Самая старая галактика, самый горячий астрономический объект, самое горячее место в космосе, самое холодное место во Вселенной, что такое квазар и почему он светится, сколько лет Млечному Пути. Открытие звезды второго поколения LMC 119 в Большом Магеллановом Облаке дает представление о химическом составе ранней Вселенной за пределами нашей химического состава LMC 119 не разочаровал ученых.
2. По галактическим масштабам Солнце не особенно большое
- ГРАНИ ЭПОХИ
- Сколько солнечных систем в Галактике
- Сколько лет Солнцу?
- Сколько лет Солнцу и откуда нам известен возраст
- Какой конец ждет Солнечную систему? -
- Сколько звезд в галактике и во Вселенной? - Star Mission
СКОЛЬКО ВСЕЛЕННЫХ ВО ВСЕЛЕННОЙ?
Расширение происходило ускоренно, а энергия в единице объема оставалась неизменной. Ученые доказывают, что начальные моменты расширения происходили в "вакууме". Из такого ложного или физического вакуума, обладавшего удивительными свойствами например, отрицательным давлением , могла образоваться не одна, а множество метагалактик в том числе, конечно, и наша. И каждая из них - это мини-вселенная со своим набором физических констант, своей структурой и другими присущими ей особенностями подробнее об этом см. Но где же эти "родственники" нашей Метагалактики? По всей вероятности, они, как и наша Вселенная, образовались в результате "раздувания" домен "домены" от французского domaine - область, сфера , на которые немедленно разбилась очень ранняя Вселенная. Поскольку каждая такая область раздулась до размеров, превышающих нынешний размер Метагалактики, то их границы удалены одна от другой на огромные расстояния. Возможно, ближайшая из мини-вселенных находится от нас на расстоянии порядка 1035 световых лет. Напомним, что размер Метагалактики "всего" 1010 световых лет!
Получается, что не рядом с нами, а где-то очень-очень далеко друг от друга существуют иные, вероятно, совершенно диковинные, по нашим понятиям, миры... Итак, возможно, что мир, в котором мы живем, значительно сложнее, чем предполагалось до сих пор. Вполне вероятно, что он состоит из бесчисленного множества вселенных во Вселенной. Об этой Большой Вселенной, сложной, удивительно многообразной, мы пока практически ничего не знаем. Но одно все-таки, кажется, знаем. Какими бы ни были далекие от нас другие мини-миры, каждый из них реален. Они не вымышлены, подобно некоторым модным ныне "параллельным" мирам, о которых сейчас нередко толкуют люди, далекие от науки. Ну, а что же все-таки, в конце концов, получается?
Звезды, планеты, галактики, метагалактики все вместе занимают лишь самое крошечное место в безграничных просторах чрезвычайно разреженного вещества... И больше во Вселенной ничего нет? Уж слишком просто... В это как-то даже трудно поверить. И астрофизики уже давно что-то ищут во Вселенной. Наблюдения свидетельствуют о существовании "скрытой массы", какой-то невидимой "темной" материи. Ее нельзя увидеть даже в самый мощный телескоп, но она проявляет себя своим гравитационным воздействием на обычное вещество. Еще совсем недавно астрофизики предполагали, что в галактиках и в пространстве между ними такой скрытой материи примерно столько же, сколько и наблюдаемого вещества.
Однако в последнее время многие исследователи пришли к еще более сенсационному выводу: "нормального" вещества в нашей Вселенной - не более пяти процентов, остальное - "невидимки". Предполагают, что из них 70 процентов - это равномерно распределенные в пространстве квантомеханические, вакуумные структуры именно они обусловливают расширение Метагалактики , а 25 процентов - различные экзотические объекты. Например, черные дыры малой массы, почти точечные; очень протяженные объекты - "струны"; доменные стенки, о которых уже мы упоминали. Но кроме таких объектов "скрытую" массу могут составлять целые классы гипотетических элементарных частиц, например "зеркальных частиц". Известный российский астрофизик академик РАН Н. Кардашев когда-то очень давно мы с ним оба были активными членами астрономического кружка при Московском планетарии предполагает, что из "зеркальных частиц" может состоять невидимый нами "зеркальный мир" со своими планетами и звездами. А вещества в "зеркальном мире" примерно в пять раз больше, чем в нашем.
