Системы искусственного интеллекта занимают сферы от голосовых помощников до медицины и освоения космоса. Новости Искусственного Интеллекта (ИИ), машинное обучение, квантовые компьютеры, нейронные сети и другие научные новости и открытия в сфере Искусственного Интеллекта. Человечество потеряло монополию на интеллект — мысль, в которой многие могут усомниться. Город вдохновения: краснодарцы доверяют рекомендациям искусственного интеллекта и создают с ним музыку.
Цифровые технологии и наработки в области искусственного интеллекта обсудили в Москве
Инструмент позволяет встраивать в приложения интеллектуальные технологии распознавания данных. Примеры решений для разных сфер бизнеса из реестра: Транспорт и логистика Система управления движением судов «Нави-Мастер». Видеопотоки типовых дефектов стальных канатов. Диалоговые приложения чат-боты и голосовые помощники TalkBank Platform. Версия 2. Медицина ПО для работы с цифровыми медицинскими изображениями Retina.
Моделирование и симуляция сложных систем, анализ больших объемов данных и поиск закономерностей в них помогают в прогнозировании пандемий, климатических изменений и других масштабных явлений. ИИ способен ускорить научные исследования, обнаруживать новые лекарства и материалы, снижая затраты времени и ресурсов. ИИ имеет потенциал преобразовать медицину и здравоохранение, делая диагностику более точной и персонализированной. Системы ИИ могут анализировать медицинские изображения, выявлять патологии и помогать врачам в принятии решений. В области геномики ИИ помогает идентифицировать гены, связанные с заболеваниями, и разрабатывать индивидуализированные лечения. Автономные автомобили, дроны и роботы становятся реальностью благодаря ИИ. Системы распознавания и обработки данных позволяют автономным транспортным средствам функционировать в сложных ситуациях на дорогах и в воздухе. Это обещает повысить безопасность, снизить количество аварий и оптимизировать использование ресурсов. Однако с возросшим влиянием ИИ на общество появляются и вопросы этики и социальных последствий [5]. Необходимо обеспечить прозрачность и объяснимость решений, принимаемых системами ИИ. Также стоит разработать стандарты для обработки и защиты данных, чтобы избежать нарушения приватности. Перспективы искусственного интеллекта ошеломляют своим разнообразием и потенциалом.
Ни капельки неудивительно, что уже в те времена древнегреческие философы задавались вопросами о возможности появления устройств, способных мыслить как человек. Например, в мифах Древней Греции мы встречаем упоминание автоматонов — это куклы, способные выполнять действия в соответствии с заданным алгоритмом. Один из примеров такого автоматона — Пандора, созданная самим Зевсом. Фото: habr. Что же можно считать точкой отсчёта в истории развития ИИ? В истории появления искусственного интеллекта важную роль сыграли некоторые ключевые моменты. Одним из таких моментов было создание первого в мире счётного устройства, способного автоматически выполнять сложение, вычитание, умножение и деление. Это достижение принадлежит немецкому учёному Вильгельму Шиккарду. Это открытие заложило основу для понимания возможности создания интеллектуальных машин. Таким образом, у нашей цивилизации появилась важная задача — разработать умную машину, способную обладать искусственным интеллектом. Но только в XX веке учёные и инженеры вплотную подошли к чёткому определению концепции ИИ. Так, в 1943 году в Америке впервые заговорили о нейронных сетях, а именно основоположник кибернетики и бионики Уоррен Мак-Коллок и математик Уолтер Гарри Питтс. Позже учёный Джон фон Нейман предложит архитектуру, которая станет основой всех современных компьютеров так называемая архитектура фон Неймана. В 1950 английский учёный Алан Тьюринг разработал эмпирический тест, названный в его честь. Суть теста заключалась в том, что экспериментатор общается с одним человеком и одним компьютером, но не знает, кто из них кто. Задача — определить, кто из собеседников — компьютер. В то же время компьютеру предстоит прикинуться человеком. Поэтому многие считают, что если компьютер пройдёт тест, то начнётся восстание машин, как в одном из известных фильмов. Фото: region-invest. Один из них разговаривал по-английски, а второй ещё мог и передвигаться.
Отцы и дети Традиционно считается, что молодежь, особенно поколение Z до 26 лет , является наиболее продвинутыми пользователями технологий. Однако представители возрастной группы 26—44 лет также активно прибегают к помощи искусственного интеллекта. Например, при управлении «умным домом» с помощью голосового ассистента или обработке больших объемов информации различия между поколениями стираются — эти сферы применения ИИ пользуются практически одинаковым спросом у респондентов из разных возрастных групп. Тем не менее люди старшего возраста от 45 до 55 лет чаще отмечают, что ИИ-технологии пока не принесли им никакой конкретной пользы. Вместе с тем они отмечают свою общую заинтересованность в таких инновациях. Общий тренд на интерес к технологиям искусственного интеллекта и доверие к нему продемонстрировали респонденты с детьми. Заметна и тенденция на рост использования ИИ в повседневной жизни. Респондент мог указать несколько вариантов ответа.
