Проведение нервного импульса в ЦНС. 2280 ответов - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. 2293 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов.
Нервные импульсы поступают непосредственно к железам по
Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов. 2294 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по. 1)аксонам двигательных нейронов. ответ: 7. чем питается кит? 1) планктоном 2) придонными организмами 3) крупными рыбами 4)морскими млекопитающими 8. нервные импульсы, 919107520220418, Відповідь:Тіршіліктің пайда болуының алғышарттарыҒылыми деректер бойынша Күн жүйесіне жататын Жер. Нервные импульсы поступают непосредственно к железам по 1) аксонам.
Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксо…
Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных ... | Спрашивает Трошицева Светлана. нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам. |
Нервные импульсы поступают непосредственно к железам по | Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов. |
Как нервная система регулирует работу эндокринной системы? | 1. Нервные импульсы поступают непосредственно к железам по. |
КР Нервная система 8 класс. Вариант Часть Нервные импульсы поступают непосредственно к железам по | Б. По аксону нервные импульсы поступают к телу другой нервной клетки. |
Регуляция желудочной секреции.
Консультацию по вопросам и домашним заданиям может получить любой школьник или студент. Нервные импульсы поступают непосредственно к железам по1 аксонам двигательных Сердитые импульсы поступают конкретно к железам по 1.
Рецептор, кондуктор и эфферентный нейрон Простая рефлекторная дуга состоит по крайней мере из двух нейронов, из которых один связан с какой-нибудь чувствительной поверхностью например, кожей , а другой с помощью своего нейрита оканчивается в мышце или железе.
При раздражении чувствительной поверхности возбуждение идет по связанному с ней нейрону в центростремительном направлении центрипетально к рефлекторному центру, где находится соединение синапс обоих нейронов. Здесь возбуждение переходит на другой нейрон и идет уже центробежно центрифугально к мышце или железе. В результате происходит сокращение мышцы или изменение секреции железы.
Часто в состав простой рефлекторной дуги входит третий вставочный нейрон, который служит передаточной станцией с чувствительного пути на двигательный. Кроме простой трехчленной рефлекторной дуги, имеются сложно устроенные многонейронные рефлекторные дуги, проходящие через разные уровни головного мозга, включая его кору. У высших животных и человека на фоне простых и сложных рефлексов также при посредстве нейронов образуются временные рефлекторные связи высшего порядка, известные под названием условных рефлексов И.
Таким образом, всю нервную систему можно себе представить состоящей в функциональном отношении из трех родов элементов. Рецептор восприниматель , трансформирующий энергию внешнего раздражения в нервный процесс; он связан с афферентным центростремительным, или рецепторным нейроном, распространяющим начавшееся возбуждение нервный импульс к центру; с этого явления начинается анализ И. Кондуктор проводник , вставочный, или ассоциативный, нейрон, осуществляющий замыкание, т.
Это явление есть синтез, который представляет, «очевидно, явление нервного замыкания» И.
Новый мозг. Первая сигнальная система. Вторая сигнальная система.
Эмбриогенез нервной системы. Понимание физико-химической природы генерации нервного сигнала, путей передачи информации с одной нервной клетки на другую или на мышечную клетку позволит вплотную подойти к объяснению механизма деятельности нервной системы. Нервные клетки передают информацию с помощью сигналов, представляющие собой электрические токи, генерируемой поверхностной мембраной нейрона. Эти токи возникают благодаря движению зарядов, принадлежащих ионам натрия, калия, кальция и хлора.
От наружной среды внутреннее пространство нейрона отделено клеточной мембраной, которая является плохим изолятором и допускает некоторую утечку ионов в обоих направлениях. Если бы мембрана была проницаема только для ионов калия, разность потенциалов на ней могла бы достигать величин, определяемой уравнением Нернста 1 для калиевого электрода. По данным различных авторов, эта величина соответствует 70-75 мВ. При этом последние выходят из клетки и в результате чего происходит восстановление ПП клетки.
Эти изменения разности потенциалов и создают электрический импульс, распространяющийся по нервному волокну. Эксперимент с двумя электродами, введенными в одиночное волокно аксона кальмара, позволил вплотную подойти к вопросу о природе энергии, необходимой для изменения знака потенциала на мембране. Один электрод служит для пропускания тока, другой — для измерения разности потенциалов на мембране. Показано, что если ток течет через мембрану внутрь волокна, то разность потенциалов увеличивается, и возбуждения нет.
Ток, направленный наружу, также не вызывает возбуждения. Однако, генератор срабатывает каждый раз, когда напряжение на мембране уменьшается ниже определенной величины, которую принято называть порогом возбуждения. Нервный импульс возникает только в том случае, если вызванное возбуждение любым способом изменяет напряжение мембраны за пороговую величину, которая обычно равна 10-15 мВ. Суммируя вышесказанное можно предположить, что передача электрических сигналов в нервных сетях основан на изменении МП в результате прохождения относительно небольшого числа ионов через мембранные каналы.
В результате открывания и закрывания натриевых каналов нервный импульс распространяется вдоль нервного волокна, пока не достигнет его окончания — места контакта с мышечной клеткой или, как принято называть, «концевой пластинкой». Применение микроэлектродной техники отведения спонтанных биопотенциалов концевой пластинки позволило определить пороговую чувствительность синаптической области мышечной мембраны путем нанесения незначительного количества АХ. Показано, что АХ в количестве 108-109 молекул уже вызывает деполяризацию мышечной мембраны в области наружной поверхности синапса. Сама же мембрана является непроницаемой для АХ.
При введении АХ внутрь мышечных волокон в районе концевой пластинки, никаких электрических изменений не наблюдалось. Благодаря способности кальция передавать внутриклеточным биохимическим системам сигналы, которые в форме электрических импульсов или фармакологических соединений поступают извне ему отдана роль «вторичного мессенджера», обладающего способностью прочно и с высокой специфичностью связываться со своим белком-мишенью.
Рецептор, кондуктор и эфферентный нейрон.. Афферентный сигнал. Афферентный нерв.