Предполагается, что эта планета — газовый гигант. Вокруг планеты вращаются две звезды, а сама она вращается вокруг еще двух звезд. Одна пара звезд образована двумя карликами с массой 1,5 и 0,4 масс Солнца, периодически затмевающих свет друг друга. Любопытно, что в четырехкратном гравитационном поле планету PH1 «не съела» гравитация ни одной из звезд. Существует версия, что вновь открытая планета расположена в идеальном положении, которое позволяет ей находиться под действием гравитации всех четырех звезд одновременно.
Иллюстрация того, каким могло быть Солнце четыре миллиарда лет назад, примерно в то время, когда на Земле зародилась жизнь. В исследовании НАСА они изучали вероятную мощность звездного ветра от звезды. Соседняя звезда, которая выглядит как молодая версия Солнца, была обнаружена астрономами НАСА, и она может пролить свет на то, как впервые возникла жизнь на Земле, пишет dailymail. Звезда, Каппа 1 Кита, имеет массу и температуру поверхности, аналогичную нашему Солнцу, находится на расстоянии около 30 световых лет от нас, сообщила команда из Центра космических полетов имени Годдарда НАСА в Гринбелте, Мэриленд, добавив, что ей всего от 600 до 750 миллионов лет. Солнце считается средним возрастом, его возраст составляет 4,6 миллиарда лет, поэтому обнаружение похожей звезды в более молодые годы может помочь понять условия в ранней солнечной системе. Часть работы заключалась в изучении выбросов корональной массы и звездных ветров, исходящих от молодой звезды, чтобы увидеть, как солнечные выбросы могли повлиять на Землю. Невозможно вернуться на миллиарды лет назад к ранней Солнечной системе и увидеть, каким было Солнце, когда на планете Земля зародилась жизнь. Однако в Млечном Пути более 100 миллиардов звезд, каждая десятая из которых имеет такой же размер и светимость, что и наша собственная звезда. Многие из этих звезд находятся на ранних стадиях развития. Каппа 1 Кита - одна из таких звезд, аналогичных солнечному, в нашем звездном окружении.
Кроме того, другие методы датировки, используемые на Земле и Луне, дают возраст около 4,5 миллиарда лет, что является еще одним доказательством того, что Солнцу по меньшей мере столько лет. Продолжительность жизни Солнца Солнцу 4,6 миллиарда лет, и астрономы считают, что оно находится лишь на половине своего жизненного пути. Очевидно, что мы не можем заглянуть в будущее, поэтому как ученые оценивают, сколько времени будет существовать Солнце? На самом деле этот процесс довольно прост, и для этого нужно знать, сколько топлива есть у Солнца и с какой скоростью оно его расходует. Как и любая другая звезда во Вселенной, Солнце питается за счет ядерного синтеза ядер водорода в своем ядре. При слиянии водорода образуется гелий и огромное количество энергии, которая питает звезду. Пока в ядре поддерживается ядерный синтез, Солнце будет оставаться звездой главной последовательности. Однако в конце концов топливо закончится, и когда это произойдет, Солнце вступит в последние стадии жизни.
Следующий «солнечный максимум» наступит раньше и будет мощнее: чем это грозит
Но мы покажем количество звезд во Вселенной на цифрах. Буйствовать Солнце будет приблизительно несколько миллионов лет, а потом постепенно начнет остывать. Со́лнце — одна из звёзд нашей Галактики (Млечный Путь) и единственная звезда Солнечной системы. Вокруг Солнца обращаются другие объекты этой системы: планеты и их спутники. «Если солнце обладает сознанием, возможно, оно регулирует свое тепло и энергию всей Солнечной системы с помощью вспышек и корональных выбросов масс. Вне зависимости от того, сколько раз наш мир мог оказаться и оказывался в огне, наша конечная судьба — замерзнуть в холодной, пустой Вселенной.