ТОП 10 искусственных интеллектов в 2023 году
Будущее искусственного интеллекта | Искусственный интеллект (ИИ) — это область науки и технологии, посвященная разработке компьютерных систем, способных анализировать данные, извлекать закономерности, обучаться на основе опыта и принимать решения, которые ранее требовали человеческого интеллекта. |
Значимость искусственного интеллекта и нейронных сетей в современном мире | Генеративный ИИ — тип системы искусственного интеллекта, способной создавать текст, изображения и другой контент на основе данных, на которых выполнено обучение. |
Будущее искусственного интеллекта: перспективы и выгоды | Бурное развитие технологий искусственного интеллекта (ИИ) и их применение в самых различных областях — главный технологический тренд уходящего года. |
Около 16% екатеринбуржцев не представляют свою жизнь без искусственного интеллекта | Эксперты рекламируют искусственный интеллект (ИИ) как настоящий инструмент в борьбе за выживание планеты, но говорят, что комбинация с другими новыми технологиями может даже увеличить шансы. |
Хочу убедиться, что мне звонил ВЦИОМ
- Как искусственный интеллект изменит мир к 2030 году
- Искусственный интеллект в 2023 году: тренды и популярные инновации — 01.11.2023 — Статьи на РЕН ТВ
- Сайты-партнеры
- Как искусственный интеллект изменит мир к 2030 году
Лишённый чувств? Учёный — об искусственном интеллекте
Компьютерное зрение Computer Vision Способность машины визуально распознавать объекты и анализировать их. Речь идет не только о способности понимать изображения на картинке хотя до недавнего времени ИИ не умел и этого , применение этой технологии намного шире: Дополненная реальность Беспилотные аппараты, в том числе машины Системы видеонаблюдения, в том числе камеры фиксации нарушений Системы распознавания лиц В последних трех направлениях российские разработки действительно получили хорошее развитие, а сейчас и находят применение на практике как, например, работающая система распознавания лиц в Москве. Среди наиболее известных российских компаний, трудящихся в этой сфере, в РФ последние годы выделяют: NTechLab — создатели популярного сервиса Findface, наработки по которой легли в системы безопасности для силовых ведомств. Vision Labs, разрабатывающая системы распознавания лиц и иные решения для крупных банков «Центр речевых технологий» — компания, разработавшая ряд решений для телеком-компаний, а также создавшая систему идентификации болельщиков на стадионах. Обработка естественного языка Natural Language Processing Это особое направление математической лингвистики, которое работает над способностью искусственного интеллекта как распознавать текст на практически человеческом уровне понимания, так и генерировать его. Она применяется в ряде весьма важных отраслей, с которыми человек сталкивается почти каждый день: Перевод текста с одного языка на другой Автоматическая генерация текстов Работа чат-ботов и роботов-собеседников Распознавание и синтез речи Здесь эксперты особенно выделяют работу компании «Яндекс», уже давно обогнавшей таких титанов, как Google и Microsoft по качеству машинного перевода с русского языка на английский и с английского на русский. И хотя экспертные оценки нередко расходятся, но многие мировые специалисты признают, что система-помощник «Алиса» действительно совершеннее многих западных аналогов. Кроме того, в «Сбере» во время конференции отметили работу российских специалистов над «Трехмодальной моделью распознавания речи», которая позволила бы машине обладать своего рода интуицией и дала бы возможность еще более гибко импровизировать во время общения с человеком.
Отдельные публикации могут содержать информацию, не предназначенную для пользователей до 16 лет. Интернет-журнал Новая Наука каждый день сообщает о последних открытиях и достижениях в области науки и новых технологий. Читайте последние новости высоких технологий, науки и техники.
Дипфейков становится больше Дипфейки будут множиться и становиться все более изощренными, прогнозирует Лэнс Худ, старший директор по омниканальной аутентификации компании TransUnion. В частности, технология глубокой подделки голоса стала очень продвинутой за короткий период времени, отмечает Худ. Профессиональное создание контента набирает обороты Джереми Туман, генеральный директор компании Aug X Labs, специализирующейся на видеомонтаже с использованием ИИ, считает, что 2024-й станет годом, когда ИИ действительно начнет работать на создателей контента. ИИ для профессионального создания контента позволит компаниям взаимодействовать со своими клиентами гораздо более целенаправленно и увлекательно, считает Туман. Эти тенденции упорядочат и ускорят каждый аспект рабочего процесса инженера, уменьшат когнитивную перегрузку, позволят создавать многократно используемый код, упростят поиск кода и позволят быстрее устранять неполадки. ИИ будет даже генерировать тестовый код, позволяя разработчикам сосредоточиться на творческих аспектах дизайна ПО и быстрее выводить решения на рынок.
