Статья автора «Живой Космос» в Дзене: Холодный синтез — это мечта, над исполнением которой некоторые учёные трудятся уже несколько десятилетий. Стандартная реакция термоядерного синтеза T + D ---> He 4 + n+ 17.6 МэВ. «Холодный термоядерный синтез» пользуется у физиков той же репутацией, что и вечный двигатель, машина времени и прочие экспериментально недоказанные или недоказуемые, гипотетические приспособления, которые идут вразрез с законами физики и химии. Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. Главная» Новости» Холодный ядерный синтез новости последние.
Холодный ядерный синтез — научная сенсация или фарс?
Холодный термоядерный синтез в обыкновенной кружке | АльтерСинтез | Американская установка термоядерного синтеза позволила получить больше энергии, чем было потрачено для её запуска. |
Холодный ядерный синтез перестал быть лженаукой в ЕС | Холодный термоядерный синтез в обыкновенной кружке. |
Термоядерный синтез: ещё один шаг | Hi-Tech - Новости Казахстана и мира на сегодня | Термоядерный синтез предполагает, что вместо радиоактивных элементов, таких как уран и плутоний, в качестве топлива в реактор будут загружаться дейтерий и тритий, после чего с помощью электричества конструкция будет разогреваться до температур. |
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER | Термоядерный синтез — это процесс, когда два легких атомных ядра объединяются в одно более тяжелое ядро, высвобождая большое количество энергии. |
Термоядерную установку, у которой нет аналогов в мире, запустили в Курчатовском институте | Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции. Холодный ядерный синтез: истории из жизни, советы, новости. |
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER
Холодный ядерный синтез. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции. Главная» Новости» Холодный ядерный синтез новости последние. То есть провели реакцию холодного термоядерного синтеза.
Выбор сделан - токамак плюс
Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. Главная» Новости» Холодный ядерный синтез новости последние. Холо́дный я́дерный си́нтез — предполагаемая возможность осуществления ядерной реакции синтеза в химических (атомно-молекулярных). Холодный ядерный синтез – это научная теория предполагающая возможность осуществления термоядерной реакции без значительных первоначальных энергозатрат и мощного нагрева ядер топлива для запуска процесса их слияния. Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике.
Холодный синтез. Миф или лженаука?
Проект Google не смог обнаружить холодный ядерный синтез | Главная» Новости» Симпозиум по термоядерному синтезу 2024. |
Учёным удалось получить полезную энергию в термоядерной реакции / Хабр | Следует понимать, что холодный ядерный синтез на настольных аппаратах не только возможен, но и осуществлен, причем в нескольких версиях. |
Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы
в направлении коммерческого применения холодного синтеза, самые сенсационные новости об этой технологии пришли из Америки. Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. Термоядерный, холодный синтез. Теория, технология.» на канале «Теплое Событие» в хорошем качестве, опубликованное 11 декабря 2023 г. 20:24 длительностью 00:15:26 на видеохостинге RUTUBE. Успешное осуществление реакций холодного термоядерного синтеза повлечет за собой переворот в энергетике и геополитические изменения в мире, но все притязания на успешную реализацию этих реакций пока представляли собой или ошибки экспериментов, или аферы.
Термоядерную установку, у которой нет аналогов в мире, запустили в Курчатовском институте
Ядерный синтез (часто говорят «термоядерный синтез») — это реакция, в которой легкие ядра при столкновении объединяются в одно тяжелое ядро. Американская установка термоядерного синтеза позволила получить больше энергии, чем было потрачено для её запуска. AngryDude666, Термоядерный синтез, это реакция синтеза, а не расщепления.
Холодный ядерный синтез
Все это практически не оставляет сомнений в том, что Росси и Фокарди не сделали ничего выдающегося. Но является ли идея холодного термоядерного синтеза лженаукой? Евгений Александров считает, что нет. Мюонный катализ явление синтеза слияния ядер изотопов водорода, происходящее при существ. Мюоны, образуя с ядрами мезомолекулы, способствуют сближению ядер на расстояния, достаточные для протекания ядерной реакции. Освобождаясь после акта реакции, мюоны могут повторить этот процесс т.
Но эта величина все же меньше, чем энергетические затраты на производство самого мюона 5-10 ГэВ.
