Еще одним примером незатухающих колебаний является колебания вокруг равновесного положения пружины. Автоколебания — незатухающие колебания, которые существуют за счет поступления энергии в систему под ее же управлением.
Гармонические колебания и их характеристики.
Рассмотрим, какие механические колебания называются затухающими, какими свойствами обладают. Наведём примеры таких явлений в природе, быту, промышленности. Определение и характеристики затухающих колебаний Затухающими называют колебания, энергия которых с течением времени постепенно снижается. Бесконечно длиться такой процесс не может из-за сопротивления — сил трения и прочих явлений, тормозящих движение, препятствующих ему. Вот почему свободные колебания являются затухающими. Часть внутренней энергии системы, которая не восполняется, уходит на преодоление сопротивления, не компенсируется, и вскоре её энергетический запас падает до ноля.
Главная причина состоит в потере энергии колебательной системой. Условия возникновения свободных колебаний Чтобы возникли свободные колебания, необходимо вывести систему из равновесия, обеспечить при отклонениях действие силы, стремящейся вернуть систему в исходное состояние. При этом потери в системе должны быть минимальны, поскольку только при соблюдении этого условия возвращающая систему в состояние равновесия энергия будет теряться медленно. Свободные колебания — это раскачивающийся маятник, часовой балансир, скачущий мяч, звенящая струна. В зависимости от того, полезны или вредны колебания, для их усиления или ослабления принимают соответствующие меры.
Так, в случае с часовым маятником снижают потери, а с деталями и агрегатами механизмов и устройств используют специальные элементы — демпферы и амортизаторы. Причины колебаний в разных системах Собственные незатухающие колебания — это, скорее, теоретическое явление. В разных системах и причины затухания колебания будут разными.
Знак «-» указывает, что сила упругости всегда направлена в сторону, противоположную направлению смещения, то есть к положению равновесия. При отсутствии трения упругая сила 1. Эту частоту называют собственной. Таким образом, свободные колебания при отсутствии трения являются гармоническими, если при отклонении от положения равновесия возникает упругая сила 1.
Собственная круговая частота является основной характеристикой свободных гармонических колебаний. Эта величина зависит только от свойств колебательной системы в рассматриваемом случае - от массы тела и жесткости пружины. Амплитуда свободных колебаний определяется свойствами колебательной системы m, k и энергией, сообщенной ей в начальный момент времени. При отсутствии трения свободные колебания, близкие к гармоническим, возникают также и в других системах: математический и физический маятники теория этих вопросов не рассматривается рис.
Для этого необходимо установить зависимость кинетической энергии тела, колеблющегося на пружине, от его координаты.
Проверить истинность утверждения 3. Для этого необходимо записать формулу, отображающую зависимость между силой, действующей на колеблющееся тело, и координатой этого тела. Затем найти модули силы для указанных значений времени и сравнить их. Проверить истинность утверждения 4. Для этого необходимо дать определение периоду колебаний, установить период колебаний тела и сравнить его со значением, приведенным в утверждении 4.
Проверить истинность утверждения 5. Для этого необходимо дать определение частоте колебаний, установить частоту колебаний тела и сравнить его со значением, приведенным в утверждении 5. Записать ответ в виде последовательности цифр, не разделенных знаками препинания и пробелами. Решение: Проверяем истинность утверждения 1, согласно которому в момент времени 1,50 с ускорение груза максимально. Ускорение груза, колеблющегося на горизонтальной пружине, можно выразить из 2 закона Ньютона учитываем, что на тело действует сила упругости : Отсюда ускорение равно: Отношение жесткости пружины к массе груза постоянно, так как эти величины не изменяются.
Следовательно, ускорение пропорционально координате колеблющегося тела. И если в момент времени 1,50 с координата тела отклонение от положения равновесия максимальна, то ускорение тоже максимально. Однако в соответствии с данными таблицы, в этот момент времени координата тела равна 0,0 см. Следовательно, утверждение 1 неверно. Проверяем истинность утверждения 2, согласно которому в момент времени 0,50 с кинетическая энергия груза максимальна.
Полная механическая энергия тела равна сумме его потенциальной и кинетической энергий: Когда кинетическая энергия груза максимальна, потенциальная энергия равна 0.
Гармонические колебания и их характеристики.