Сколько солнечных систем в Галактике
Солнце — Википедия | Таким образом, в воспринимаемой нами вселенной количество звёзд примерно 10 в 23-й степени. |
Насколько велик космос? Сравнение звёзд и планет внутри и за пределами Солнечной системы. | так ее именуют астрономы - теперь самая гигантская звезда во Вселенной. |
Что мы знаем о космосе? | Наше Солнце находится почти на самой окраине и делает полный оборот за 200 миллионов лет. |
Астрономы открыли самый яркий объект во Вселенной — ярче Солнца в 500 трлн раз
Находящаяся за один триллион километр от материнской звезды, планета 2MASS J2126 имеет самую большую орбиту в галактике, прохождение которой занимает приблизительно 900 тысяч лет. Новости о науке Присоединяйся к Находящаяся за один триллион километр от материнской звезды, планета 2MASS J2126 имеет самую большую орбиту в галактике, прохождение которой занимает приблизительно 900 тысяч лет. Новости о науке Присоединяйся к Вне зависимости от того, сколько раз наш мир мог оказаться и оказывался в огне, наша конечная судьба — замерзнуть в холодной, пустой Вселенной. Таким путём учёные рассчитали общий вклад барионной и небарионной материи в полное количество энергии во Вселенной.
Телескоп «Хаббл» показал как погибнет Солнце
Есть ли у Земли кольца, когда потухнет Солнце и где еще во Вселенной может быть жизнь? Международная коллаборация Telescope Array опубликовала результаты исследования космического луча чрезвычайно высокой энергии, пришедшего из пустынной области Вселенной. Поэтому мы ограничимся только вопросом, сколько галактик в той части Вселенной, которую мы можем наблюдать — это так называемая видимая часть Вселенной. Согласно их данным, следующий пик солнечной активности наступит в июле 2025 года и будет таким же слабым, как и в апреле 2014 года.
Где край у Вселенной? Астроном отвечает на наивные вопросы о космосе
Но в действительности, слово «множество» не совсем подходит для того, чтобы описать то количество звезд, которые сконцентрированы в галактике. Так сколько же звезд в галактике? Ответ на поставленный вопрос зависит от типа галактики. Самая маленькая галактика называется карликовой. Они слишком малы, чтобы образовывать спиральную форму, которую мы видим у таких галактик как, например, Млечный Путь и Андромеда. Карликовая галактика может иметь до 10 миллионов звезд.
Недавно астрофизики из Университета Радбауда в Нидерландах заявили, что этому процессу подвержены не только черные дыры — вся Вселенная медленно испаряется у нас на глазах, передаёт издание «Вокруг Света». Феномен, получивший название «излучение Хокинга», состоит в том, что возле горизонта событий возникают и пропадают пары частиц. Эти противоположные события происходят в достаточно короткий промежуток времени. Но иногда случается так, что одна частица попадает в черную дыру, а другая из нее вылетает.
Сегодня науке известно о существовании как минимум шести других планет, которые вращаются вокруг парных звезд. А вот планету с четырьмя солнцами они обнаружили впервые. По признанию доктора астрономии из Оксфорда Криса Линтотта, в свете новой планеты с четырьмя звездами невольно начинаешь думать о том, что ученые еще очень далеки от создания реальной картины эволюции планет. Проект Planet Hunters основан в 2010 году, сегодня в нем участвуют 170 000 добровольцев.
В отдельных случаях благодаря участию неспециализированных телескопов удаётся измерить потоки гамма-лучей с энергией до 100 МэВ от активных событий на Солнце. При помощи космических аппаратов постоянно отслеживаются в различных энергетических диапазонах потоки солнечных космических лучей в основном электронов и протонов, ускоренных в солнечных вспышках , играющих важную роль в формировании космической погоды на орбите Земли. Масса образовавшегося ядра гелия меньше суммарной массы 4 протонов, и эта разница масс дефект массы превращается в энергию излучения нейтрино и жёстких гамма-квантов. Эффективность термоядерных реакций в ядре Солнца такова, что из 1 кг водорода 7 г превращается в излучение. Каждую секунду на Солнце «выгорает» около 4,3 млн т водорода. В таком, казалось бы, расточительном режиме Солнце существует уже около 4,5 млрд лет, но его масса настолько велика, что её хватит ещё примерно на такой же срок. Гамма-кванты, порождённые в ядре Солнца, по пути наружу многократно поглощаются и переизлучаются атомами солнечного вещества. В ходе этого процесса гамма-кванты «дробятся», их энергия перераспределяется между менее энергичными квантами, и в итоге с поверхности Солнца энергия, выработанная в ядре, излучается главным образом в виде оптического и ИК-излучения. Путь лучистой энергии от ядра до поверхности Солнца занимает примерно 1 млн лет. Прямую информацию о протекании термоядерных реакций синтеза в ядре Солнца даёт нейтринная астрономия , поскольку нейтрино, рождающиеся в этих реакциях, практически без поглощения проходят всю толщину солнечного шара и те из них, которые попадают на Землю, могут быть уловлены специальными нейтринными детекторами солнечные нейтрино. Внутреннее строение Солнца Солнце можно условно разделить на ряд физически различных зон рис. В самом центре находится ядро , в котором происходит энерговыделение; по протяжённости оно занимает 0,2 радиуса Солнца.