Создать такую гравитацию в лабораторных условиях невозможно, поэтому приходится разогревать среду еще сильнее. Так, если в центре нашего светила температура составляет около 15 млн градусов Цельсия, то в термоядерном реакторе — около 150 млн. Разумеется, никакое вещество не способно выдержать подобного жара, поэтому основная задача, над которой сегодня бьются ученые — удержание плазмы как можно дальше от стенок реактора, чтобы они не расплавились. Насколько это опасно Эксперты Курчатовского института замечают , что термоядерный синтез не является цепной реакцией.
То есть при нарушениях в работе установки процесс попросту остановится. Максимум, какая опасность поджидает обслуживающий персонал и окружающих — расплавление токамака установки удержания плазмы с помощью мощных магнитов. В этом плане УТС гораздо безопаснее классической атомной энергетики, где реакция как раз является цепной и угрожает загрязнением обширных площадей. Чем еще хорош термоядерный синтез Высокая энергоэффективность и относительная безопасность — далеко не все плюсы. Есть как минимум еще четыре : Отсутствие эмиссии парниковых газов.
Возможность размещения станции вблизи населенных пунктов из-за отсутствия выделяемых в окружающую среду вредных веществ. Практически неограниченные запасы топлива. Например, изотоп водорода дейтерий легко получается из обычной воды, да и требуется его немного.
Миллс еще в 1991 году представил свою теорию, согласно которой электрон в водороде может переходить в новые состояния, высвобождая огромное количество энергии. Он назвал новый тип водорода «гидрино» и основал компанию Brilliant Light Power BLP , которая пыталась использовать технологию с коммерческой стороны. BLP до сих пор представляют прототипы своих устройств, но трудно сказать, что происходит в них на самом деле. У него даже был заключен контракт с американской армией, но, по некоторым сообщениям , устройства не работали согласно своим спецификациям.
Самойловских говорит, что они знакомы с Росси: «Мы не заглядывали внутрь, но у нас есть достаточно веские основания полагать, что у него этот продукт есть. И он рано или поздно будет в какой-то мере реализован». За годы исследований сфера получила достаточно большой объем инвестиций, но ни одного работающего аппарата, прошедшего независимые экспертизы и доказавшего свою работоспособность, представлено не было. Новая старая технология Deneum, в свою очередь, уже представила концепт своего модуля — электростанции с капсулой, содержащей рабочее тело. Принцип действия основан на взаимодействии веществ внутри рабочего тела при нагревании. В реакции участвуют два основных вещества — титан и дейтерий, известный как тяжелая вода. Такое взаимодействие приводит к избыточному нагреву.
Полученное тепло планируется преобразовывать в электричество — в данный момент компания работает над выявлением наиболее эффективного способа. Слово «избыточный» означает, что выходная энергия превышает входную энергию, затрачиваемую на выполнение процессов. С технической точки зрения дейтерий поглощается в металлическую кристаллическую решетку, которая выбирается из металлов, способных в достаточной степени принимать водород. В данном случае это титан. После того, как решетка титана насыщена дейтерием, он вводится в капсулу с целью инициирования взаимодействия. В результате рабочее тело само нагревается на дополнительные несколько десятков градусов, создавая таким образом избыточную тепловую энергию, которую затем планируется преобразовывать в электрическую. ICO и инвестиции не для всех Выбор Kickstarter как площадки для сбора инвестиций был понятен во времена старта Tesla Amazing — краудфандинг идеально подходил людям без имени, большого опыта в бизнесе и значительных собственных средств.
В скорлупе, как известно, содержится очень много кальция. Кервран заключил, что куры синтезируют его у себя в организме из более легкого элемента — калия. В качестве места протекания реакций ядерного синтеза физик определил митохондрии — внутриклеточные энергетические станции. Несмотря на то что многие считают эту публикацию Керврана первоапрельской шуткой, некоторые ученые всерьез заинтересовались проблемой холодного ядерного синтеза. Две почти детективные истории В 1989 году Мартин Флейшман и Стэнли Понс объявили о том, что им удалось покорить природу и заставить дейтерий превратиться в гелий при комнатной температуре в приборе для электролиза воды. Схема эксперимента была следующей: в подкисленную воду опускали электроды и пропускали ток — обычный опыт по электролизу воды. Однако ученые использовали необычную воду и необычные электроды. Вода была "тяжелой".
