Новости 26 задача егэ информатика

Самая важная информация для ЕГЭ по информатике — 2024: актуальные изменения, структура экзамена, типы заданий, темы и лайфхаки. Примеры заданий ЕГЭ по информатике с решением на Паскале. Задания 26, 27 позволяют набрать по 2 первичных балла каждый.

Всё, что нужно знать о ЕГЭ по информатике

Эфир, посвященный ЕГЭ по информатике, открыл финальный день онлайн-марафона Рособрнадзора «ЕГЭ – это про100!». Задание 6 в 2023 году будет посвящено анализу алгоритма для конкретного исполнителя, определению возможных результатов работы простейших алгоритмов управления исполнителями и вычислительных алгоритмов. Отмена. Воспроизвести. Информатика ЕГЭ Умскул.

ЕГЭ 2019 г.

  • ЕГЭ по информатике 2023
  • Изменения в ЕГЭ по информатике — 2024
  • Особенности решения задач 25 и 26 компьютерного ЕГЭ по информатике — презентация
  • Найди то, не знаю что
  • Похожие статьи

ЕГЭ по информатике 2023

Изображение слайда Слайд 3: 25. Общий подход 3 Пишем решение «в лоб». Если получили ответ, то СТОП. Переходим к шагу 2. Не нужно оптимизировать без необходимости! Изображение слайда Слайд 4: 25.

Изображение слайда Слайд 5: 25. Делители в парах: Проблема: вещественное! Проблема: полные квадраты! Изображение слайда Слайд 7: 25. Divs d then begin divs.

Add x div d ; if divs. Add d ; divs. Count divs. Add i ; P rint primes. Count ; Время 0,3 с!

Изображение слайда Слайд 12: 25. Пример 12 Б. Михлин Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [194441; 196500] простые числа, оканчивающиеся на 93. Изображение слайда Слайд 13: 25. Пример 15 Рассматриваются целые числа, принадлежащих числовому отрезку [631632; 684934], которые представляют собой произведение двух различных простых делителей.

Найдите такое из этих чисел, у которого два простых делителя больше всего отличаются друг от друга. Изображение слайда Слайд 16: 25. Изображение слайда Слайд 17: 25. Divs d then begin Пара « наименьший-наибольший » имеет наибольшую разность! IsPrime d первый d всегда простой!

Из предложенных 23 заданий первой части экзаменационной работы 12 относятся к базовому уровню проверки знаний, 10 — повышенной сложности, 1 — высокому уровню сложности. Три задачи второй части высокого уровня сложности, одна — повышенного. При решении обязательна запись развернутого ответа произвольная форма.

В некоторых заданиях текст условия подан сразу на пяти языках программирования — для удобства учеников. Баллы за задания по информатике 1 балл - за 1-23 задания 2 балла - 25. Всего: 35 баллов.

Для поступления в технический вуз среднего уровня, необходимо набрать не менее 62 баллов. Чтобы поступить в столичный университет, количество баллов должно соответствовать 85-95. Для успешного написания экзаменационной работы необходимо четкое владение теорией и постоянная практика в решении задач.

Сложность : высокая. Примерное время решения : 20 минут Тема: Математические основы программирования. Подтема: Игры и стратегии Что проверяется: Знание основных понятия, связанных с анализом игр с полной информацией.

Умение определять выигрышные и проигрышные позиции. Как может выглядеть задание? Например, так: Дано описание игры двух игроков с полной информацией.

Нужно определить позиции, в которых указанный в условии игрок имеет выигрышную стратегию, позволяющую ему гарантированно выиграть в указанное количество ходов. Как разбирать задачу. Хороший разбор сделал К.

В статье есть много задач для самостоятельного решения. В статье есть только одна неточность: дерево, изображенное на стр. В контексте статьи понятно, о чем идет речь.

Но при разборе статьи с учениками лучше уточнить: дерево возможных вариантов игры при выбранной стратегии Вани. Обычно деревом возможных вариантов игры или просто деревом игры называют дерево, изображающее все возможные партии. То есть, рассматриваются все возможные ходы Вани, а не только ходы, соответствующие определенной стратегии.