15 фактов о размерах Вселенной, которые пополнят ваш багаж знаний
Или иными словами: 4 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 фотонов. Несмотря на огромное количество, интересно отметить, что, за исключением света, который исходит от Солнца и Млечного Пути, остальная часть звездного света, достигающая Земли, чрезвычайно тусклая и эквивалентна 60-ваттной лампочке, видимой в полной темноте с расстояния 2,5 километра. Именно поэтому ночное небо для невооруженного глаза такое темное. Блазары и космический туман Космический телескоп «Fermi» в июне 2018 года отметил свой 10-летний юбилей.
За это время мощная обсерватория предоставила огромное количество данных о гамма-лучах и их взаимодействии с внегалактическим фоновым излучением EBL , которое представляет собой космический туман, состоящий из всего ультрафиолетового, видимого и инфракрасного света, испускаемого звездами или пылью в их окрестностях. Ученые проанализировали почти девять лет данных о сигналах гамма-излучения 739 блазаров. Блазары — это галактики, содержащие сверхмассивные черные дыры, которые способны производить струи энергетических частиц почти со скоростью света.
Гамма-кванты, образующиеся внутри этих джетов, в конечном итоге сталкиваются с космическим туманом, оставляя наблюдаемый отпечаток. Это позволило команде измерить плотность тумана не только в конкретном месте, но и в определенный момент времени в истории Вселенной. Измеряя, сколько фотонов было «потеряно» по дороге к Земле, ученые установили, насколько густой был туман, а также измерили как функцию времени, сколько всего света было во всем диапазоне длин волн.
Более молодые звезды имеют тенденцию генерировать более горячие и сильные звездные ветры и более мощные плазменные извержения, чем старые звезды. Такие выбросы могут повлиять на атмосферу и химический состав близлежащих планет и, возможно, даже катализировать развитие органического материала - строительных блоков для жизни - на этих планетах. Звездный ветер может оказывать значительное влияние на планеты на любом этапе жизни. Но сильные, очень плотные звездные ветры молодых звезд могут сжимать защитные магнитные экраны окружающих планет, делая их еще более восприимчивыми к воздействию заряженных частиц. Солнце является прекрасным примером этого процесса и того, как он меняется на протяжении жизни звезды - от юности до среднего возраста. По сравнению с нынешним, в раннем детстве, наше Солнце, вероятно, вращалось в три раза быстрее, имело более сильное магнитное поле и испускало более интенсивное высокоэнергетическое излучение. В наши дни для счастливых зрителей воздействие этих частиц иногда видно вблизи полюсов планеты в виде полярных сияний или северного и южного сияний. Айрапетян сказал, что четыре миллиарда лет назад эти огни были бы видны из гораздо большего количества разных мест по всему земному шару, чем сегодня.
Такой высокий уровень активности в первые годы существования нашего Солнца, возможно, отодвинул назад защитную магнитосферу Земли и обеспечил планету правильным химическим составом атмосферы для образования первых биологических молекул. Этого бы не случилось с Венерой, которая была достаточно близко, чтобы сгорела ее атмосфера, или с Марсом, слишком далеким, чтобы излучение могло достичь в силе.
Сегодня мы знаем, что они сильно недооценивали размеры космического пространства. Так сколько же всего галактик? Ответ стали искать в 1980-х годах, используя для достижения результатов все имеющиеся мощности. Астрономы с жадностью сканировали космическое пространство, открывая далекие галактики, неизвестные ранее объекты и явления.
К счастью, он был нацелен не на Землю; он промахнулся мимо нас на десятки миллионов километров. Но если бы он ударил по нам, это было бы очень, очень плохо».