То есть, легкие "обычные" изотопы водорода в ней были заменены на более тяжелые, содержащие помимо протона еще и один нейтрон. Такой изотоп называется дейтерием. Кроме того, Флейшман и Понс использовали электроды, сделанные из палладия. Палладий отличает удивительная способность "впитывать" в себя большое количество водорода и дейтерия. Число атомов дейтерия в палладиевой пластине может сравниться с числом атомов самого палладия. В своем эксперименте физики использовали электроды, предварительно "насыщенные" дейтерием. При прохождении электрического тока через "тяжелую" воду образовывались положительно заряженные ионы дейтерия, которые под действием сил электростатического притяжения устремлялись к отрицательно заряженному электроду и "врезались" в него. При этом, как были уверены экспериментаторы, они сближались с уже находящимися в электродах атомами дейтерия на расстояние, достаточное для протекания реакции ядерного синтеза.
Доказательством протекания реакции стало бы выделение энергии — в данном случае это выразилось бы в увеличении температуры воды - и регистрация потока нейтронов. Флейшман и Понс заявили, что в их установке наблюдалось и то и другое. Сообщение физиков вызвало чрезвычайно бурную реакцию научного сообщества и прессы. СМИ расписывали прелести жизни после повсеместного внедрения холодного ядерного синтеза, а физики и химики по всему миру принялись перепроверять их результаты. Поначалу в нескольких лабораториях вроде бы смогли повторить эксперимент Флейшмана и Понса, о чем радостно сообщали газеты, однако постепенно стало выясняться, что при одних и тех же начальных условиях разные ученые получают совершенно несхожие результаты.
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER
Этого достаточно, чтобы на несколько минут обеспечить питанием обычный дом или вскипятить чайник примерно 70 раз. По данным Space. Это крупнейший в мире действующий экспериментальный термоядерный реактор. Его используют для удержания физической плазмы магнитным полем.
Об этом сегодня официально сообщили Министерство энергетики США и Национальное управление по ядерной безопасности NNSA , назвав это научным подвигом, к которому шли десятилетиями. Теперь же данные официально подтвердились: 5 декабря команда исследователей провела первый в истории эксперимент по управляемому термоядерному синтезу, в результате которого было произведено больше энергии, чем потрачено лазерной энергии для запуска реакции. Часть установки, в которой была запущена реакция синтеза В рамках эксперимента самая мощная в мире лазерная установка, включающая 192 лазера, доставила до крошечной капсулы с топливом 2,05 МДж энергии, а в результате реакции учёные получили 3,15 МДж энергии.
То есть на выходе оказалось более чем в полтора раза больше энергии, чем было затрачено. Термоядерный синтез — это реакция, при которой два лёгких атомных ядра объединяются в одно более тяжелое, при этом генерируя большой объём энергии. То же самое происходит внутри звёзд.
В действительности, временные масштабы, связанные с развитием термоядерного синтеза как источника энергии, слишком велики для решения самых насущных проблем климата, которые предполагают немедленное сокращение выбросов углерода.
Аника Хан, исследователь ядерного синтеза из Манчестерского университета, говорит Forbes: "Ядерный синтез слишком поздно придет к решению климатического кризиса. Мы уже сталкиваемся с разрушительными последствиями изменения климата в глобальном масштабе, достаточно посмотреть на наводнения в Пакистане, засухи в Китае и Европе этим летом". Эксперты подчеркивают, что сокращение выбросов углерода не может ждать годы или десятилетия. Мир сталкивается с ускоряющимся изменением климата, потерей биоразнообразия, деградацией естественной среды обитания в сочетании с экономическими, социальными и политическими кризисами.
Мир, на который возлагаются большие надежды после пандемии COVID-19, является полной противоположностью. Дик Уиллис из Бристольского университета говорит: "У нас есть всего несколько лет, чтобы внести изменения, необходимые для того, чтобы избежать социальной катастрофы того, что происходит с биосферой, если, конечно, еще не слишком поздно. Даже оптимисты понимают, что пройдут десятилетия, прежде чем термоядерная энергия сможет внести свой вклад в энергосистему, каким бы ни было это достижение".
Правда, вода была не простой, а тяжелой, D2O, катод был сделан из палладия, а в состав растворенной соли входили литий и дейтерий. Через раствор месяцами безостановочно пропускали постоянный ток, так что на аноде выделялся кислород, а на катоде — тяжелый водород. Флейшман и Понс якобы обнаружили, что температура электролита периодически возрастала на десятки градусов, а иногда и больше, хотя источник питания давал стабильную мощность. Они объяснили это поступлением внутриядерной энергии, выделяющейся при слиянии ядер дейтерия.