Задача C3-2013 объединяет идеи задач C3-2011 и C3-2012. Преемственность с C3-2012 видна из разбора К. Итак, начнём с того, что попытаемся понять условие.

У нас есть две кучки камней и два игрока: первый Петя и второй Ваня. Игроки ходят по очереди. За ход в любую из кучек можно либо добавить один камень, либо увеличить количество камней в кучке в два раза.

Как только суммарно в кучке стало 73 или более камня, игра заканчивается. Тот, кто ходил последним, выиграл. Важные замечания Мы будем в некоторых заданиях строить дерево партий.

Мы это обязаны делать согласно условию только в Задании 3. В Задании 2 мы не обязаны строить дерево партий. В каждом из заданий недостаточно просто сказать, кто имеет выигрышную стратегию.

Требуется также описать её и указать возможное количество шагов, которое потребуется для выигрыша. Недостаточно назвать стратегию выигрышной. Нужно доказать , что она приводит к выигрышу.

Даже очевидные утверждения требуют доказательств. Задание 1. Рассмотрим теперь Задание 1.

В кучках — 6, 33 камней первая часть Задания 1 и 8, 32 камней вторая часть Задания 1. Нам нужно определить, у кого из игроков имеется выигрышная стратегия. Иными словами, кто из игроков при правильной игре обязательно выиграет вне зависимости от действий соперника.

Здесь и далее мы будем решение разбивать на две части. Вначале будет идти предварительное объяснение его писать в ЕГЭ не нужно , а затем — "формальное решение", то есть то, что нужно писать в самом бланке ЕГЭ. Давайте подумаем: первый игрок очевидно в один ход выиграть не может, так как что бы он не делал, суммарно 73 не будет.

Самое "большое" действие, которое он может сделать, — это увеличить в 2 раза количество камней во второй кучке, сделав их 66. Но 6, 66 — это 72 камня, а не 73. Значит, первый в один ход явно выиграть не сможет.

Однако второй — вполне сможет. Первый может сделать потенциально четыре действия: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке.

Выходные данные Запишите в ответе два числа: сначала наибольшее число файлов, которые могут быть перенесены на внешний жёсткий диск за один раз, затем максимальный размер перенесённого файла, при условии, что перенесено наибольшее возможное число файлов. Если вариантов переноса несколько, выберите тот, при котором будет перенесён наибольший файл. Пример входного файла:.

Связанные страницы:.

ЕГЭ по информатике 2023 - Задание 26 (Сортировка)

Задание 3. Демоверсия ЕГЭ 2018 информатика (ФИПИ): На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах). Предлагаем вашему вниманию разбор задания №26 ЕГЭ 2019 года по информатике и ИКТ. Этот материал содержит пояснения и подробный алгоритм решения, а также рекомендации по использованию справочников и пособий, которые могут понадобиться при подготовке к ЕГЭ. Разбор 17 задания на Python | ЕГЭ-2023 по информатике. Скачать вариант ЕГЭ 2023 по информатике: скачать. Задача 26. Во многих компьютерных системах текущее время хранится в формате «UNIX-время» – количестве секунд от начала суток 1 января 1970 года. В одной компьютерной системе проводили исследование загруженности. уроки для подготовки к экзаменам ЕГЭ ОГЭ.

2 способа решения задания 26 на ЕГЭ по информатике 2023 | insperia

Задание 26. Объём диска может быть меньше, чем требуется для переноса файлов за один раз. Свободный объём на диске и размеры файлов известны.