По его словам, организации будут использовать автоматизацию и цифровых работников, чтобы у сотрудников было больше времени на решение таких задач, как повышение квалификации, развитие собственных работ и поиск новых способов использования ИИ в своих интересах.
Кроме того, программа может обучаться на ходу. Возможно, в скором времени она отберет часть работы у копирайтеров, журналистов пишущих новостные заметки , учителей, врачей и людей самых разных профессий. Если, конечно, не лишит их всех работы, — резюмирует Bloomberg. Apple, Samsung или Xiaomi? Один из них возник в попытке ответить на вопрос: можно ли считать творчество нейросети настоящим? Кроме того, есть опасения практического характера.
Как отмечает Science, эксперты полагают, что ИИ в процессе своего «творчества» может нарушать авторские права, распространять ложную информацию и сокращать рабочие места. Но все же ИИ, скорее, благо, чем опасность. Какие-то рутинные, простые задачи, для которых человек объективно не нужен, может спокойно выполнять искусственный разум. Также важно понимать, что искусственный интеллект никогда не сможет полностью заменить человека. Ведь, по сути, он не умеет самостоятельно обучаться.
Что такое искусственный интеллект и зачем он нужен
Лишь в июле 2023 года в Сети появились неподтверждённые пока данные о том, что GPT-4 построена по особой архитектуре, называемой Mixture of Experts MoE, «модель смешанных экспертов». Она состоит из 16 нейросетей-экспертов с размером по 111 миллиардов параметров каждая. За счёт архитектуры MoE элементы системы работают параллельно и в каждый момент времени ответы даёт лишь один виртуальный «эксперт», снижая вычислительные затраты и увеличивая скорость работы. Читайте также: Основные тренды Можно выделить несколько направлений в развитии языковых моделей, которые сохранятся в ближайшем будущем: Инженеры разрабатывают новые подходы к архитектуре нейросетей для замены Transformer. Например, GPT-4 использует модель смешанных экспертов, а отечественный проект Fractal GPT — симбиоз графовых моделей и многоагентных систем. Google и другие компании работают над повышением точности ответов LLM, при одновременном снижении их размерности. Так, новая модель PaLM 2, по сообщениям разработчиков , меньше, чем исходная PaLM, но лучше и быстрее справляется с задачами из разных областей. Разработчики языковых моделей ищут новые методы обучения LLM, которые смогли бы уменьшить объём необходимых тренировочных данных и снизить трудоёмкость их разметки. Например, обучают модели на синтетических данных , созданных другой нейросетью. Нейросети учатся искать актуальную информацию в интернете и обращаться к внешним сервисам.
Чаще всего для этого используют систему плагинов, по аналогии с решением, используемым в ChatGPT. Компании увеличивают длину контекстного окна для повышения точности ответов. GPT-4 и Claude 100K способны воспринимать более 100 тысяч токенов за раз. На подходе технологии с ещё более внушительными параметрами — до 1—2 миллионов токенов. Инженеры работают над уменьшением числа галлюцинаций и токсичного вывода в моделях. Нейросети учатся понимать промпты на локальных языках и отвечать на них. Сегодня существующие модели охватывают лишь сотню языков из более чем 7000 известных. В 2023 году для формирования набора данных для 1100 неохваченных ранее языков запущен проект Massively Multilingual Speech MMS. IT-гиганты повышают секретность в отношении своих проприетарных моделей.
Теперь отчёты о выходе новых версий нейросетей больше похожи на рекламные брошюры с описанием возможностей, а не на техническую документацию. Китай становится альтернативным центром развития генеративного ИИ, способным бросить вызов американским компаниям. К 2023 году в этой стране разработали более 130 LLM. Читайте также: Стремительный тигр, мудрый дракон: проекты и перспективы Китая в гонке генеративного ИИ Чего ждать в 2024 году Лидеры IT-индустрии продолжат скрывать подробности о внутреннем устройстве и параметрах обучения своих моделей. Связано это с тем, что именно они, а не только внушительный размер LLM, теперь являются конкурентными преимуществами. Самое ожидаемое событие 2024 года — выход языковой модели следующего поколения от компании OpenAI. Ходят слухи, что GPT-5 сможет достичь уровня AGI по ряду ключевых показателей, что может привести к непредсказуемым последствиям для отрасли ИИ и всего человечества. Читайте также: Новый уровень искусственного интеллекта: что такое AGI, когда он появится и каким будет В любом случае нейросети следующего года станут более эффективными, то есть будут работать лучше при тех же или даже меньших размерах. Они смогут за один проход понимать тексты, сопоставимые по объёму с романами Льва Толстого, на лету считывать новости из интернета, решать сложные задачи за счёт обращения к внешним сервисам и быстро учиться на актуальных данных, в том числе синтезированных.