Флейшман и Понс уверовали, что внутри кристаллической решетки этого металла атомы дейтерия столь сильно сближаются, что их ядра сливаются в ядра основного изотопа гелия. Этот процесс идет с выделением энергии, которая, согласно их гипотезе, нагревала электролит. Объяснение подкупало простотой и вполне убеждало политиков, журналистов и даже химиков. Они-то прекрасно знали, что два дейтрона в принципе могут дать начало ядру гелия-4 и высокоэнергичному гамма-кванту, но шансы подобного исхода крайне малы. Даже если дейтроны вступают в ядерную реакцию, она почти наверняка завершается рождением ядра трития и протона или же возникновением нейтрона и ядра гелия-3, причем вероятности этих превращений примерно одинаковы. Если внутри палладия действительно идет ядерный синтез, то он должен порождать большое число нейтронов вполне определенной энергии около 2,45 МэВ. Их нетрудно обнаружить либо непосредственно с помощью нейтронных детекторов , либо косвенно поскольку при столкновении такого нейтрона с ядром тяжелого водорода должен возникнуть гамма-квант с энергией 2,22 МэВ, который опять-таки поддается регистрации.
В общем, гипотезу Флейшмана и Понса можно было бы подтвердить с помощью стандартной радиометрической аппаратуры. Флейшман использовал связи на родине и убедил сотрудников британского ядерного центра в Харуэлле проверить его «реактор» на предмет генерации нейтронов.
Что не так с «японским ученым» и его холодным термоядом
В семи новых исследованиях ученые описали результаты расчетов и моделирований суперкомпьютеров, лежащих в основе конструкции SPARC. Ожидается, что этот термоядерный реактор будет генерировать как минимум в два, а то и в 10 раз больше энергии, чем потребляет, как показали исследования. Однако все еще ITER будет как минимум в 5 раз мощнее. А дальше принцип работы схож с текущими атомными электростанциями: тепло от термоядерного реактора будет превращать воду в пар. Он, в свою очередь, будет приводить в действие турбину и электрический генератор, после чего конденсироваться и снова нагреваться у реактора, завершая цикл.
Однако в отличие от ядерных реакторов не нужно будет строить несколько контуров, на которых сильно теряется КПД, дабы избежать радиации — «снимать энергию» можно будет сразу же с первого контура. Напротив, по его словам, электростанции, использующие возобновляемые источники энергии, такие как солнечный свет или ветер, «плохо приспособлены к нынешним электрическим сетям». Исследователи в конечном итоге надеются, что компактные термоядерные электростанции, вдохновленные SPARC, смогут вырабатывать от 250 до 1000 мегаватт каждая. Он будет производить только тепло, но не электричество.
После того, как исследователи построят и протестируют SPARC, они планируют построить реактор ARC Affordable Robust Compact, Доступный компактный прочный реактор , который сможет вырабатывать электричество из «термоядерного тепла».
В действительности, временные масштабы, связанные с развитием термоядерного синтеза как источника энергии, слишком велики для решения самых насущных проблем климата, которые предполагают немедленное сокращение выбросов углерода. Аника Хан, исследователь ядерного синтеза из Манчестерского университета, говорит Forbes: "Ядерный синтез слишком поздно придет к решению климатического кризиса.
Мы уже сталкиваемся с разрушительными последствиями изменения климата в глобальном масштабе, достаточно посмотреть на наводнения в Пакистане, засухи в Китае и Европе этим летом". Эксперты подчеркивают, что сокращение выбросов углерода не может ждать годы или десятилетия. Мир сталкивается с ускоряющимся изменением климата, потерей биоразнообразия, деградацией естественной среды обитания в сочетании с экономическими, социальными и политическими кризисами.
Мир, на который возлагаются большие надежды после пандемии COVID-19, является полной противоположностью. Дик Уиллис из Бристольского университета говорит: "У нас есть всего несколько лет, чтобы внести изменения, необходимые для того, чтобы избежать социальной катастрофы того, что происходит с биосферой, если, конечно, еще не слишком поздно. Даже оптимисты понимают, что пройдут десятилетия, прежде чем термоядерная энергия сможет внести свой вклад в энергосистему, каким бы ни было это достижение".
Официального объявления ещё не было. Ожидается, что это будет сделано завтра. Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике. Проект National Ignition Facility, специалисты которого и добились успеха, использует метод так называемого «термоядерного инерционного синтеза».