Исполнительные органы. Обратная афферентация связь. Замкнутая кольцевая цепь рефлексов. Вегетативная автономная и анимальная нервная система. Развитие нервной системы.
Филогенез нервной системы. Трубчатая нервная система. Развитие отделов мозга: промежуточный, передний, конечный. Новый мозг. Первая сигнальная система.
Вторая сигнальная система. Эмбриогенез нервной системы. Понимание физико-химической природы генерации нервного сигнала, путей передачи информации с одной нервной клетки на другую или на мышечную клетку позволит вплотную подойти к объяснению механизма деятельности нервной системы. Нервные клетки передают информацию с помощью сигналов, представляющие собой электрические токи, генерируемой поверхностной мембраной нейрона. Эти токи возникают благодаря движению зарядов, принадлежащих ионам натрия, калия, кальция и хлора.
От наружной среды внутреннее пространство нейрона отделено клеточной мембраной, которая является плохим изолятором и допускает некоторую утечку ионов в обоих направлениях. Если бы мембрана была проницаема только для ионов калия, разность потенциалов на ней могла бы достигать величин, определяемой уравнением Нернста 1 для калиевого электрода. По данным различных авторов, эта величина соответствует 70-75 мВ. При этом последние выходят из клетки и в результате чего происходит восстановление ПП клетки. Эти изменения разности потенциалов и создают электрический импульс, распространяющийся по нервному волокну.
Эксперимент с двумя электродами, введенными в одиночное волокно аксона кальмара, позволил вплотную подойти к вопросу о природе энергии, необходимой для изменения знака потенциала на мембране. Один электрод служит для пропускания тока, другой — для измерения разности потенциалов на мембране.
Нервные импульсы поступают непосредственно к мышцам и железам по
Нервные импульсы передаются в мозг по нейронам. Путь, по которому проходит нервный импульс при реализации рефлекса, называется рефлекторной дугой. По дендритам импульсы поступают к телу нервной клетки, а по аксонам от тела нервной клетки к другим нейронам или органам. Импульсация в симпатической нервной системе уменьшается и меньше импульсов поступает к сердцу, сосудам и надпочечникам, что приводит к падению АД.
Химическая передача нервного импульса
Этот процесс обеспечивается благодаря работе нескольких структур: гипоталамуса, гормонами-нейромедиаторами, а также мозговым слоем надпочечников. Роль гипоталамуса Гипоталамус — небольшой участок промежуточного мозга, который считается центром нейроэндокринной регуляции. Он связан с другими отделами нервной системы, головным и спинным мозгом. Вместе с гипофизом он образует гипоталамо-гипофизарную систему и регулирует интенсивность выработки его гормонов. Гипоталамус получает сигналы от следующих структур: базальных ядер ганглиев — скоплений серого вещества в белом веществе головного мозга; спинного мозга; отделов головного мозга: продолговатого, среднего, таламуса, а также некоторых участков больших полушарий. Гипоталамус — это центр, который накапливает данные из всего организма, а также из внешней среды. Нервные клетки гипоталамуса способны вырабатывать несколько типов нейроэндокринных трансмиттеров — биологически активных веществ, которые влияют на интенсивность синтеза тропных гормонов гипофиза: Либерины — группа соединений, которые стимулируют гормональный синтез. Так, соматолиберин увеличивает выработку соматотропного гормона роста, тиреолиберин — тиреотропного, гонадолиберин — лютенизирующего и фолликулостимулирующего гормонов. Статины — вещества, которые подавляют выработку тропных гормонов гипофиза.
Различают такие разновидности, как соматостатин, пролактостатин, меланостатин.
Экспериментатор внес в первую пробирку раствор глюкозы, во вторую — раствор сахарозы, в третью — раствор гликогена. Во все пробирки он добавил инсулин. Как спустя 10 минут изменится содержание углеводов А в первом растворе, Б во втором растворе, В в третьем растворе? Для каждой величины определите соответствующий характер её изменения: 1 увеличилась 2 уменьшилась 3 не изменилась. Ответ 333 4. Исследователь проанализировал состав плазмы крови у человека до еды и через полчаса после еды.
Тело первого нейрона афферентного находится в спинномозговом узле или чувствительном узле черепного нерва. Дендриты этих клеток направляются в составе соответствующего спинномозгового или черепного нерва на периферию, где заканчиваются рецепторным аппаратом, который воспринимает раздражение. В рецепторе энергия внешнего или внутреннего раздражения перерабатывается в нервный импульс, который передается по нервному волокну к телу нервной клетки, а затем по аксону, который в составе заднего чувствительного корешка спинномозгового или корешка черепного нерва следует в спинной или головной мозг к соответствующему чувствительному ядру. В сером веществе заднего рога спинного мозга или чувствительных ядрах головного мозга окончания образуют синапсы с телами второго вставочного нейрона. Аксон этого нейрона в пределах спинного или головного мозга заканчивается на клетках третьего двигательного нейрона. Отростки клеток третьего нейрона выходят из мозга в составе спинномозгового или соответствующего черепного нерва и направляются к органу. Моносинаптическая дуга состоит из нескольких нейронов: афферентного, одного или нескольких вставочных и эфферентного.
Рефлекторная дуга состоит чаще всего из многих нейронов. Между афферентным чувствительным и эфферентным двигательным или секреторным нейронами расположено несколько вставочных нейронов. В такой рефлекторной дуге возбуждение от чувствительного нейрона передается по центральному отростку к последовательно расположенным друг за другом вставочным нейронам. Большинство рефлексов осуществляют «многоэтажные» рефлекторные дуги, в которых участвуют нервные центры различных отделов центральной нервной системы.
Во все пробирки он добавил инсулин. Как спустя 10 минут изменится содержание углеводов А в первом растворе, Б во втором растворе, В в третьем растворе? Для каждой величины определите соответствующий характер её изменения: 1 увеличилась 2 уменьшилась 3 не изменилась. Ответ 333 4. Исследователь проанализировал состав плазмы крови у человека до еды и через полчаса после еды.
Как изменилось А содержание инсулина, Б содержание глюкозы, В содержание гликогена?