Известно, какой объём занимает файл каждого пользователя. По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Для указанного значения S опишите выигрышную стратегию Васи. Постройте дерево всех партий, возможных при этой выигрышной стратегии Васи в виде рисунка или таблицы. При количестве камней в куче от 14 и выше Паше необходимо увеличить их количество в пять раз, тем самым получив 70 или более камней. Паша своим первым ходом может сделать 14, 17 или 65 камней, после этого Вася увеличивает количество в пять раз, получая 70, 85 или 325 камней в куче. Для данных случаев Паше необходимо прибавить 4 камня к куче из 9 камней, либо 1 камень к куче из 12, и получить кучу из 13 камней. После чего игра сводится к стратегии, описанной в пункте 1б. Своим первым ходом Паша может сделать количество камней в куче 9, 12 или 40. Если Паша увеличивает кол-во в пять раз, тогда Вася выигрывает своим первым ходом, увеличивая количество камней в пять раз. Для случая 9 и 12 камней Вася использует стратегию, указанную в п. Задание 26 Крылов С. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 73. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 73 камня или больше. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Для каждой из начальных позиций 6, 32 , 7, 32 , 8, 31 укажите, кто из игроков имеет выигрышную стратегию. Для начальной позиции 7, 31 укажите, кто из игроков имеет выигрышную стратегию. Постройте дерево всех партий, возможных при указанной вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы. Перед игроками лежат две кучи камней. За один ход игрок может добавить в одну из куч по своему выбору два камня или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 44. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 44 или больше камней. При каких S: 1а Петя выигрывает первым ходом; 1б Ваня выигрывает первым ходом? Назовите одно любое значение S , при котором Петя может выиграть своим вторым ходом. Назовите значение S, при котором Ваня выигрывает своим первым или вторым ходом. Укажем это в таблице. Значит рассмотрим ситуации, что Петя мог бы ходить первым ходом в 7;S и в 10;S. Соответственно, выигрышными являются и все позиции 7;больше 19. Отметим такие позиции, учитывая, что это первый ход Пети, и кол-во камней в первой куче должно быть 5. Найденные позиции будут проигрышными позициями - : Находим единственное такое значение — 5; 19. Везде следующим ходом выиграет Ваня, см. За один ход игрок может добавить в кучу 1 камень или 10 камней. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 17 камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 31. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 31 или больше камней. При меньших значениях S за один ход нельзя получить кучу, в которой больше 30 камней. Паше достаточно увеличить количество камней на 10. При S 1. Тогда после первого хода Паши в куче будет 21 камень или 30 камней. В обоих случаях Ваня увеличивает количество камней на 10 и выигрывает в один ход. Возможные значения S: 10, 19. В этих случаях Паша, очевидно, не может выиграть первым ходом. В ней игрок, который будет ходить теперь это Вова , выиграть не может, а его противник то есть Паша следующим ходом выиграет. Возможное значение S: 18. После первого хода Паши в куче будет 19 или 28 камней. Если в куче станет 28 камней, Вова увеличит количество камней на 10 и вы играет своим первым ходом. Ситуация, когда в куче 19 камней, разобрана в п. В этой ситуации игрок, который будет ходить теперь это Вова , выигрывает своим вторым ходом. Гость 26. Константин Лавров Да, 9 - тоже является правильным ответом. Достаточно указать хотя бы одно верное значение. Два игрока, Паша и Вова, играют в следующую игру. Игра завершается в тот момент, когда количество камней в куче становится не менее 41. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 41 или больше камней. Описать стратегию игрока - значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Выполните следующие задания. Во всех случаях обосновывайте свой ответ. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы. Опишите выигрышную стратегию Вовы. Укажите два значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход, но может выиграть своим вторым ходом независимо от того, как будет ходить Вова. Для указанных значений S опишите выигрышную стратегию Паши. Укажите значение S, при котором у Вовы есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, однако у Вовы нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вовы. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вовы в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход, в узлах - количество камней в куче.