Но обман нельзя было бы раскрыть, если бы в устройстве были недоступные скрытые компоненты; если бы к нему передавались внешние сигналы, которые остались бы незамеченными; если бы кто-то исподтишка изменял устройство, когда никто не смотрит; или если бы кто-то выдавал внешний сигнал за сигнал, полученный от устройства. И у каждого работающего устройства холодного синтеза обнаруживались именно эти проблемы. Ядерный синтез Хотя над холодным синтезом и устройствами LENR работает много ученых — и маргинальных, и энтузиастов, и серьезных — существует лишь один тип эксперимента, который отвечает научному набору критериев надежной и воспроизводимой науки: мюонный катализ ядерных реакций синтеза, или просто мюонный катализ. Атомы водорода состоят из протонов и электронов, и поскольку электроны довольно легкие, их физические размеры составляют порядка 10-10 метра.
Вы можете собрать множество атомов вместе достаточно близко, но их ядра, размер которых порядка 10-15 метра, никогда не сойдутся достаточно близко при таких низких температурах, чтобы их волновые функции перехлестнулись достаточно, чтобы запустить синтез. Но если вы замените электрон мюоном, нестабильной частицей со временем жизни в 2,2 микросекунды, атом водорода станет в сотни раз меньше. И тогда волновые функции смогут накладываться и начнется низкоэнергетический синтез. И это был бы замечательный источник энергии, если бы производство и управление мюонами не стоило так дорого само по себе. Из всех прочих идей, механизмов и устройств, нет такого эксперимента, который можно провести с протеканием синтеза и получить больше энергии, чем вы затратите. Не было опубликовано ничего, что проверила бы и одобрила группа авторитетных и независимых ученых. И нет никаких устройств, несмотря на бесконечные демонстрации, которое можно было бы купить, исследовать, использовать или просто разбить без помощи так называемых изобретателей. Несмотря на заявления, которые вы могли услышать от энтузиастов холодного синтеза типа Андреа Росси или Defkalion, никто из них так и не сделал работающего устройства, которое можно было бы пощупать самостоятельно или провести независимый эксперимент.
Любое утверждение об обратном не выдержит никакой критики. Это не говорит о том, что они лгут, что LENR невозможен или что все это глобальный обман. Но доказывать, что кто-то нас обманывает, это не задача науки; это задача хорошего ученого — доказывать, что мы не обманываем сами себя, когда делаем экстраординарные заявления. Как только это прояснится и люди, которые пытаются доказать возможность холодного синтеза, как говорится, «начнут с себя», тогда мы им поверим. Но до тех пор мы будем оставаться скептиками.
Академик Александров о холодном термоядерном синтезе
Автор утверждает, что установил у себя дома трубообразный реактор с никелевой сеткой, покрытой палладием. При подключении к сетке тока должно было выделяться тепло. Это и произошло, вот только калориметр показал, что этого тепла якобы было выделено порядка 500 ватт при вдвое меньшей подаче энергии. Более того, при подаче на «реактор» 50 ватт выделяемая в виде тепла энергия, по утверждению Мизуно, была эквивалентна 300 ватт. Основной предполагаемый механизм якобы наблюдавшегося процесса — превращение более легких изотопов водорода в тяжелые, с выделением тепловой энергии. В общепринятой физике слияние ядер атомов в нормальных условиях невозможно: кулоновское отталкивание не даст им сблизиться на достаточно малое расстояние. Чтобы преодолеть его, нужны температуры и давления, которые делают термоядерную энергетику непрактичной. В рамках концепции холодного термоядерного синтеза возможны условия, когда ядра атомов сливаются, несмотря на кулоновское отталкивание. Вообще-то сходные процесс известны и в «нормальной» физике. Если заменить в изотопах водорода электрон на мюон отрицательно заряженная частица, примерно в двести раз тяжелее электрона , то из-за большей массы мюона возможно сближение ядер атомов такого «модифицированного» водорода на расстояния, при которых они сливаются.
Так из пары атомов дейтерия можно получить, например, тритий или гелий. Что характерно, это происходит при низких температурах, а вовсе не при многих миллионах градусах, как в токамаках и иных термоядерных реакторах. Проблема в том, что энергия, которую в такой реакции можно получить за счет мюона, — не более 1,4 гигаэлектронвольта. А чтобы получить мюон на современных ускорителях, необходимо придать частице энергию от нескольких гигаэлектронвольт. Ситуация как с золотом, которое можно получить из других элементов с помощью ядерной физики: сам процесс возможен, но золото, полученное им, будет много дороже обычного. Никаких путей снизить нужную для наработки мюонов энергию пока даже не просматривается. Сторонники «холодного синтеза» ищут какие-то катализаторы типа мюонов, но при этом намного более стабильные, способные сделать реальностью слияние атомов при умеренных температурах «за недорого». Проблема этих поисков в том, что они идут без каких-либо здравых теоретических идей, «на ощупь», и даже сама возможность решения этой проблемы никак не доказана.