Человек и его здоровье (стр.51-75)
Регуляция желудочной секреции. | Получается такая последовательность прохождения нервного импульса в анализаторе: 213. |
Как устроена периферическая нервная система человека? | Биология с Марией Семочкиной | Дзен | Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных. |
Нервные импульсы поступают непосредственно к железам по 1) аксонам… | Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксонам вставочных нейронов 3) серому веществу спинного мозга 4) белому веществу спинного мозга. Created by 12kote. biologiya-ru. |
Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксо… | Вариант Часть Нервные импульсы поступают непосредственно к железам по. |
КР Нервная система 8 класс - Вариант Часть Нервные импульсы поступают непосредственно к железам по | Рефлекторная дуга – это путь, по которому проходит нервный импульс во время осуществления рефлекса. |
нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам
Симптомы гипоталамических расстройств: Колебания температуры тела: нарушения гипоталамуса могут приводить к трудностям регулирования температуры тела, что приводит к эпизодам чрезмерного потоотделения, ознобу или колебаниям температуры тела. Бесплодие: Гормональный дисбаланс, вызванный нарушениями гипоталамуса, может влиять на репродуктивную функцию, приводя к трудностям с фертильностью и нерегулярным менструальным циклам у женщин. Необычно высокое или низкое кровяное давление: Нарушение регуляции артериального давления может происходить при нарушениях гипоталамуса, вызывая эпизоды гипертонии высокое кровяное давление или гипотонии низкое кровяное давление. Бессонница: нарушения сна, в том числе трудности с засыпанием или продолжительным сном, могут быть симптомом дисфункции гипоталамуса.
Изменение аппетита. Гипоталамические расстройства могут нарушать регуляцию аппетита, что приводит к изменениям в потреблении пищи и аппетите - к усилению или уменьшению чувства голода. Частое мочеиспускание.
Заболевания гипоталамуса могут влиять на баланс жидкости в организме и приводить к увеличению выработки мочи и частому мочеиспусканию. Задержка полового созревания: Гормональные нарушения в гипоталамусе могут задерживать начало полового созревания, что приводит к задержке полового развития у подростков. Является центральным органом эндокринной системы; тесно связан и взаимодействует с гипоталамусом.
Гипофиз располагается в основании головного мозга нижней поверхности в гипофизарной ямке турецкого седла клиновидной кости черепа. Турецкое седло прикрыто отростком твёрдой оболочки головного мозга — диафрагмой седла, с отверстием в центре, через которое гипофиз соединён с воронкой гипоталамуса промежуточного мозга; посредством её гипофиз связан с серым бугром, расположенным на нижней стенке III желудочка. По бокам гипофиз окружён пещеристыми венозными синусами.
Вместе с нейросекреторными ядрами гипоталамуса гипофиз образует гипоталамо-гипофизарную систему, контролирующую деятельность периферических эндокринных желёз. Передняя доля гипофиза, состоит из железистых эндокринных клеток различных типов, каждый из которых, как правило, секретирует один из гормонов. Выделяют дистальную, промежуточную и бугорную часть передней доли.
Гормоны передней доли гипофиза: 1. Тропные, их органами-мишенями являются эндокринные железы. Гипофизарные гормоны стимулируют железу, а повышение уровня в крови выделяемых ею гормонов подавляет секрецию гормона гипофиза по принципу обратной связи.
Тиреотропный гормон — главный регулятор биосинтеза и секреции гормонов щитовидной железы. Адренокортикотропный гормон стимулирует кору надпочечников. Гонадотропные гормоны: 1.
Фолликулостимулирующий гормон способствует созреванию фолликулов в яичниках, лютеинизирующий гормон вызывает овуляцию и образование желтого тела. Соматотропный гормон — важнейший стимулятор синтеза белка в клетках, образования глюкозы и распада жиров, а также роста организма. Лютеотропный гормон пролактин регулирует лактацию, дифференцировку различных тканей, ростовые и обменные процессы, инстинкты заботы о потомстве.
Задняя доля нейрогипофиз состоит из: 1. Образована клетками эпендимы питуицитами и окончаниями аксонов нейросекреторных клеток паравентрикулярного и супраоптического ядер гипоталамуса промежуточного мозга, в которых и синтезируются вазопрессин антидиуретический гормон и окситоцин, транспортируемые по нервным волокнам, составляющим гипоталамо-гипофизарный тракт, в нейрогипофиз. В задней доле гипофиза эти гормоны депонируются и оттуда поступают в кровь.
Соединяет нервную долю со срединным возвышением. Воронка гипофиза, соединяясь с воронкой гипоталамуса, образует ножку гипофиза. Функционирование всех отделов гипофиза тесно связано с гипоталамусом.
Это положение распространяется не только на заднюю долю — «приемник» и депо гипоталамических гормонов, но и на передний и средний отделы гипофиза, работа которых контролируется гипоталамическими гипофизотропными гормонами — рилизинг-гормонами. Гормоны задней доли гипофиза: аспаротоцин, вазопрессин антидиуретический гормон, АДГ депонируется и секретируется , вазотоцин, валитоцин, глумитоцин, изотоцин, мезотоцин, окситоцин депонируется и секретируется Вазопрессин выполняет в организме две функции: 1. Промежуточная средняя доля Представляет тонкую прослойку клеток между передней и задней долями, довольно глубоко заходящую в ножку гипофиза.
Эти клетки синтезируют свои специфические гормоны — меланоцитстимулирующие гормон — стимулирует синтез кожного пигмента меланина и увеличивает размер и количество пигментных клеток. Регуляция клеток промежуточной доли гипофиза осуществляется гипоталамическими и рилизинг-факторами, а также ингибирующими Заболевания и патологии: Акромегалия; Болезнь Иценко — Кушинга; Несахарный диабет; Синдром Шихана; Гипофизарный нанизм; Гипофизарный гипотиреоз; Гипофизарный гипогонадизм; Гиперпролактинемия; Гипофизарный гипертиреоз; Гигантизм Эпифиз шишковидная железа. Строение и расположение эпифиза Небольшое овальное железистое образование; относится к промежуточному мозгу располагается в борозде между верхними холмиками среднего мозга, масса — 0.