Как только суммарно в кучке стало 73 или более камня, игра заканчивается. Тот, кто ходил последним, выиграл. Важные замечания Мы будем в некоторых заданиях строить дерево партий. Мы это обязаны делать согласно условию только в Задании 3. В Задании 2 мы не обязаны строить дерево партий. В каждом из заданий недостаточно просто сказать, кто имеет выигрышную стратегию. Требуется также описать её и указать возможное количество шагов, которое потребуется для выигрыша. Недостаточно назвать стратегию выигрышной. Нужно доказать , что она приводит к выигрышу. Даже очевидные утверждения требуют доказательств. Задание 1. Рассмотрим теперь Задание 1. В кучках — 6, 33 камней первая часть Задания 1 и 8, 32 камней вторая часть Задания 1. Нам нужно определить, у кого из игроков имеется выигрышная стратегия. Иными словами, кто из игроков при правильной игре обязательно выиграет вне зависимости от действий соперника. Здесь и далее мы будем решение разбивать на две части. Вначале будет идти предварительное объяснение его писать в ЕГЭ не нужно , а затем — "формальное решение", то есть то, что нужно писать в самом бланке ЕГЭ. Давайте подумаем: первый игрок очевидно в один ход выиграть не может, так как что бы он не делал, суммарно 73 не будет. Самое "большое" действие, которое он может сделать, — это увеличить в 2 раза количество камней во второй кучке, сделав их 66. Но 6, 66 — это 72 камня, а не 73. Значит, первый в один ход явно выиграть не сможет. Однако второй — вполне сможет. Первый может сделать потенциально четыре действия: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке. В этом случае второй игрок может увеличить в 2 раза количество камней во второй кучке. Получим 7, 66. Суммарно — 73. Значит, второй выигрывает. Получим 12, 66. Суммарно — 78. Получим 6, 68. Суммарно — 74. Получим 6, 132. Суммарно — 138. Итого: как бы себя не вёл первый игрок, второй выиграет и в один ход. Аналогично решается и с 8,32. Формальное решение Задания 1. Второй игрок имеет выигрышную стратегию. Докажем это и покажем эту стратегию. Для этого построим дерево партии для каждой из начальных позиции. В дереве партий мы будем указывать состояние обеих кучек в формате a,b , где a — количество камней в первой кучке, b — количество камней во второй кучке. При ходе первого игрока мы будем рассматривать четыре возможных варианта его поведения: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке. Для второго игрока мы укажем по одному ходу, приводящему к выигрышу. Ходы будем показывать в виде стрелочек, рядом с которыми писать I в случае хода первого и II в случае хода второго. Дерево партий для начальной позиции 6, 33. Дерево партий для начальной позиции 8, 32. Согласно дереву партий, вне зависимости от ходов первого у второго всегда есть выигрышная стратегия, позволяющая ему выиграть в один ход, описанная в деревьях суммы после ходов Вани составляют слева-направо 73, 80, 74 и 136 соответственно. При этом, согласно дереву партий, второй игрок может выиграть ровно за один ход. Задание 2 Формальное решение Рассмотрим начальную позицию 6,32. Заметим, что она близка к 6,33 из Задания 1. В Задании 1 мы выяснили, что в позиции 6, 33 выигрывает второй, причём в один ход. Можно это условие переформулировать: в позиции 6,33 выигрывает в один ход тот, кто не ходит то есть, ходит вторым. Или, иными словами, тот, кто ходит, проигрывает в один ход. В позиции 6,32 выигрывает первый в два хода.

Самое необходимое по заданию №26 в формате видеоурока

  • 26 Задание | Excel | Информатика ЕГЭ
  • 26 Задание | Excel | Информатика ЕГЭ
  • Задания 26. Обработка целочисленной информации — Студия Компьютерного Мастерства
  • Вы точно человек?
  • Задание 26. ЕГЭ Информатика 2024. Разбор всех типов. Все коды решений в описании.
  • 26 Задание | Excel | Информатика ЕГЭ

Rokokbet - Agen Situs Toto Macau Terpercaya Hadiah Togel Terbesar 2024

Каждая строка входного файла содержит натуральное число и букву A или B. Число обозначает размер контейнера в условных единицах, буква — цвет этого контейнера буквами A и B условно обозначены два цвета. В ответе запишите два целых числа: сначала максимально возможное количество контейнеров в одном блоке, затем минимальное количество ячеек для хранения всех контейнеров. Полное решение и правильный ответ в самом видео. Информатика ЕГЭ Статград 15122022.