Мы ждём от них умения общаться с пользователями на их родных языках, включая редкие местные наречия. И конечно, будем следить за нейросетями из Китая, эффективность и качество работы которых продолжат расти, догоняя лучшие западные аналоги. При этом LLM ближайшего будущего, скорее всего, будут более стабильны, безопасны и, возможно, скучны. Они не станут генерировать бред и обсуждать скользкие темы. А взлом с помощью джейлбрейк-промптов постепенно станет невозможным.
Также гигантские денежные ресурсы вкладываются в программы, способные распознавать человеческую речь. Этот сегмент, по данным аналитиков, в 2020 г. По прогнозу, уже в 2022 г. США [1] Arkhipov, 2020. Сегодня ядром сервисов искусственного интеллекта, применяемых в бизнес-сфере, являются ИИ-рекомендации онлайн-магазинов и виртуальные ассистенты например, Alex, Cortan и Siri [3] Bukhtiyarova, 2019. Искусственный интеллект сортирует контент по предпочтениям и популярности пользователей, распознает, понимает и самостоятельно пишет тексты, фильтрует и блокирует СПАМ, распознает человеческую речь, идентифицирует людей по фотографии, селфи, сетчатке глаза и другими способами. Это приводит экономистов и экспертов к противоречивым выводам по вопросу влияния ИИ на рынок труда вследствие ограниченных данных о негативных последствиях такого воздействия [6, 23] Gorodnova, 2021; Kitzmann, Yatsenko, Launer, 2021. В целях коммуникации с клиентами ИИ-компании используют чат-боты, которые вступают во взаимодействие и отвечают на вопросы. Системы искусственного интеллекта активно применяются при оказании телекоммуникационных услуг, в автомобильной промышленности и финансовом секторе. Указанные технологии внедряются и в розничных сетях, при производстве FMCG пер. Технологии искусственного интеллекта широко используются в таких разных сферах бизнеса, как ритейл, строительство, информационные технологии, образование и т. В каждой из указанных бизнес-сфер применяются технологии управления поведением потребителей, изучения будущих тенденций рынка и автоматизации различных рутинных процессов. Рассмотрим сектора применения возможностей искусственного интеллекта. Беспилотные автомобили, использующие алгоритмы искусственного интеллекта с возможностью полного автономного вождения без вмешательства человека, могут существенно трансформировать транспортную систему. Машины с использованием ИИ анализируют трафик и альтернативные маршруты, сокращая время в пути [5]. Применение высокопроизводительных роботов способствует быстрому и качественному выполнению задач, более эффективной, чем у человека, деятельности. Благодаря использованию 3D-технологий и машинного зрения роботы способны в разы ускорить процесс производства в любой сфере. Автономные хирургические роботы, виртуальные помощники медицинского персонала и автоматическая диагностика изображений — это новейшие разработки, благодаря которым искусственный интеллект начинает играть решающую роль в технологическом прогрессе сферы здравоохранения, а также в развитии услуг телемедицины в трансграничном режиме [8] Ermakova, Kovyazin, 2002. Сфера развлечений. Машинное обучение на нейронных сетях позволяет предсказывать сценарии поведения пользователя и предоставлять рекомендации по подбору фильмов, музыки, телешоу и другого интересующего потребителя контента. ИИ в зависимости от предпочтений пользователя осуществляет персонализированный подбор рекламы, что способствует повышению эффективности маркетинга в аспекте таргетированной рекламы и увеличению объемов продаж. Предиктивный анализ и автоматизация, осуществляемая алгоритмами искусственного интеллекта, применяются в целях принятия бизнес-решений, продажи билетов и прогнозирования результатов спортсменов. Искусственный интеллект, применяемый в бизнесе, способствует улучшению показателей во всех сферах. К примеру, к процессам, в рамках которых ИИ решает определенные узконаправленные задачи, следует отнести следующие: 1. Искусственный интеллект осуществляет изучение статистики и выполняет прогностические функции, обрабатывая гигантские массивы информации в целях подбора наиболее оптимального распределения цен на конкретный вид продукции. Это позволяет в несколько раз повысить объемы выручки и доходов компании. Самообучающиеся нейронные сети анализируют поведение клиентов и вычисляют подозрительные операции, существенно снижая таким образом негативные последствия действий кибермошенников и киберпреступников, что приводит к значительному снижению финансовых потерь, повышенной защищенности системы и росту доверия пользователей [7] Dudin, Shkodinskiy, 2021. Маркетинговая сфера. Системы искусственного интеллекта на основе изучения предыдущих продаж и глубокого изучения рынков осуществляют прогнозирование сценариев развития событий. Алгоритмами изучаются контактные данные клиентов, суммы сделок и приобретенные ими товары или услуги [20] Shkor, Sevzyuk, 2020.