Во время загрузки произошла ошибка. Готовы ли мы к супершторму? Астроном напоминает, что в 774 году на нашу планету обрушился ещё более сильный солнечный шторм. Он был настолько мощным, что существенно изменил химию атмосферы. Об этом событии учёным известно по анализу колец древних деревьев и ледяных кернов. Но значительно более мощное событие случилось в восьмом тысячелетии до нашей эры. Возможно, это было самое сильное извержение солнечной энергии, поразившее Землю за последние 10 тысяч лет. По крайней мере, два солнечных пятна за последние недели стали настолько большими, что их можно было увидеть невооружённым глазом, а также произошло несколько довольно мощных вспышек.
Звезда на пике. Астроном предупредил о солнечной супербуре
Далекие планеты тяжело изучать с технической точки зрения просто потому, что солнечная энергия перестает быть возможным источником энергии для аппарата. Уже за орбитой Юпитера солнечные батареи оказываются неэффективными. И даже исследования Сатурна должно сопровождаться использованием ядерных источников питания на борту, как это было с запуском спутника «Кассини». На нем, например, был установлен ядерный источник энергии, и в связи с этим очень активно обсуждалась возможность аварии при запуске — какой будет радиационная обстановка, если ракета со спутником потерпит аварию где-то вблизи поверхности Земли. Церера и Плутон — карликовые планеты Скорее всего, девятая планета станет последним большим объектом в Солнечной системе. Хотя по мере ее изучения периодически открывались тела, которые получали статус планет. Первый такой случай произошел, когда был открыт астероид. Он получил название Церера и статус планеты между Марсом и Юпитером. Но довольно быстро люди стали открывать другие астероиды, и Цереру «разжаловали». Потом был открыт Плутон — объект за орбитой Нептуна. И он получил статус планеты.
Многие из нас выросли с осознанием, что в Солнечной системе девять планет. Но когда в 1990-е годы стали открывать занептуновые тела, выяснилось, что Плутон точно так же, как Церера, не одинок. Рядом с ним на очень схожих орбитах обращается вокруг Солнца большое количество тел. В результате длинных дискуссий Плутон тоже был «разжалован» из планет. Правда, ради него был введен специальный статус — карликовая планета. Океан Европы как «первичный бульон» Если Марс нам больше не представляется миром, кишащим жизнью, есть ли вообще в Солнечной системе места, где жизнь присутствует? Лучшими кандидатами на роль обитаемых объектов выступают спутники планет-гигантов. Это несколько объектов, на которых существует океан из обычной воды, покрытый толстой коркой льда.
Дело в том, что просто подсчитать количество звёзд даже в нашей галактике — Млечном Пути — совсем не просто. Если вы уедете куда-нибудь за город и поднимете ночью взгляд в небо, вы сможете различить лишь незначительное число звёзд.
Большая часть из них слишком тускла, чтобы их можно было увидеть невооружённым глазом. Правда, это не главная проблема. Даже если бы мы смогли подсчитать все до единой звезды в нашей галактике, она лишь одна из миллиарда галактик во Вселенной. Надеяться, что мы различим каждую звезду в каждой галактике, очевидно, глупо.
Результаты исследования представлены в журнале Science. Это позволило нам лучше понять процесс эволюции звезд и получить увлекательную информацию о том, как Вселенная породила свое сияющее содержимое», — рассказывает Марко Ажелло, ведущий автор исследования из Университета Клемсона США.
Большой взрыв в представлении художника. Credit: iStock Cчитается, что формирование первых звезд началось спустя несколько сотен миллионов лет после Большого Взрыва. Сейчас в наблюдаемой Вселенной зафиксировано около двух триллионов галактик и триллионы триллионов звезд. Или иными словами: 4 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 фотонов. Несмотря на огромное количество, интересно отметить, что, за исключением света, который исходит от Солнца и Млечного Пути, остальная часть звездного света, достигающая Земли, чрезвычайно тусклая и эквивалентна 60-ваттной лампочке, видимой в полной темноте с расстояния 2,5 километра. Именно поэтому ночное небо для невооруженного глаза такое темное.