Каждая из следующих N строк содержит два натуральных числа, не превышающих 10 000. Пример организации исходных данных во входном файле: 3 11 9 5 23 Для указанных входных данных значением искомой суммы должно быть число 36 выбраны числа 4, 9 и 23, их сумма 36 делится на 6. В ответе укажите два числа: сначала значение искомой суммы для файла А, затем для файла B. В этой задаче нужно посчитать максимально возможную сумму, а потом подобрать такие пары, изменив выбранный элемент в которых мы добьёмся выполнения требований задачи, но при этом сумма изменится минимально.

Задание 1. Укажите минимальное значение S, когда такая ситуация возможна. Задание 2. Для указанного значения S опишите выигрышную стратегию Пети.

Задание 3. Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани в виде рисунка или таблицы. В узлах дерева указывайте позиции, на рёбрах рекомендуется указывать ходы.

Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание. Запишем условие более понятным языком. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, при которой в кучах будет 63 камня или больше.

Первым ходит Петя. Задание 1а. Укажите все такие значения числа S, при которых Петя может выиграть за один ход.

Если в качестве времени старта указан ноль, это означает, что процесс был активен в момент начала исследования. Если в качестве времени завершения указан ноль, это означает, что процесс не завершился к моменту окончания исследования.

При совпадающем времени считается, что все старты и завершения процессов происходят одновременно, в начале соответствующей секунды. В частности, если время старта одного процесса совпадает с временем завершения другого и других стартов и завершений в этот момент нет, то количество активных процессов в этот момент не изменяется.

ЕГЭ по информатике 2023 - Задание 26 (Сортировка)

Ответ на задачу 20 : 31; 34. В задании 21 требуется найти минимальное значение S, при котором одновременно выполняются два условия: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Разбор 21 задания ЕГЭ по информатике. Также следует учесть, что иногда Ваня может вместо создания этой особой позиции просто сразу выиграть, получив 77 и более камней в кучках.

Все варианты перебраны. Так как мы ищем значения s, при которых Ваня выигрывает независимо от действий Пети, то мы должны взять пересечение победных для Вани значений s из всех четырёх веток перебора. А именно взять пересечение четырёх найденных множеств: 1.

Так как в условии требовалось найти минимальное подходящее s, то в ответ следует записать число 30.

Компьютер доступен на протяжении всего экзамена, и одно и то же задание можно решить разными способами и сравнить полученные ответы. Именно эти задачи, согласно анализу результатов прошлых лет, особенно сложны. Трудности с решением этих задач испытывают не только те, у кого общий балл за ЕГЭ по информатике получился низким, но и хорошисты и отличники. Выучите наизусть таблицу степеней числа 2. Запомните стандартные алгоритмы на языке программирования проверка чисел на простоту, делимость, перебор потока чисел и поиск минимума, максимума, чтение из файла, работа со строками, взятие остатка. Тщательно изучите варианты ЕГЭ предыдущих лет.

Экзамен по информатике — один из самых стабильных, это означает, что для подготовки можно смело использовать варианты ЕГЭ за последние 2—3 года. За два года поменялись только задачи 6, 13 и 22. Познакомьтесь с разными вариантами формулировки заданий. Помните о том, что незначительное изменение формулировки всегда приводит к ухудшению результатов экзамена.

Общая идея заключается в том, что мы будем сохранять разницы между элементами, но сохранять будем их в соответствующие элементы массива только если разница минимальна. Если бы можно было менять элемент в парах с разными остатками, то задача решалась бы проще, но в действительности к лучшему результату нас может привести и такое решение, когда мы поменяли несколько раз элементы с одинаковым остатком, а в итоге вместе они дали лучший результат. Больше 5 пар с одинаковыми остатками точно нет смысла брать, поэтому при решении сначала заполняется массив первых пяти разниц каждого остатка, а потом через рекурсию перебираются все возможные наборы чисел по остаткам. Из этого набора мы берём самые маленькие, ещё не занятые, разницы.