Электромагнитные колебания можно сравнить с колебаниями маятника. При этом электрической энергии соответствует потенциальная энергия маятника, а магнитной энергии кинетическая. Колебания, происходящие под действием процессов в самом колебательном контуре без внешних воздействий и потерь энергии на теплоту и электромагнитное излучение, называются собственными электромагнитными колебаниями. Частным случаем электромагнитных колебаний являются незатухающие колебания. Незатухающие колебания Колебания, амплитуда которых не убывает со временем, а остается постоянной. Возбуждение незатухающих электрических колебаний Для возбуждения и поддержания незатухающих электрических колебаний к контуру следует все время подводить энергию от внешнего источника, которая компенсировала бы потери энергии на теплоту и электромагнитное излучение. Для этого можно применить триод.
Электромеханические автоколебательные системы применяются в технике очень широко, но не менее распространенными и важными являются и чисто механические автоколебательные устройства.
Достаточно указать на любой часовой механизм. Незатухающие колебания маятника или балансира часов поддерживаются за счет потенциальной энергии поднятой гири или за счет упругой энергии заведенной пружины. На этом рисунке изображен так называемый анкерный ход. Колесо с косыми зубьями 1 ходовое колесо жестко скреплено с зубчатым барабаном, через который перекинута цепь с гирей 2. К маятнику 3 приделана перекладина 4 анкер , на концах которой укреплены палетты 5 — пластинки, изогнутые по окружности с центром на оси маятника 6. Анкер не позволяет ходовому колесу свободно вращаться, а дает ему возможность провернуться только на один зуб за каждые полпериода маятника. Но и ходовое колесо действует при этом на маятник, а именно, пока зуб ходового колеса соприкасается с изогнутой поверхностью левой или правой палетты, маятник не получает толчка и только слегка тормозится из-за трения.
Но в те моменты, когда зуб ходового колеса «чиркает» по торцу палетты, маятник получает толчок в направлении своего движения. Таким образом, маятник совершает незатухающие колебания, потому что он сам в определенных своих положениях дает возможность ходовому колесу подтолкнуть себя в нужном направлении. Эти толчки и восполняют расход энергии на трение. Период колебаний и в этом случае почти совпадает с периодом собственных колебаний маятника, т. Схема часового механизма Автоколебаниями являются также колебания струны под действием смычка в отличие от свободных колебаний струны у рояля, арфы, гитары и других несмычковых струнных инструментов, возбуждаемых однократным толчком или рывком ; автоколебаниями являются звучание духовых музыкальных инструментов, движение поршня паровой машины и многие другие периодические процессы.
В системе присутствуют различные виды трения Силы трения могут быть внутренними например, в подвесе маятника , а могут быть и внешними например, со стороны окружающего воздуха или другой среды, в которой может находиться маятник. Естественно, что силы трения зависят от свойств среды: в воде колебания будут затухать быстрее, чем в воздухе см. Затухание в воздухе и воде В итоге амплитуда колебаний будет постепенно уменьшаться, и в конце маятник остановится. На рисунке представлены смещения груза маятника от времени: видно, что амплитуда постепенно уменьшается, стремясь к нулю, такие колебания называются затухающими см. Затухающие колебания — это колебания, которые происходят в незамкнутой системе, то есть колебания, которые происходят в том числе под действием силы трения. Амплитуда таких колебаний постепенно затухает. Большинство колебаний в мире — затухающие, так как в окружающем нас мире, постоянно существуют силы трения. Итак, мы выяснили: в реальности колебания маятников механических систем затухающие, то есть их амплитуда постепенно уменьшается, стремясь к нулю. Что же нам сделать, чтоб колебания не были такими, чтоб амплитуда постоянно поддерживала свое значение? Для этого нам необходимо разомкнуть систему и подкачивать энергию извне. Таким образом, мы добьемся незатухающих колебаний. Как же разомкнуть систему? Вспомним простой пример из жизни: катание на качелях. Для того чтобы качели колебались без остановки, человек периодически толкает их, а если перевести это на язык физики, то человек действует на качели с силой, величина которой зависит от времени периодическим образом. Если построить график зависимости модуля силы от времени, то получим следующий результат: сила зависит от времени периодически см. Зависимость силы от времени Мы прекрасно понимаем, что если мы будем воздействовать на качели постоянно, то они не будут колебаться. Колебания системы, совершающие ею под действием внешней периодической силы, называются вынужденными. Силу, являющейся мерой этого внешнего воздействия, называют вынуждающей. При этом, как вы понимаете, мы уже не можем считать систему замкнутой, то есть в системе уже не совершаются свободные колебания — в системе совершаются вынужденные колебания. Примерами систем, в которых совершаются вынужденные колебания, могут быть также в полнее привычные вам часы — это могут быть настенные маятниковые часы, а могут быть и обычные пружинные механические часы. В каждом таком случае колебания совершаются за счет подвода энергии извне. Вынужденные колебания Самым простым видом колебаний являются свободные незатухающие колебания. О них подробнее мы говорили на предыдущих занятиях. Давайте поговорим о некоторых характерных особенностях затухающих колебаний и вынужденных колебаний. Начнем с затухающих колебаний. Как вы уже знаете, любая реальная колебательная система — затухающая, ведь нам всегда приходится преодолевать силу трения или силу сопротивления. Если мы говорим об электромагнитных колебаниях, то там тоже есть факторы, вызывающие их затухания, — это сопротивление проводников. Итак, как же выглядят затухающие колебания? Если вывести маятник из положения равновесия, то со временем его колебания затухают, здесь два основных фактора: сопротивление воздуха, а также трение в подвесе.