Блазары и космический туман Космический телескоп «Fermi» в июне 2018 года отметил свой 10-летний юбилей. За это время мощная обсерватория предоставила огромное количество данных о гамма-лучах и их взаимодействии с внегалактическим фоновым излучением EBL , которое представляет собой космический туман, состоящий из всего ультрафиолетового, видимого и инфракрасного света, испускаемого звездами или пылью в их окрестностях.
Если каждая галактика содержит столько же звёзд, как и Млечный Путь, то число звёзд во вселенной может быть просто ошеломительным! Классификация звезд Звезды классифицируются на основе их спектра, светимости и массы.
Процентное соотношение звёзд различных типов может колебаться, но в галактике Млечный Путь ожидается наличие значительного количества звёзд, подобных Солнцу. Поиск других солнц Специалисты проводят много исследований, направленных на поиск других солнц во вселенной. Одним из главных методов является поиск экзопланет — планет, вращающихся вокруг других звёзд. Изучение экзопланет позволяет астрономам понять, есть ли в этих системах звёзды, похожие на Солнце.
Астрономы засекли в космосе вспышку яркостью в квадриллион солнц
Вероятно у большинства звезд существуют планетные системы. На данном этапе развития наблюдательных технологий достоверно обнаружить мелкие планеты типа земной группы не представляется возможным. Однако крупные планеты у пары-тройки сотен звезд уже обнаружены планеты поболее нашего Юпитера. Естественно речь идет о звездах нашей галактики. Андрей: бесчисленное множество.
И он получил статус планеты. Многие из нас выросли с осознанием, что в Солнечной системе девять планет. Но когда в 1990-е годы стали открывать занептуновые тела, выяснилось, что Плутон точно так же, как Церера, не одинок. Рядом с ним на очень схожих орбитах обращается вокруг Солнца большое количество тел. В результате длинных дискуссий Плутон тоже был «разжалован» из планет. Правда, ради него был введен специальный статус — карликовая планета.
Океан Европы как «первичный бульон» Если Марс нам больше не представляется миром, кишащим жизнью, есть ли вообще в Солнечной системе места, где жизнь присутствует? Лучшими кандидатами на роль обитаемых объектов выступают спутники планет-гигантов. Это несколько объектов, на которых существует океан из обычной воды, покрытый толстой коркой льда. Именно она защищает океан от испарения. У ученых есть серьезные подозрения, что, если взять большую банку с водой и оставить ее на несколько миллиардов лет, то там вполне может завестись какая-нибудь жизнь. Футурология Что, если не Марс: куда можно «переехать» в пределах Солнечной системы Таких объектов в Солнечной системе три. Но наилучшим кандидатом является Европа — спутник Юпитера. Европа интересна тем, что океан на ней иногда пробивается наружу, то есть корку льда даже не придется бурить. Нужно с помощью земных наблюдений определить положение недавних выбросов и посадить на поверхность аппарат с биохимической лабораторией на борту. Но это технически очень сложная задача.
И, по всей видимости, она может быть реализована только в следующем цикле изучения Солнечной системы — под конец 2030-х годов. Солнечная система остается небольшим кусочком космоса, доступным для наших прямых исследований. В ближайшем будущем человек сможет добраться до Марса, потом долететь до спутников планет-гигантов или до астероидов.
В УФ-области на длинах волн 200—400 нм спектр Солнца также описывается законами излучения абсолютно чёрного тела. На волнах короче 200 нм интенсивность непрерывного спектра Солнца резко падает, появляются эмиссионные линии.
Интенсивность излучения Солнца в УФ- и рентгеновском диапазонах очень сильно меняется с изменением уровня солнечной активности. УФ-излучение Солнца возникает в хромосфере Солнца — следующем за фотосферой слое солнечной атмосферы толщиной около 2000 км и температурой 8—15 тыс. Рентгеновское излучение также исходит из хромосферы, содержащей горячие волокна-выбросы, и расположенной над нею ещё более горячей около 1—2 млн К , но сильно разреженной и чрезвычайно протяжённой короны Солнца. Кроме того, Солнце является мощным источником радиоизлучения. Хромосфера Солнца излучает радиоволны в миллиметровом и сантиметровом диапазонах, солнечная корона — дециметровые и метровые радиоволны.