В какой-то момент появляется технология обработки отпечатков пальцев, жёсткий идентификатор, который нельзя поменять. Сейчас то же самое с лицом, и это удобно, позволяет нам разблокировать телефон, например. Мы периодически думаем: а как же соображение приватности, но на другой чаше весов лежит отсутствие необходимости доказывать, что ты ничего плохого не делал. Это ещё один важный тренд. Паспорт будущего — принципиально другой тип коммуникаций. О спектре применения искусственного интеллекта Первое, с чего стоит начать, — поиск, который невозможен без технологии искусственного интеллекта. Это тысячи фактов, по которым принимается решение, что именно нужно показать по короткому запросу человека, и качество поиска определяется целиком и полностью качеством машинного обучения. Убрав машинное обучение из поиска, мы получим проблему. Иногда раскладку на сайте забудешь поменять — и ничего не находится. Поисковая система нас приучила к тому, что как ты ни пиши, что ни введи, нас сразу идеально понимают. Это машинное обучение. Спектр возможностей практически бесконечен: кино, музыка, прогноз погоды, навигаторы, беспилотные авто. Вообще всё, что касается транспорта: рассчитать время прибытия такси, выбрать автомобили, которые увидят заказ, рассчитать время подачи, правильно определить и спрогнозировать цены — это всё делается в автоматическом режиме. И, в частности, предельно близкая мне тема — компьютерное зрение, распознавание изображений. Та же "Алиса" — пример машинного обучения, она понимает речь, способна отвечать речью, а также распознаёт изображения. Недавно мы сделали технологию, которая называется DeepHD — технология увеличения размера изображения и видео, когда берётся маленькая картинка и в два раза увеличивается с помощью нейросетей. Ещё из примеров — реклама. Та реклама, которая нас сопровождает в интернете, подбирается автоматически, исходя из знаний пользователя, его интересов, потому что цель бизнеса — показывать рекламу, максимально полезную и удобную для человека. Это выгодно всем: и пользователю, и рекламодателю. Это то, что мы делаем, и многое-многое другое. В случае "Яндекса" мне даже сложно представить или придумать какую-нибудь сферу деятельности, где не применяется искусственный интеллект. О том, как искусственный интеллект использует или может использовать государство Технологии искусственного интеллекта — это инструмент, и, как любой инструмент, для решения одних задач он эффективен, для других — нет. В государственном секторе, я знаю, есть проблема входящей корреспонденции. Вся бюрократическая машина построена таким образом, что письмо может где-то повиснуть, а оно должно обязательно до кого-то дойти, гражданин должен получить ответ. Такой корреспонденции много, и часто она проходит какими-то неведомыми путями, потому что никто долгое время не может понять и решить, кому она конкретно должна быть адресована и как на неё отвечать. Системы сортировки входящей корреспонденции вполне можно автоматизировать по содержимому. Кроме того, нужно выделять вопросы индивидуальные, которые требуют какого-то человеческого подхода, анализа, общения людей. А в крайне типовых ситуациях процесс можно автоматизировать: выбрать с помощью анализа самый частотный сценарий, сделать классификатор таких сценариев и его автоматизировать. Это упростит работу и повысит эффективность госаппарата. О том, что ИИ может сделать для медицины Мой личный интерес к машинному обучению появился лет 30 назад. Я купил в антикварном магазине один из томов многотомного издания, который назывался "Опыт советской медицины в годы Великой Отечественной войны", и обнаружил там просто сумасшедшую статистику. Том, который я держал в руках, назывался "Лёгочные патологии при ранении конечностей". Казалось бы, какая связь — патологии в легких и ранения конечностей. Оказывается, какие-то закономерности есть, при этом книга была выпущена сразу после войны, и не было времени понять почему. Там были собраны наблюдения и статистика, и она была просто огромная, тысячи случаев. Из этого понятно, что, просто анализируя события и наблюдая за происходящим, можно найти закономерности, которые на первый взгляд неочевидны. Дело в том, что медицина — это консервативная область, которая жёстко регулируется по вполне понятным причинам — слишком высока цена ошибки, любое внедрение требует множества экспериментов. Второй важный момент — данные, которые собирает медицина, очень чувствительны и приватны, никто из нас не хочет, чтобы его история болезни стала публичной. Поэтому