У человека это образование по форме напоминает сосновую шишку, откуда и получило свое название. Эпифизу придают шишковидную форму импульсный рост и васкуляризация капиллярной сети, которая врастает в эпифизарные сегменты по мере роста этого эндокринного образования. По строению и функции эпифиз относится к железам внутренней секреции.
Эндокринная роль шишковидного тела - его клетки выделяют вещества, тормозящие деятельность гипофиза до момента полового созревания, а также участвующие в регуляции всех видов обмена веществ. Эпифизарная недостаточность в детском возрасте влечет за собой быстрый рост скелета с преждевременным и преувеличенным развитием половых желез и преждевременным и преувеличенным развитием вторичных половых признаков. Эпифиз является регулятором циркадных ритмов, поскольку связан со зрительной системой.
Под влиянием солнечного света в дневное время в эпифизе вырабатывается серотонин, а в ночное время - мелатонин. Оба гормона сцеплены между собой, поскольку серотонин является предшественником мелатонина. Эпифиз покрыт снаружи соединительнотканной капсулой, от которой внутрь железы отходят соединительнотканные трабекулы, разделяющие ее на дольки, состоящие из клеток двух типов: железистых и глиальных.
Функция железистых клеток имеет четкий суточный ритм: ночью синтезируется мелатонин, днем - серотонин. Этот ритм связан с освещенностью, при этом свет вызывает угнетение синтеза мелатонина. Воздействие осуществляется при участии гипоталамуса.
Гормоны эпифиза угнетают биоэлектрическую активность мозга и нервно-психическую деятельность, оказывая снотворный и успокаивающий эффект. У человека с деятельностью эпифиза связывают такие явления, как нарушение суточного ритма организма в связи с перелетом через несколько часовых поясов, расстройства сна и, вероятно, «зимние депрессии». Строение щитовидной железы.
Щитовидная железа - самая большая железа внутренней секреции. Впервые она описана Везалием в 1543 г. Щитовидная железа ЩЖ располагается на передней поверхности шеи и состоит из двух долей и перешейка.
Правая и левая доли ЩЖ находятся на уровне щитовидного хряща гортани, нижние их полюса достигают V — VI колец трахеи. Доли частично прилегают к глотке и пищеводу, прикрывают медиальную полуокружность общих сонных артерий в средних третях. В ряде случаев перешеек отсутствует.
Снаружи орган окружен четвертой фасцией шеи внутренностная фасция , состоящей из двух листков — наружного и внутреннего. Внутренний листок висцеральный более тонкий, охватывает органы шеи — глотку, пищевод, гортань и ЩЖ. Наружный париетальный листок расположен спереди и с боков от органов шеи, прилегает к задней стенке влагалища мышц, он образует влагалище сосудисто-нервного пучка в области внутреннего треугольника шеи.
Масса ЩЖ взрослого человека 15 — 30 г. У мужчин ЩЖ крупнее. Соединительнотканные прослойки, отходящие от собственной капсулы железы, делят ее на дольки, состоящие из сферических фолликулов.
Основным компонентом коллоида фолликулов является тиреоглобулин, в коллоиде содержатся протеиды, йод, ферменты. Диаметр фолликула 20 — 40 мк. При повышенной функциональной активности ЩЖ фолликулярные клетки приобретают цилиндрическую форму, при гипофункции — уплощаются.
Между фолликулами располагаются кровеносные капилляры и нервные окончания, непосредственно контактирующие с наружной поверхностью фолликулов. Поверхность фолликулярных клеток, обращенная к полости с коллоидом, называется апикальной. Она содержит микроворсинки, проникающие в коллоид.
В ЩЖ обнаруживаются три вида клеток. Основную массу железы составляют А-клетки фолликулярного эпителия тиреоциты , синтезирующие тиреоидные гормоны. В-клетки Ашкинази-Гюртля накапливают серотонин и биогенные амины.
В межфолликулярной соединительной ткани расположены С-клетки парафолликулярные , вырабатывающие кальцитонин. В С-клетках содержится много митохондрий и электронно-плотных гранул. С-клетки имеют нейроэктодермальное происхождение.
ЩЖ секретирует йодсодержащие гормоны — трийодтиронин Т3 , тироксин Т4 и нейодированный кальцитонин. Основными компонентами тиреоидных гормонов являются йод и аминокислота тирозин. Йод поступает в организм с пищей и водой в виде неорганических и органических соединений.
Избыток йода выводится организмом с мочой и желчью. Физиологическое потребление йода 110 — 140 мкг. Соединения йода образуют в организме йодиды калия и натрия.
При участии окислительных ферментов йодиды превращаются в элементарный йод. Фолликулярные клетки захватывают йод из крови. В клетках ЩЖ происходит синтез тиреоглобулина.
Последний секретируется в просвет фолликула. В коллоидном пространстве происходит органификация йода — присоединение его к белку. Тиреоидные гормоны выделяются фолликулярными клетками в кровь.
Основным и физиологически активным гормоном является трийодтиронин Т3 , который во много раз активнее тетрайодтиронина тироксина, Т4. Т3 образуется в тканях на периферии за счет дейодирования Т4. Поступающий из ЩЖ в кровь тироксин большей частью связывается с белками плазмы.
Нарушения функции печени и почек влияют на содержание в крови тиреоидных гормонов. На связывающую способность плазмы могут влиять глюкокортикоиды и лекарственные препараты контрацептивы, препараты раувольфии и др. Синтез и секреция тиреоидных гормонов регулируется гипоталамусом.
Установлено, что ТРГ является рилизинг-фактором для пролактина. Физиологическое действие ТТГ заключается в стимуляции синтеза и секреции тиреоидных гормонов. С возрастом происходит снижение уровня тиреоидных гормонов в крови и повышение содержания ТТГ.
