как и положительное состоит из двух частей - самого число и его "направленности". Если более точно, то "коэффициента направленности", но в данном случае достаточно и простой формулировки. Это пришло из физики. Вот пример. Вы живете на берегу океана и дважды в сутки ветер меняет направление - то дует в сторону моря, то дует со стороны моря. Ветер, который дует в сторону моря для вас положительный - тепло, сухо, комфортно. Ветер, который дует с моря для вас отрицательный - холодно, сыро. Так вот, при умножении, чисел, знак перед числом означает "направленность числа". То есть, число минус три, на самом деле, это число три и указание, что оно направлено в противоположную сторону. То есть, указывает, что "надо сменить направление у результата умножения". Так вот, возвращаясь к вашей жизни на берегу океана. По радио передали сводку, что ветер усилиться в минус три раза. То есть, нам фактически передали два параметра ветер станет в три раза сильнее; ветер сменит направление на противоположное! Вот этот знак минус и указал, что надо "поменять знак" у итогового результата. И что получается в случае двух минусов? Дул ветер со скоростью минус два метра в секунду, со стороны моря отрицательный ветер , он усилиться в три раза и сменит направление!
Почему минус на минус плюс?
Плюс в том, что повзрослев такие дети право на имущественный вычет не теряют. Плюс на минус всегда даёт минус. Знак «минус» можно трактовать как отрицание, тогда «минус» «минус» есть подтверждение. Нужны ОБЪЯСНЕНИЯ, ПОЧЕМУ минус умножить на минус получается плюс. Ну ок, ты доказал что плюс на минус дает минус тогда и только тогда, когда существует такое некое i, которое равно корню из минус единицы. но согласно более ранним правилам, такого числа не существует.
Почему «минус на минус даёт плюс»? Простейшие доказательства
Они всегда меньше нуля. Примеры отрицательных чисел: -1, -945, -20. Положительные числа — это числа со знаком «плюс». Они всегда больше нуля. Примеры положительных чисел: 11, 500, 1387. Противоположные числа — это числа, которые отличаются друг от друга знаками.
Если одно слагаемое положительное, а другое отрицательное, то результат будет зависеть от их абсолютных значений. В этом случае, «плюс» на «минус» дает «минус», потому что одно слагаемое положительное, а другое отрицательное. Понимание этих правил поможет лучше понять, почему «плюс» на «минус» дает «минус».
Рассмотрим подробней основные правила знаков.
Если мы делим «плюс» на «минус», то получаем всегда «минус». Если мы делим «минус» на «плюс», то получаем всегда также «минус». Если мы делим «плюс» на «плюс», то получаем «плюс». Если же мы делим «минус» на «минус», то получим, как ни странно, также «плюс». Если мы умножаем «минус» на «плюс», то получаем всегда «минус». Если мы умножаем «плюс» на «минус», то получаем всегда также «минус». Если мы умножаем «плюс» на «плюс», то получаем положительно число, то есть «плюс». Тоже самое касается и двух отрицательных чисел. Если мы умножаем «минус» на «минус», то получим «плюс». Вычитание и сложение.
Они базируются уже на других принципах. Если отрицательное число будет больше по модулю, чем наше положительное, то результат, конечно же, будет отрицательный. Наверняка, вам интересно, что же такое модуль и зачем он тут вообще. Все очень просто. Модуль — это значение числа, но без знака. Например -7 и 3. По модулю -7 будет просто 7 , а 3 так и останется 3. В итоге мы видим, что 7 больше, то есть выходит, что наше отрицательное число больше. Можно сделать еще проще. Вычитание действуют полностью по такому же принципу.
Минус на минус даёт плюс — это правило, которые мы выучили в школе и применяем всю жизнь. А кто из нас интересовался почему? Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса. Сейчас и без того достаточно информации, которую необходимо «переварить». Но для тех, кого всё же заинтересует этот вопрос, постараемся дать объяснение этому математическому явлению. С древних времён люди пользуются положительными натуральными числами : 1, 2, 3, 4, 5,… С помощью чисел считали скот, урожай, врагов и т. При сложении и умножении двух положительных чисел получали всегда положительное число, при делении одних величин на другие не всегда получали натуральные числа — так появились дробные числа. Что же с вычитанием? С детских лет мы знаем, что лучше к большему прибавить меньшее и из большего вычесть меньшее, при этом мы опять же не используем отрицательные числа. Получается, если у меня есть 10 яблок, я могу отдать кому-то только меньше 10 или 10.