законодательная база устроена таким образом, что любые медицинские данные крайне строго охраняются. Эту ситуацию нужно как-то аккуратно менять, потому что медицина — сфера, где максимально высок потенциал применения технологий: и скорость постановки диагноза, и постановка каких-то упреждающих диагнозов, и прогноз ситуации. Все врачи говорят одно и то же: приходите и проверяйтесь, чем раньше что-то диагностировано, тем лучше. Никто из нас, конечно, не ходит, потому что кажется, что меня это не коснётся, я молодой, у меня нет времени или ещё что-нибудь. Но если система будет давать индивидуальные рекомендации: конкретно тебе нужно прийти конкретно к этому врачу, потому что именно в твоём случае высок риск появления такого-то заболевания, которое нужно диагностировать на раннем этапе, — это было бы невероятно полезно. Надеюсь, что такие системы появятся. О том, почему банки заинтересованы в развитии технологий ИИ Есть то, что называется скоринг — принятие решения, выдавать или не выдавать кредит. Для банков это важно, вообще-то, банки зарабатывают на том, что они выдают кредиты, проценты по кредиту — одна из главных доходных частей банка. Но при этом, если по кредиту деньги не возвращаются, банк проигрывает. Я сейчас говорю не только о частных кредитах, не о бытовом кредитовании граждан, а о кредитах, которые выдаются большим компаниям. Это большие деньги. Если банк плохо принимает решение о выдаче этих кредитов, то начинает действовать консервативно. Долгое согласование, куча бумаг и высокая ставка по кредиту, потому что она должна покрывать риски в тех ситуациях, когда кредит не возвращается.
С 18 апреля поддержку ИИ-бота получит смартфон Phone 2. Через несколько недель такой же поддержкой обзаведутся смартфоны Phone 1 и Phone 2a ». В блоге компании также сообщается, в новую версию Nothing OS будут добавлены виджеты для запуска ChatGPT, а в меню управления скриншотами и всплывающем окне буфера обмена появилась функция, позволяющая напрямую вставить изображения в запрос для ChatGPT. Чем раньше это сделать, тем выше вероятность выживания пациента. Но часто источник заболевания остаётся неизвестным, а узнают о нём по появлению клеток метастаз в лимфе или других биологических жидкостях человека. Врачи научились распознавать некоторые из них, но привязка клеток метастаз к видам онкологии остаётся непростой задачей, а ИИ — это тот инструмент, который может делать это лучше. Клетка метастаз рака молочной железы. Они взяли за основу 12 типов наиболее распространённой онкологии, которые сопровождаются выбросом раковых клеток в лёгочную жидкость и жидкость брюшной полости, включая рак лёгких, яичников, молочной железы и желудка. Некоторые другие формы рака, в том числе те, которые возникают в предстательной железе и почках, включить в исследование не удалось, поскольку они обычно не сопровождаются выбросом клеток метастаз в биологические жидкости человека. По словам учёных, каждый год из 300 тыс. Против рака нет универсального метода лечения — оно своё для каждого случая, поэтому выживаемость среди больных без диагноза самая низкая. Исследователи обучили свою ИИ-модель примерно на 30 тыс. Затем они протестировали свою модель на 27 тыс. Наконец, в процессе анализа примерно 500 изображений ИИ оказался лучшим прогнозистом, чем опытные врачи. Также была проверена группа из 391 пациента, четыре года назад получившая лечение в соответствии с прогнозом ИИ и прогнозами врачей. Оказалось, что если курс лечения соответствовал прогнозу ИИ, то выживаемость пациентов была выше, а если врачи не брали в расчёт прогноз ИИ, то ниже. В сочетании с другими методами диагностики онкологических заболеваний, считают исследователи, использование ИИ для распознавания источников опухолей по идентификации клеток метастаз обещает значительно повысить вероятность лечения этого смертельного недуга. По мнению главы компании Arm Рене Хааса Rene Haas , это может привести к тому, что уже к концу текущего десятилетия общие объёмы потребляемой системами ИИ энергии превзойдут объёмы энергопотребления Индии, самой густонаселённой страны в мире. Чтобы эти системы стали лучше, им потребуется дополнительное обучение — этап, который включает в себя бомбардировку программного обеспечения огромными наборами данных. Этот процесс рано или поздно столкнётся с пределом наших энергетических мощностей», — рассказал Хаас в интервью Bloomberg. Хаас формально ставит себя в один ряд с растущим числом людей, выражающих обеспокоенность по поводу возможного ущерба, который ИИ может