На секрецию ТТГ влияют — стероидные гомоны, соматостатин и соматотропный гормон, гонадотропины, различные факторы роста. Его уровень обычно ниже у мужчин, а у женщин он зависит от фазы менструального цикла. Физиологические эффекты сводятся к стимуляции окислительно-восстановительных процессов, увеличению потребления О2 тканями.
Тиреоидные гормоны участвуют во всех видах обмена — водно-солевом, белковом катаболическое действие , жировом, углеводном и энергетическом. Стимулируют синтез белка, усиливают процессы всасывания глюкозы в кишечнике и утилизации их в тканях, активизируют распад гликогена и снижают его содержание в печени. Тиреокальцитонин с паратгормоном регулирует обмен кальция и фосфора в организме.
Изменение продукции тиреогормонов связано с недостатком в пище йода, что ведёт к разрастанию ткани ЩЖ и появлению эндокринного зоба. Паращитовидные железы. Паращитовидные железы парные образования, расположенные в области шеи позади щитовидной железы.
Их количество от 2 до 6, две верхние и две нижние. Располагаются в рыхлой соединительной клетчатке, отделяющей внутреннюю и наружную капсулы щитовидной железы. Верхняя пара примыкает сзади к долям щитовидной железы, вблизи их верхушки на уровне дуги перстневидного хряща.
Нижняя пара находится между трахеей и долями щитовидной железы, вблизи их оснований. Анатомическое строение. Паращитовидные железы - небольшие образования величиной с рисовое зернышко, залегающие позади долей щитовидной железы, имеют округлую или овальную форму.
Размеры: длина — 4-5 мм, толщина — 2-3 мм, масса - 0,2-0,5 гр. Нижние паращитовидные железы крупнее верхних. Паращитовидные железы отличаются от щитовидной железы более светлой окраской, у детей бледно-розоватые, у взрослых - желто-коричневые и более плотной консистенцией.
Паращитовидные железы имеют тонкую соединительнотканную капсулу, от которой вглубь капсулы отходят перегородки, делящие ткань железы на группы клеток, однако четкого разграничения на дольки нет. Паращитовидные и щитовидная железы схема : А. Расположение паращитовидных желез на задней поверхности щитовидной железы: 1 - щитовидная железа; 2 - щитовидный хрящ; 3- верхняя паращитовидная железа; 4 - нижняя паращитовидная железа; 5- трахея.
Микроскопическое строение паращитовидной железы, сагиттальный разрез: 6 - фолликулы щитовидной железы; 7 - паращитовидная железа; 8 - оксифильные клетки; 9- главные клетки; 10 -капилляры; 11 —капсула. Гистологическое строение. Паращитовидные железы на разрезе представлена фолликулами, но содержащийся в их просвете коллоид беден йодом.
Паренхима железы состоит из плотной массы эпителиальных клеток. Среди главных клеток, подразделяющихся на светлые и темные, наиболее активными в функциональном отношении являются светлые клетки. Оба вида клеток - одни и те же клетки на разных этапах развития.
В 1926 г. Паратгормон регулирует уровень кальция и фосфора в крови. Кальций влияет на проницаемость клеточных мембран, возбудимость, свертываемость крови и другие процессы.
Важен и фосфор, входящий в состав многих ферментов, фосфолипидов, нуклеопротеинов, участвующих в поддержании кислотно-щелочного равновесия и обмена веществ. Органами-мишенями для паратгормона являются кости, почки и тонкая кишка. Действие паратгормона на кости: вызывает увеличение количества остеокластов и повышение их метаболической активности; стимулирует метаболическую активность остеоцитов; подавляет образование костной ткани остеобластами.
Действие паратгормона на почки: повышает реабсорбцию кальция и уменьшает реабсорбцию фосфатов в извитых канальцах. Действие паратгормона на кишечник: повышает всасывание кальция. Аномалии, гипо- и гиперфункция.
В результате дефицита паратгормона — гипопаратиреозе, возникает судорожное сокращение скелетной мускулатуры, причиной которой является снижение уровня кальция в крови. При гипопаратиреозе у детей, с врожденной недостаточностью паращитовидных желез нарушается рост костей, и наблюдаются длительные судороги определенных групп мышц.
Объединяясь в пучки, аксоны образуют нервы. Длинные отростки нервной клетки аксоны покрыты миелиновой оболочкой.
Скопления таких отростков, покрытых миелином жироподобным веществом белого цвета , в центральной нервной системе образуют белое вещество головного и спинного мозга. Короткие отростки дендриты и тела нейронов не имеют миелиновой оболочки, поэтому они серого цвета. Их скопления образуют серое вещество мозга. Синапс Нейроны соединяются друг с другом таким образом: аксон одного нейрона присоединяется к телу, дендритам или аксону другого нейрона.
Место контакта одного нейрона с другим называется синапсом. На теле одного нейрона насчитывается 1200—1800 синапсов.
Оболочка защищает аксон от внешних воздействий, обеспечивает его прочность и ускоряет прохождение нервного импульса. Дендриты — короткие и сильно разветвлённые отростки нейрона, по которым нервный сигнал передаётся от других клеток к телу нейрона. Чем сложнее и разветвлённее дендриты, тем больше входных нервных импульсов может получить нейрон. Синапс — место контакта между аксоном одного нейрона и дендритом или телом другого нейрона. Также синапс может соединять нейрон непосредственно с клеткой рабочего органа так называемо эффекторной клеткой, получающей сигнал.
По характеру выполняемых функций нервные клетки делятся на три типа: Чувствительные сенсорные нейроны — служат для передачи информации от органов в мозг. Двигательные моторные нейроны — передают импульсы от центральных отделов к органам. Тела этих нервных клеток расположены в сером веществе ЦНС, а аксоны — за её пределами. Вставочные нейроны — обеспечивают связь между первыми двумя типами нейронов. Находятся они в головном и спинном мозге. Но это не единственная классификация нейронов. Так, по количеству отростков они делятся на: Униполярные дендриты отсутствуют, есть только аксон ; Биполярные один аксон и один дендрит ; Псевдоуниполярные один аксон Т-образной формы ; Мультиполярные один аксон и много дендритов.