Ранее новый гендиректор проекта Пьетро Барабаски заявил журналистам, что запланированный на 2025 года запуск термоядерного реактора, скорее всего, будет отложен на месяцы и даже годы. И такие проблемы у колоссального проекта, реализуемого во французском Кадараше департамент Буш-дю-Рон , возникают периодически. Причина этого в том, что те, кто им занят, часто всю жизнь совершенно не заинтересованы в его завершении, убежден бывший начальник инспекции по надзору за ядерной радиационной безопасностью госатомнадзора СССР, профессор Владимир Кузнецов: Владимир Кузнецов бывший начальник инспекции по надзору за ядерной радиационной безопасностью госатомнадзора СССР, профессор «Установка строится уже 20 с лишним лет. И каждые 3-4 года меняется сумма этого проекта. Вся сумма этого проекта оценивается в 32 миллиарда евро, а начиналось все с восьми. Каждый год более подробно становятся проблемы эти ясны. Да потому, что за этим ИТЭРом находятся люди, которые всю жизнь бубнили об этом, а толку никакого». Тем временем реализовать подобные проекты — причем значительно дешевле — пытается и частный бизнес. Согласно данным Ассоциации индустрии синтеза FIA , 33 частных компании привлекли в этом секторе в 2022 году 2,8 млрд долларов частных инвестиций. Альтернативные проекты строятся не на принципе так называемого токамака, как в случае ИТЭР, и не на принципе лазерного сжатия, который отрабатывает калифорнийская Национальная лаборатория Лоуренса Ливермора.
Однако они — часто будучи неспециалистами — ставят эксперименты некорректно или неверно интерпретируют их результаты, поэтому остаются убеждены, что делают реальные научные открытия. Автор термина, нобелевский лауреат по химии Ирвинг Лэнгмюр, отмечал, что почва для «патологической науки» формируется почти каждый раз, когда какая-то концепция признается научным сообществом некорректной. Всегда найдется тот, кто не хочет оставить ее, или же, в силу того, что не является специалистом в вопросе, не может понять причины, по которым наука оставила эту концепцию. Как отличить патологическую науку от нормальной Есть несколько банальных рекомендаций, позволяющих быстро заметить, что вам «втирают какую-то дичь». Первое: где опубликовано сообщение. В случае с Мизуно это «выжимки» для Международной конференции по холодному термоядерному синтезу. Любители патологической науки стараются не выставлять напоказ лишний раз «подозрительные» словосочетания, маскируя их под малопонятные сокращения типа «ICCF-22». Поэтому желательно разобраться, что значат все непонятные аббревиатуры и обозначения, касающиеся места публикации статьи о том или ином результате. Поймите, кто автор. Если нам пишут «японский ученый Тадахико Мизуно добился…», сперва узнайте, ученый ли он. Где он работает? Обычно любой, кто хочет, чтобы к нему относились серьезно, укажет, если работает в университете или исследовательском центре. То есть человек работает в небольшой компании, где он к тому же входит в состав руководства, а в научных учреждениях не числится. Его соавтор Джед Ротвелл Jed Rothwell в качестве места работы указал lenr-canr. На этом этапе достаточно поинтересоваться, что собой представляет такой синтез, чтобы все понять. Остается другой вопрос: почему Хабр опубликовал сообщение такого рода? Как честно написал сам автор публикации: «Данная новость не претендует на научность, а больше для обсуждения и для тех, кто интересуется псевдонаукой». Поддерживать читаемость в мире научпопа сложно.
Энергия, полученная от нейтронов и альфа-частиц, извлекается в виде тепла, и это тепло является ключом к производству энергии. В данном случае речь идёт о выработке минимального количества энергии, очень далёкого от промышленных масштабов. Если точнее, этой энергии хватило бы на то, чтобы вскипятить 10 чайников воды. Однако само по себе научное достижение от этого менее значимым не становится.
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER
Главная» Новости» Холодный ядерный синтез новости последние. О том, что значит переход к термоядерному синтезу для всего человечества, и что еще Россия готова сделать для того, чтобы новый реактор заработал как можно скорее? Стандартная реакция термоядерного синтеза T + D ---> He 4 + n+ 17.6 МэВ.