нанести мировой энергетической инфраструктуре. Но он также заинтересован в том, чтобы отрасль перешла на использование чипов с Arm-архитектурами, которые всё больше завоёвывают популярность в центрах обработки данных. Технологии компании, которые к настоящему моменту получили широкое распространение в смартфонах, разработаны с целью более эффективного использования энергии по сравнению с традиционными серверными чипами. Arm рассматривает ИИ в качестве одного из основных драйверов своего роста. Технологии компании уже используются в процессорах, являющихся основой серверных систем AWS, Microsoft и Alphabet, разработавших собственные чипы для снижения своей зависимости от Intel и AMD. По словам Хааса, используя больше чипов, изготовленных по индивидуальному заказу, компании могут сократить ограничивающие факторы и повысить энергоэффективность их систем. Однако отрасль нуждается в более масштабных технологических прорывах. В 2022 году, опираясь на полученный в этих сферах опыт, он создал Mentee Robotics —стартап в области робототехники. Сегодня компания представила гуманоидного робота Menteebot, главными преимуществами которого создатель называет продвинутое машинное зрение и обучающийся генеративный ИИ. Источник изображений: Mentee Robotics «Мы находимся на пороге сближения компьютерного зрения, понимания естественного языка, мощных и детальных симуляторов, а также методологий перехода от моделирования к реальному миру, — заявил Шашуа. Представленный робот во многом является прототипом, хотя его создатели считают, что добились достаточного прогресса, чтобы оправдать публичный дебют после двух лет напряжённой работы.
Будущее сейчас. Как технологии искусственного интеллекта влияют на экономику и бизнес
Искусственный интеллект в образовании в 2024 году: новые возможности и перспективы EdTech | Технология искусственного разума развилась настолько, что теперь он способен создавать оригинальные картины, писать коды и сочинять художественные тексты. |
Топ-10 ИИ (AI) 2023 года: революция в технологии | Прогресс искусственного интеллекта оказывает существенное воздействие на сферу электронной коммерции. |
Проект по применению искусственного интеллекта
Беспилотные перевозки Путин заявил, что интеллектуальные системы заменят людей на опасном производстве Изначально речь идет о способности машины не только управлять транспортным средством будь то автомобиль или летательный аппарат , но и адекватно реагировать на нестандартные ситуации во время движения. Однако в России пошли несколько дальше и уже готовы вскоре запустить весьма смелый эксперимент по грузоперевозкам, которыми будет управлять ИИ. Правительство уже одобрило введение на скоростной трассе М-11 «Нева» между Москвой и Петербургом экспериментального правового режима ЭПР для реализации проекта «Беспилотные логистические коридоры». Оператором инфраструктуры, что вполне ожидаемо, стала госкомпания «Автодор». Обучение — машинам, образование — специалистам Разумеется, дальнейшее развитие сферы ИИ закономерно сталкивается с рядом трудностей, которые страна должна преодолеть для дальнейшего преуспевания. Первая — сугубо технологическая. Для эффективного машинного обучения требуется мощное оборудование из-за работы с огромным количеством данных.
Так, например, для того, чтобы научить машину отличать кролика от черепахи на картинке, придется задействовать мощности примерно 16 тысяч персональных компьютеров и обработать свыше 10 млн изображений.
Полное или частичное копирование материалов запрещено. При согласованном использовании материалов сайта необходима ссылка на ресурс. Код для вставки видео в блоги и другие ресурсы, размещенный на нашем сайте, можно использовать без согласования.
Они вдохновлены структурой и функциями человеческого мозга, состоящего из миллионов взаимосвязанных нейронов, которые взаимодействуют друг с другом для передачи информации в мозг человека.
Нейронные сети состоят из слоев взаимосвязанных узлов или нейронов, каждый из которых обрабатывает информацию и отправляет ее на следующий слой. Первый слой нейронов получает входные данные, а последний слой производит выходные данные. Слои между входным и выходным слоями называются скрытыми слоями и отвечают за обработку и анализ входных данных [1]. Процесс обучения нейронной сети включает в себя ввод в нее входных данных и корректировку весов и смещений нейронов для повышения точности выходных данных. Чем больше данных обучает сеть, тем лучше она распознает закономерности и делает точные прогнозы машинное обучение.