Прежде чем переходить к отделам нервной системы, перечислим её основные функции: координация работы органов и их систем, обеспечение их согласованного функционирования; взаимодействие организма с внешней средой, приспособление к меняющимся условиям; обеспечение психической деятельности человека. Существует две классификации отделов нервной системы: по строению анатомическая и по функциям функциональная. Анатомическая классификация подразумевает деление нервной системы на центральную ЦНС и периферическую ПНС : Центральная нервная система — включает в себя спинной и головной мозг кстати, о мозге мы подробно говорили в этой статье. Периферическая — состоит из нервных структур нервов и нервных ганглий , не входящих в состав спинного и головного мозга. Функционально нервная система делится на вегетативную и соматическую: Вегетативная — отвечает за функции нашего тела, которые мы не можем контролировать произвольно такие как кровообращение, пищеварение.
Нервные центры симпатического подотдела располагаются в сером веществе спинного мозга, от его шейных до крестцовых сегментов. Нервные центры парасимпатического подотдела находятся в головном мозге и крестцовых сегментах спинного мозга. К парасимпатическому подотделу относится парный блуждающий нерв с центрами в продолговатом мозге.
Симпатический подотдел активизируется, когда организму предстоит напряженная работа, парасимпатический — когда происходит переход от работы к отдыху. Не случайно симпатический подотдел называют системой аварийной ситуации, а парасимпатический подотдел — системой отбоя. Вопрос Как устроен спинной мозг? Какие функции он выполняет? Ответ: спинной мозг имеет вид длинного шнура, заостренного внизу. На уровне большого затылочного отверстия он переходит в головной мозг, а на уровне первого — второго поясничного позвонка заканчивается. Передняя щель и задняя борозда делят спинной мозг на две симметричные половины правую и левую. В спинном мозге различают серое и белое вещество.
Серое вещество состоит из тел нейронов и дендритов, белое — из их длинных отростков, образующих нервные волокна. В центре спинного мозга проходит центральный канал, также заполненный спинно — мозговой жидкостью. Серое вещество слева и справа от канала образует серые столбы, соединенные узкой перемычкой. Белое вещество расположено снаружи, вокруг серого. От спинного мозга отходит 31 пара нервов, связывающих его с органами либо непосредственно, либо через нервные узлы. В спинном мозге находятся центры врожденных безусловных рефлексов. Он регулирует движения туловища и конечностей, работу внутренних органов: сердца, почек, легких, органов пищеварения и др. Помимо рефлекторной спинной мозг выполняет и проводящую функцию.
По его нервным путям проходят нервные импульсы в головной мозг и из головного мозга. Через спинной мозг головной мозг получает информацию о состоянии внешней среды, через спинной мозг передаются команды от головного мозга к мышцам. Вопрос Просмотрите таблицы 3 и 4 и найдите черты сходства и различия в строении и функциях головного мозга человека и шимпанзе. Ответ: Строение мозга человека и шимпанзе практически не отличаются по составляющим компонентам, различия в размерах отдельных частей головного мозга. Мозг человека имеет вес 1400г. У человека сильно развита кора больших полушарий, что увеличивает объем мозга по отношению к шимпанзе. Теменные, височные и лобные доли, в которых расположены важнейшие центры психических функций и речи, сильно развиты. Только человек обладает членораздельной речью, у шимпанзе отсутствует речевой центр.
Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксо…
Раздражение же содержимым желудка рецепторов слизистой оболочки двенадцатиперстной кишки обеспечивает возбуждение симпатических нервов. Рефлекторный механизм вызывает закрытие сфинктера привратника за счет сокращения его кольцевых мышц. Сфинктер будет закрыт до тех пор, пока химус волной перистальтики не продвинется дальше по двенадцатиперстной кишке. Регуляция деятельности сфинктера привратника осуществляется также хлористоводородной кислотой. Открытие сфинктера привратника происходит вследствие раздражения слизистой оболочки пилорической части желудка хлористоводородной кислотой желудочного сока. Часть пищи в это время переходит в двенадцатиперстную кишку и реакция ее содержимого становится кислой вместо щелочной. Здесь начинается второй этап пищеварения, который имеет ряд особенностей. В процессе пищеварения в двенадцатиперстной кишке участвуют панкреатический поджелудочный сок, желчь и кишечный сок, которые имеют выраженную щелочную реакцию. В состав поджелудочного и кишечного соков входят ферменты, расщепляющие белки, жиры, углеводы.
Состав, свойства и значение панкреатического сока. У взрослого человека за сутки выделяется 1,5-2 л поджелудочного сока. В состав поджелудочного сока входят органические протеолитические, амилолитические, липолитические ферменты и неорганические вещества. К протеолитическим ферментам панкреатического сока относятся: трипсин, химотрипсин, панкреатопептид эластаза и карбоксипептидазы. Под их влиянием нативные белки и продукты их распада высокомолекулярные полипептиды расщепляются до низкомолекулярных полипептидов и аминокислот. В панкреатическом соке содержатся также ингибиторы протеолитических ферментов. Они имеют существенное значение в предохранении поджелудочной железы от самопереваривания аутолиз. К амилолитическим ферментам поджелудочного сока относятся амилаза, расщепляющая углеводы до мальтозы, мальтаза, превращающая солодовый сахар мальто зу в глюкозу, лактаза, расщепляющая молочный сахар лактозу до моносахаридов.
В состав липолитических ферментов входят липаза и фосфолипаза А. Липаза расщепляет жиры до глицерина и жирных кислот. Фосфолипаза А действует на продукты расщепления жиров. Регуляция секреции поджелудочной железы Секреция поджелудочного сока протекает в три фазы: сложнорефлекторную мозговую , желудочную и кишечную. Сложнорефлекторная фаза осуществляется на основе условных и безусловных рефлексов. Вид пищи, ее запах, звуковые раздражения, связанные с приготовлением пищи, разговор о вкусной пище или воспоминания о ней при наличии аппетита приводят к отделению поджелудочного сока. В этом случае выделение сока происходит под влиянием нервных импульсов, идущих от коры большого мозга к поджелудочной железе, то есть условнорефлекторно. Безусловнорефлекторная секреция поджелудочного сока происходит при раздражении пищей рецепторов ротовой полости и глотки.