Я никак не смогу отдать 13 яблок, потому что у меня их нет. Нужды в отрицательных числах не было долгое время. Только с VII века н. При решении этого уравнения нам даже не встретились отрицательные числа. Что мы видим? Действия с использованием отрицательных чисел должны привести нас к такому же ответу, что и действия только с положительными числами. Мы можем больше не думать о практической непригодности и осмысленности действий — они помогают нам решить задачу гораздо быстрее, не приводя уравнение к виду только с положительными числами. В нашем примере мы не использовали сложных вычислений , но при большом количестве слагаемых вычисления с отрицательными числами могут облегчить нам работу. Со временем, после проведения длительных опытов и вычислений удалось выявить правила, которым подчиняются все числа и действия над ними в математике они называются аксиомами. Отсюда и появилась аксиома, которая утверждает, что при умножении двух отрицательных чисел получаем положительное.
Слушая учителя математики, большинство учеников воспринимают материал как аксиому. При этом мало кто пытается добраться до сути и разобраться, почему «минус» на «плюс» дает знак «минус», а при умножении двух отрицательных чисел выходит положительное. Законы математики Большинство взрослых не в силах объяснить ни себе, ни своим детям, почему так получается. Они твердо усвоили этот материал в школе, но при этом даже не попытались выяснить, откуда взялись такие правила. А зря. Зачастую современные дети не столь доверчивы, им необходимо докопаться до самой сути и понять, скажем, почему «плюс» на «минус» дает «минус». А иногда сорванцы специально задают каверзные вопросы, дабы насладиться моментом, когда взрослые не могут дать вразумительного ответа. И совсем уж беда, если впросак попадает молодой учитель... Кстати, следует отметить, что упомянутое выше правило действенно как для умножения, так и для деления. Произведение отрицательного и положительного числа даст лишь «минус.
Если речь идет о двух цифрах со знаком «-», то в результате получится положительное число. То же касается и деления. Если одно из чисел будет отрицательным, то частное тоже будет со знаком «-». Для объяснения правильности этого закона математики, необходимо сформулировать аксиомы кольца. Но для начала следует понять, что это такое.
Так что в 15 часов термометр покажет 6 градусов. Усложним вопрос: а какая температура была в 8 часов утра, при условии, что ее рост был точно таким же? Спустимся по температурной шкале по 2 градуса вниз от 0 градусов 4 раза. Мы получим 8 градусов мороза, или попросту -8 градусов Цельсия. Пока все просто и логично. Теперь представим ситуацию, когда температура не повышается со временем, а понижается бывает и такое на те же 2 градуса в час.
Правило минус на минус дает
Кандидат в депутаты пытается дважды пропиариться на несостоявшемся протесте. и даже минус на минус дает плюс. На данный момент группа обнаружила и уничтожила 105 024 мины или другие взрывчатые вещества. Разговор о введении НСОТ в Воронежской области мы начали 13 ноября прошлого года в «УГ» №46: в рубрике «Журналистское расследование» вышла статья «Повышение со знаком минус». Дед взял ложку да как даст бабке по лбу — “БЕЗ-ОТ-КАЗ-НЫЙ”, мля, “БЕЗОТКАЗНЫЙ”.
Правила знаков
Справедливая математика: разбираемся в тайнах операции «плюс» и «минус» | Разговор о введении НСОТ в Воронежской области мы начали 13 ноября прошлого года в «УГ» №46: в рубрике «Журналистское расследование» вышла статья «Повышение со знаком минус». |
Минус на минус дает плюс - | Смарт бритва Huawei Dynacare с HiLink, минус на минус плюс не даёт, буду бородатымПодробнее. |
.МИНУС на МИНУС даёт ПЛЮС – смотреть видео онлайн в Моем Мире | СТРАНА ГЛУХИХ | Лента новостей Друзья Фотографии Видео Музыка Группы Подарки на МИНУС даёт ПЛЮС. |
Когда плюс на минус дает плюс | Почему при умножение минуса получается новый элемент плюс? |
Когда минус дает плюс
Если рассматривать долг как произведение, то можно объяснить, почему минус на минус дает плюс, а плюс на минус дает минус. об этом знают все без исключения. Иначе говоря, чтобы умножение было осмысленным, "минус на плюс" должен давать "минус".
Войти на сайт
С просьбой объяснить все «плюсы» и «минусы» майских платежек редактор портала обратился к бухгалтеру центра расчетов с потребителями Алевтине Мальцевой. Требуется доказать, что (-a)(-b)=ab. Чтобы ответить на этот вопрос, мы будем действовать в рамках аксиоматики действительных чисел. Для начала докажем, чт. "минус на минус всегда даст нам в результате плюс". Это первое впечатление, со временем все минусы -оказываются плюсы. Как и ожидалось, “плюс на минус” дал “минус”. И наконец “минус на минус”, когда $X = (Im \ast R_k)$, а.