Проблемы : долго считает… Изображение слайда Слайд 23: 25. Divs d then divs. Add d ; if divs. Изображение слайда Слайд 24: 25. Три нечётное число нетривиальных делителя — полный квадрат! Изображение слайда Слайд 27: 25. Готовые функции 27 Демо-2021 Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [174457; 174505], числа, имеющие ровно два различных натуральных делителя, не считая единицы и самого числа. Изображение слайда Слайд 28: 25. Divizors ; if divs. Divizors ; Изображение слайда Слайд 29: 25. Функциональный стиль 29 uses school ; 174457.. Print Lines ; 174457.. Функциональный стиль 31 10.. PrintLines ; заменить каждый элемент последовательности на список его делителей [1,2,5,10] [1,11] [1,2,3,4,6,12] [1,13] [1,2,7,14] [1,3,5,15] [1,2,4,8,16] [1,17].. Функциональный стиль 32 10.. PrintLines ; отобрать те элементы списка, где количество делителей равно 4 [1,2,5,10] [1,2,7,14] [1,3,5,15] 10 14 15 Изображение слайда Слайд 33: 25. Функциональный стиль 33 10.. PrintLines ; заменить каждый элемент списка на пару кортеж , состоящую из двух нетривиальных делителей 2,5 2,7 3,5 10 14 15 Изображение слайда Слайд 34: 25. Пример 34 Б. Изображение слайда Слайд 35: 25. Функциональный стиль 35 uses school; 194441.. Println ; x. IsPrime uses school; 194493.. Step 100. Println ;. Step 100 194493 Изображение слайда Слайд 36: 17.

26 задание егэ информатика 2021 excel скидки

26 задание ЕГЭ по информатике: изучай теорию и решай онлайн тесты с ответами. Предлагаем вашему вниманию разбор задания №26 ЕГЭ 2019 года по информатике и ИКТ. Этот материал содержит пояснения и подробный алгоритм решения, а также рекомендации по использованию справочников и пособий, которые могут понадобиться при подготовке к ЕГЭ. 40 Информатика. ЕГЭ по информатике 2022: задание 26. Разбор 26 задания ЕГЭ 2017 года по информатике из демоверсии. ЕГЭ по информатике 9 мин 22 с. Видео от 23 апреля 2023 в хорошем качестве, без регистрации в бесплатном видеокаталоге ВКонтакте!

Демоверсия егэ информатика 26 задание разбор

Теперь, когда мы нашли область определения x и y, можно подумать и об алгоритме решения. Перебор допустимых значений для x и y; Подсчет количества различных значений выражения. В первом случае воспользуемся двумя вложенными циклами for for x in range 16 : for y in range 9,16 : Для решения второго пункта воспользуемся множеством. Прекрасным свойством множества является то, что если туда попадают одинаковые элементы - остаётся толь один.

Несмотря на возможность их решения при помощи компьютерного перебора, изначально разработчики демоварианта предлагали ручное аналитическое решение. Цель данной статьи — показать методы выполнения аналитического решения названных задач. В демоварианте в заданиях 20 и 21 используется одна и та же игра. Если сократить её описание, отбросив пояснения и примеры, получим следующие правила. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч по своему выбору один камень или увеличить количество камней в куче в два раза.

Один контейнер можно вложить в другой, если размер стороны внешнего контейнера превышает размер стороны внутреннего на 5 и более условных единиц. Группу вложенных друг в друга контейнеров называют блоком. Количество контейнеров в блоке может быть любым. Каждый блок, независимо от количества и размера входящих в него контейнеров, а также каждый одиночный контейнер, не входящий в блоки, занимает при хранении одну складскую ячейку.

Статград 15 декабря. ЕГЭ Информатика 2023. Разбор задач пробника от 15. Вопросы можно задавать в комментариях, или на моих страничках в соц. Обработка целочисленной информации с использованием сортировки" На складе хранятся кубические контейнеры двух цветов различного размера. Чтобы сократить занимаемое при хранении место, контейнеры вкладывают друг в друга.

Похожие новости:

Оцените статью
Добавить комментарий