Первая фаза секреции поджелудочного сока непродолжительная, сока выделяется мало, но он содержит значительное количество органических веществ, в том числе ферментов. Желудочная фаза секреции панкреатического сока связана с раздражением рецепторов желудка поступившей пищей. Нервные импульсы от рецепторов желудка по афферентным волокнам блуждающего нерва поступают в продолговатый мозг к ядрам блуждающих нервов. Под влиянием нервных импульсов нейроны ядер блуждающих нервов возбуждаются. Это возбуждение по эфферентным секреторным волокнам блуждающего нерва передается к поджелудочной железе и вызывает отделение панкреатического сока. Желудочная фаза секреции панкреатического сока обеспечивается также гормоном гастрином, который действует непосредственно на секреторные клетки поджелудочной железы. Сок, выделяющийся во вторую фазу, как и в первую, богат органическими веществами, но содержит меньше воды и солей. Кишечная фаза секреции поджелудочного сока осуществляется при участии нервного и гуморального механизмов.
Под влиянием кислого содержимого желудка, поступившего в двенадцатиперстную кишку, и продуктов частичного гидролиза питательных веществ происходит возбуждение рецепторов, которое передается в центральную нервную систему. По блуждающим нервам нервные импульсы от центральной нервной системы поступают к поджелудочной железе и обеспечивают образование и выделение панкреатического сока. Гуморальная регуляция секреторной активности поджелудочной железы. В слизистой оболочке двенадцатиперстной кишки и верхнем отделе тонкого кишечника находится особое вещество секретин , которое активируется хлористоводородной кислотой и гуморально стимулирует секрецию поджелудочной железы. В настоящее время установлено участие и других биологически активных веществ, образующихся в слизистой оболочке желудочно-кишечного тракта, в регуляции секреторной активности поджелудочной железы. К ним относятся холецистокинин панкреозимин и уропанкреозимин. Влияние состава пищи на отделение поджелудочного сока. В периоды покоя поджелудочной железы секреция полностью отсутствует.
Во время и после еды секреция поджелудочного сока становится непрерывной. При этом количество выделяющегося сока, его переваривающая способность и продолжительность секреции зависят от состава и количества принятой пищи. Наибольшее количество сока выделяется на хлеб, несколько меньше — на мясо и минимальное количество сока секретируется на молоко. Сок, полученный на мясо, имеет более щелочную реакцию, чем сок, выделяющийся на хлеб и молоко. При употреблении пищи, богатой жирами, в поджелудочном соке содержание липазы в 2—5 раз больше, чем в соке, который выделился на мясо. Преобладание в пищевом рационе углеводов приводит к увеличению количества амилазы в поджелудочном соке. При мясной диете в поджелудочном соке обнаруживается значительное количество протеолитических ферментов. Состав, свойства желчи и ее значение в пищеварении.
Желчь — продукт секреции печеночных клеток, представляет собой жидкость золотисто-желтого цвета, имеющую щелочную реакцию рН 7,3—8,0 и относительную плотность 1,008—1,015. Основными компонентами сухого остатка являются желчные кислоты, пигменты и холестерин. Кроме того, в желчи содержатся муцин, жирные кислоты, неорганические соли, ферменты и витамины. У здорового человека в сутки выделяется 0,5—1,2 л желчи. Секреция желчи осуществляется непрерывно, а поступление ее в двенадцатиперстную кишку происходит во время пищеварения. Вне пищеварения желчь поступает в желчный пузырь. Желчь относят к пищеварительным сокам. Желчь повышает активность ферментов панкреатического сока, прежде всего липазы.
Желчные кислоты эмульгируют нейтральные жиры. Желчь необходима для всасывания жирных кислот, а следовательно, жирорастворимых витаминов А, В, Е и К. Желчь усиливает сокоотделение поджелудочной железы, повышает тонус и стимулирует перистальтику кишечника двенадцатиперстная и толстая кишка.
Nutaustinskaya1 28 апр. Это просто... Viki0110 28 апр. Angelapavlik 28 апр. Каких органоидов должно быть много сперматозоиде, и в какой его части? Bogdanshport 28 апр.
Для организмов с клеточной стенкой вегетативным размножением считается такой процесс, в ходе которог Adelinaibraeva8 28 апр.
Нейроны, содержащие дофамин посылают свои аксоны в передний мозг эмоции и в область полосатого тела регуляция сложных движений. Деградация дофаминовых волокон в данной части мозга приводит к ригидности мышц и тремору, симптомам, характерным для болезни Паркинсона. Избыток дофамина в лимбической системе переднего мозга, возможно причастен к шизофрении. Процесс химической передачи проходит ряд этапов: синтез медиатора, его накопление, высвобождение, взаимодействие с рецептором и прекращение действия медиатора. Каждый из этих этапов детально охарактеризован, и найдены препараты, которые избирательно усиливают или блокируют конкретный этап. Эти исследования позволили проникнуть в механизм действия психотропных лекарственных средств, а также выявить связь некоторых нервных и психических болезней со специфическими нарушениями синаптических механизмов: Синтез молекул медиатора в нервных окончаниях. Каждый нейрон обычно обладает только таким биохимическим "аппаратом", какой ему нужен для синтеза медиаторов, которые выделяются из всех окончаний его аксона.
Молекулы медиатора синтезируются путём соединения предшественников или их изменений в результате ряда ферментативных реакций. Может быть один этап ферментативного катализа ацетилхолин или до трёх этапов адреналин. Аминокислоты синтезируются из глюкозы. Многие этапы синтеза можно блокировать фармакологическими агентами, что лежит в основе действия многих лекарств, влияющих на нервную систему. После выработки молекул медиатора они накапливаются и хранятся в окончании аксона в маленьких мешочках, связанных с мембраной. В одном окончании могут быть тысячи синаптических пузырьков, каждый из которых содержит от 10 тыс. Высвобождение Приход нервного импульса в окончание аксона вызывает высвобождение множества молекул медиатора из окончания в синаптическую щель. Механизм такого выделения остаётся?????