В радиоизлучении Солнца выделяют две составляющие — постоянную и переменную. Первая соответствует радиоизлучению спокойного Солнца, вторая отражает явления солнечной активности и проявляется в виде всплесков и шумовых бурь. Это радиоизлучение имеет нетепловую природу и при солнечных вспышках возрастает в тысячи и миллионы раз по сравнению с радиоизлучением спокойного Солнца. Долгое время наблюдению с Земли была доступна лишь видимая часть солнечного спектра. С наступлением космической эры в последней трети 20 в.
Уже в этот период, ещё до стадии красного гиганта , возможно исчезновение или кардинальное изменение жизни на Земле из-за повышения температуры поверхности планеты, вызванного увеличением яркости Солнца и парникового эффекта, индуцированного парами воды [24] [25] [26] [27]. К этому моменту Солнце достигнет максимальной поверхностной температуры 5800 К за всё своё время эволюции в прошлом и будущем вплоть до фазы белого карлика ; на следующих стадиях температура фотосферы будет меньше. Несмотря на прекращение жизни в её современном понимании, жизнь на планете может остаться в глубинах морей и океанов [28]. К тому времени условия на Земле, возможно, будут подобны нынешним условиям на Венере : вода с поверхности планеты исчезнет полностью и улетучится в космос.
Скорее всего, это приведёт к окончательному уничтожению всех наземных форм жизни [28]. По мере того как водородное топливо в солнечном ядре будет выгорать, его внешняя оболочка будет расширяться, а ядро — сжиматься и нагреваться. Когда Солнце достигнет возраста 10,9 млрд лет 6,4 млрд лет от настоящего времени , водород в ядре кончится, а образовавшийся из него гелий, ещё неспособный в этих условиях к термоядерному горению, станет сжиматься и уплотняться ввиду прекращения ранее поддерживавшего его «на весу» потока энергии из центра. Горение водорода будет продолжаться в тонком внешнем слое ядра.
В конце этой фазы, достигнув возраста 11,6 млрд лет через 7 млрд лет от настоящего времени Солнце станет субгигантом [28]. Приблизительно через 7,6—7,8 [29] [28] миллиарда лет, к возрасту 12,2 млрд лет, ядро Солнца разогреется настолько, что запустит процесс горения водорода в окружающей его оболочке [29]. Это повлечёт за собой бурное расширение внешних оболочек светила, таким образом Солнце покинет главную последовательность , на которой оно находилось почти с момента своего рождения, и станет красным гигантом , перейдя на вершину ветви красных гигантов диаграммы Герцшпрунга — Рассела [29]. В этой фазе радиус Солнца увеличится в 256 раз по сравнению с современным [29].
Расширение звезды приведёт к сильному увеличению её светимости в 2700 раз и охлаждению поверхности до 2650 К [29]. По-видимому, расширяющиеся внешние слои Солнца в это время достигнут современной орбиты Земли. Хотя исследования 2008 года показывают, что Земля, скорее всего, будет поглощена Солнцем вследствие замедления вращения Солнца и последующих приливных взаимодействий с его внешней оболочкой [29] , которые приведут к приближению орбиты Земли обратно к Солнцу. Даже если Земля избежит поглощения Солнцем, вся вода на ней перейдёт в газообразное состояние, а её атмосфера будет сорвана сильнейшим солнечным ветром [31].
Данная фаза существования Солнца продлится около 10 миллионов лет. Когда температура в ядре достигнет 100 млн К, произойдёт гелиевая вспышка , и начнётся термоядерная реакция синтеза углерода и кислорода из гелия [28]. Спустя 100—110 млн лет, когда запасы гелия иссякнут, повторится бурное расширение внешних оболочек звезды, и она снова станет красным гигантом [28]. Этот период существования Солнца будет сопровождаться мощными вспышками, временами его светимость будет превышать современный уровень в 5200 раз [28] [32].
15 фактов о размерах Вселенной, которые пополнят ваш багаж знаний
Таинственный космический луч, наблюдаемый в штате Юта, пришел из-за пределов нашей галактики, утверждают ученые, у которых накопилось немало вопросов к этому феномену. Можно ли докричаться до звезд? А добраться до самого высокого вулкана в Солнечной системе? Буйствовать Солнце будет приблизительно несколько миллионов лет, а потом постепенно начнет остывать. Международная группа учёных под руководством астрономов Тартуской обсерватории Тартуского университета обнаружила множество сверхскоплений во Вселенной.