Как же это сделать, не разрывая цепь? Проще всего воспользоваться магнитным полем — создать дополнительный магнитный поток, пронизывающий витки катушки контура. Для этого неподалеку от этой катушки нужно разместить еще одну катушку рис. Вся эта длинная фраза, напоминающая «дом, который построил Джек»,— просто пересказ известного вам закона Фарадея для явления электромагнитной индукции. Понятно, что для него необходим источник энергии для пополнения потерь энергии в контуре и регулирующее устройство, обеспечивающее нужный закон изменения тока со временем. В качестве источника можно использовать обычную батарейку, а в качестве регулирующего устройства — электронную лампу или транзистор. Любой полевой транзистор содержит «канал» с двумя выводами — их изобретательно называют истоком и стоком, а его проводимость регулируется подачей на третий вывод — затвор — управляющего напряжения рис. В полевом транзисторе с управляющим p—n-переходом — а мы дальше будем говорить именно о нем — затвор отделен от канала именно таким переходом, для чего область затвора делается противоположного по отношению к каналу типа проводимости. Например, если канал имеет примесную проводимость типа p, то затвор — типа n, и наоборот. Зависимость эта почти такая же, как и у электронной лампы триода. Важно отметить, что управляющее напряжение — запирающее, а значит, ток в цепи управления чрезвычайно мал обычно он составляет несколько наноампер , соответственно мала и мощность управления, что очень хорошо.
Явление резонанса
незатухающие колебания, так как амплитуда и, следовательно, полная энергия колебаний не менялись. Примеры незатухающих колебаний в реальной жизни Незатухающие колебания встречаются во множестве различных систем и ситуаций в реальной жизни. Колебания бывают незатухающими и затухающими.
Незатухающие колебания. Автоколебания
Автоколебания — незатухающие колебания, которые существуют за счет поступления энергии в систему под ее же управлением. Примеры незатухающих колебаний Незатухающие колебания встречаются в различных системах и процессах. Незатухающие колебания создаются такими устройствами, которые сами могут поддерживать свои колебания за счет некоторого постоянного источника энергии. Свободные незатухающие колебания или собственные характерны для идеальной системы, где отсутствует трение. Примеры незатухающих колебаний Незатухающие колебания широко применяются в различных областях науки и техники. Акустические незатухающие колебания Акустические незатухающие колебания — это колебания звуковой волны в среде, которые не теряют энергию и продолжают распространяться на большие расстояния без изменения амплитуды.
Гармонические колебания и их характеристики.
Автоколебательные системы – это системы, в которых могут возникать незатухающие колебания безотносительно внешнего воздействия, а лишь за счет способности самостоятельно регулировать подвод энергии от внешнего источника. Уравнение незатухающих колебаний Незатухающие колебания являются одним из видов колебаний, при которых отсутствует потеря энергии со временем. Незатухающие колебания создаются такими устройствами, которые сами могут поддерживать свои колебания за счет некоторого постоянного источника энергии. Другим примером незатухающих колебаний является электромагнитные колебания, которые возникают в радиочастотных колебательных контурах. Другим примером незатухающих колебаний являются электромагнитные колебания в контуре с постоянными параметрами. Примеры незатухающих колебаний Незатухающие колебания — это колебания системы, которые продолжаются вечно без потери энергии.