Взаимодействие с рецептором. Вышедшие молекулы медиатора быстро проходят через наполненную жидкостью щель между окончанием аксона и мембраной воспринимающего нейрона. Здесь они взаимодействуют со специфическими рецепторами постсинаптической мембраны. Рецепторы фактически представляют собой крупные белковые молекулы, погружённые в полужидкую матрицу клеточной мембраны: части их торчат над и под мембраной подобно айсбергам. Выходящий на поверхность участок рецепторного блока и молекула медиатора имеют одинаковые очертания, они соответствуют друг другу как ключ и замок. Существует 2 основных типа медиаторных рецепторов: быстро действующие — осуществляют передачу, регулируя проницаемость ионной поры, и медленно действующие, которые вызывают образование второго посредника, который в свою очередь опосредует эффекты, производимые медиатором в постсинаптическом нейроне. Окончательное действие Взаимодействие медиатора с его рецептором меняет трёхмерную форму рецепторного белка, инициируя этим определённую последовательность событий. Это взаимодействие может вызвать возбуждение или торможение нейрона, сокращение миоцита, а также образование и выделение гормона клеткой железы.
Во всех этих случаях рецептор "переводит сообщение, закодированное в молекулярной структуре медиатора, в специфическую физиологическую реакцию. Как только молекула медиатора свяжется со своим рецептором, она должна быть инактивированна во избежание слишком длительного её действия и нарушения точного контроля передачи. Существуют разнообразные механизмы рецепции на молекулярном уровне. Ацетилхолин взаимодействует с рецепторным белком в постсинаптической мембране.
Продолжим наблюдение. Есть ли рецепторы мигательного рефлекса в области наружного угла глаза? Прикоснитесь к нему и дайте ответ. Попробуйте несколько раз прикоснуться к внутреннему углу глаза.
нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам
Вариант Часть Нервные импульсы поступают непосредственно к железам по. Также на его деятельность оказывают влияние импульсы, поступающие от шейных узлов симпатических стволов, и гормоны шишковидной железы. Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов 2. аксонам вставочных мозга 4. белому в-ву спинного мозга. Б. По аксону нервные импульсы поступают к телу другой нервной клетки.
Нервные импульсы поступают непосредственно к мышцам и железам по
В вопросе B1 не подходит ответ 4, так как внутренними органами управляет вегетативная нервная система, а у вас получается прям как в фильме "Формула любви", по желанию бьется сердце, по желанию не бьется. В общем тест и ответы весьма странные.
Периферическая — состоит из нервных структур нервов и нервных ганглий , не входящих в состав спинного и головного мозга. Функционально нервная система делится на вегетативную и соматическую: Вегетативная — отвечает за функции нашего тела, которые мы не можем контролировать произвольно такие как кровообращение, пищеварение. Соматическая — позволяет нам контролировать своё тело: двигаться, говорить, выражать эмоции и так далее.
Итак, периферическая нервная система — это часть нервной системы, которая находится за пределами головного и спинного мозга. Она получает команды от «руководства» — центральных отделов — и прилежно их выполняет. А ещё она собирает и передаёт импульсы от рецепторов кожи и внутренних органов в обратно в ЦНС. Периферическая нервная система состоит из: собственно, нервов; нервных сплетений. Разберём каждую из этих структур подробнее.
Нерв — это орган, состоящий из пучков нервных волокон в основном это аксоны нейронов , покрытых соединительной оболочкой. Нервы обеспечивают связь между центральной нервной системой и внутренними органами, органами чувств и кожей. В свою очередь, нервы делятся на: чувствительные, или афферентные вспоминай предыдущий пост! А что такое нервный узел? И в чём его отличие от нервного сплетения?
Запомним ещё парочку нужных определений: Нервный узел ганглий — это скопление нервных клеток, которое состоит из тел нейронов, а также из дендритов, аксонов и глиальных клеток. Ганглии выполняют роль связующего звена между разными структурами нервной системы. Нервное сплетение — это сетчатое скопление нервных волокон, которые связывают центральные отделы нервной системы с органами, мышцами и кожей. Рефлекс и рефлекторная дуга Помнишь, что является основной формой деятельности нервной системы?
Она состоит из 5 частей: 1 рецептор — это чувствительное образование, способное реагировать на определенный вид раздражителя и преобразовывать его в нервный импульс 2 чувствительный нейрон проводит импульс в мозг 3 вставочный нейрон связывает чувствительные и исполнительные нейроны, находится в спинном или головном мозге. Рефлексы делятся на условные и безусловные имеются с рождения в течение жизни не изменяются и не исчезают одинаковые у всех организмов одного вида приспосабливают организм к постоянным условиям пример: выделение слюны при попадании лимона в рот. Тесты 34-01.
Мышление построено на двух функциях высших нервных центров: на анализе и синтезе информации и ответных действий организма. Очень важным аппаратом мышления человека является речь, которая позволяет передавать информацию с помощью абстрактных символов. Сигнальные системы Первая сигнальная система- это зрительные, слуховые и другие чувственные сигналы, из которых строятся образы внешнего мира, одинаковая у человека и животных. Отдельные элементы более сложной сигнальной системы начинают появляться у общественных видов животных высокоорганизованных млекопитающих и птиц , которые используют звуки сигнальные коды для предупреждения об опасности, о том, что данная территория занята, и т. Вторая сигнальная система- словесная, в которой слово в качестве условного раздражителя. Ко второй сигнальной системе относится: речь, сознание, абстрактное мышление. С помощью слова осуществляется переход от чувственного образа первой сигнальной системы к понятию, представлению второй сигнальной системы. Способность оперировать абстрактными понятиями, выражаемыми словами, служит основой мыслительной деятельности. Язык -это форма существования мысли и ее обмена. Lorem ipsum dolor sit amet, consectetur adipisicing elit. Эта информация доступна зарегистрированным пользователям Оболочки головного мозга.