Нейронные сети имеют несколько приложений в различных областях, включая распознавание изображений и речи, обработку естественного языка и прогнозное моделирование. Цель нейронной сети — находить закономерности в данных и делать прогнозы на основе выявленных корреляций. Во время обучения в сеть подается большое количество размеченных данных, а веса связей между нейронами корректируются до тех пор, пока сеть не сможет точно предсказать правильный результат для заданного ввода. Нейронные сети оказались невероятно эффективными в широком спектре приложений. Специалисты в области экономики считают, что, в финансах их можно использовать для прогнозирования цен на акции или обнаружения мошенничества.
Разработчики программ в сфере медицины также замечают, что в здравоохранении их можно использовать для анализа медицинских изображений и выявления заболеваний. Рабочие процессы медицинских учреждений неразрывно связаны со сбором, обработкой и анализом различных медицинских изображений к которым относятся рентген, КТ, цифровые гистологические исследования и так далее. А также, искусственный интеллект в медицине использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе большого объема сложных медицинских данных. Исходя из этого можно сделать вывод, что нейронные сети и искусственный интеллект всегда были и являются сквозными технологиями. В области лингвистики специалисты считают, что нейронные сети и искусственный интеллект можно использовать для улучшения распознавания речи и обработки естественного языка [2].
Одним из ключевых преимуществ нейронных сетей является их способность обучаться и адаптироваться к новым данным. После того, как нейронная сеть была обучена на определенном наборе данных, она может продолжать обучение и улучшать свои прогнозы по мере поступления новой информации. Это делает нейронные сети особенно полезными в приложениях, где данные постоянно меняются, например, на фондовом рынке или в анализе социальных сетей.
То есть ИИ воспринимается как подконтрольный человеку помощник. Доля тех, кто считает, что государство должно способствовать развитию технологий искусственного интеллекта, выросла за год на 7 п. Запрос на обучение Запрос на получение знаний об ИИ в России достаточно высок.
Метод опроса — телефонное интервью по стратифицированной случайной выборке, извлеченной из полного списка сотовых телефонных номеров, задействованных на территории РФ. Данные взвешены по социально-демографическим параметрам. Помимо погрешности смещение в данные опросов могут вносить формулировки вопросов и различные обстоятельства, возникающие в ходе полевых работ.
Читайте также:
- Как сегодня поживает искусственный интеллект
- Главные новости
- Как искусственный интеллект изменит нашу жизнь через 30–50 лет | РБК Тренды
- Последние материалы
- Итоги-2023. ТОП новостей из мира искусственного интеллекта - YouTube
- Как ИИ уже затронул сферу образования
Как искусственный интеллект изменит мир к 2030 году
Обработка естественного языка Natural Language Processing Это особое направление математической лингвистики, которое работает над способностью искусственного интеллекта как распознавать текст на практически человеческом уровне понимания, так и генерировать его. Она применяется в ряде весьма важных отраслей, с которыми человек сталкивается почти каждый день: Перевод текста с одного языка на другой Автоматическая генерация текстов Работа чат-ботов и роботов-собеседников Распознавание и синтез речи Здесь эксперты особенно выделяют работу компании «Яндекс», уже давно обогнавшей таких титанов, как Google и Microsoft по качеству машинного перевода с русского языка на английский и с английского на русский. И хотя экспертные оценки нередко расходятся, но многие мировые специалисты признают, что система-помощник «Алиса» действительно совершеннее многих западных аналогов. Кроме того, в «Сбере» во время конференции отметили работу российских специалистов над «Трехмодальной моделью распознавания речи», которая позволила бы машине обладать своего рода интуицией и дала бы возможность еще более гибко импровизировать во время общения с человеком. При этом разработка уже существует — она носит название FusionBrain, но пока что находится в процессе совершенствования. Беспилотные перевозки Путин заявил, что интеллектуальные системы заменят людей на опасном производстве Изначально речь идет о способности машины не только управлять транспортным средством будь то автомобиль или летательный аппарат , но и адекватно реагировать на нестандартные ситуации во время движения. Однако в России пошли несколько дальше и уже готовы вскоре запустить весьма смелый эксперимент по грузоперевозкам, которыми будет управлять ИИ. Правительство уже одобрило введение на скоростной трассе М-11 «Нева» между Москвой и Петербургом экспериментального правового режима ЭПР для реализации проекта «Беспилотные логистические коридоры».
Получив множество чисел на входе, ИИ выдает множество чисел на выходе. И он не знает, что за ними стоит.
Просто множество чисел на входе переработали в числа на выходе. Внутри этого «ящика» могут быть какие-то очень сложные схемы типа нейронных сетей, навороченные формулы на миллиарды параметров. Но суть от этого не меняется. Это все равно просто некий «ящик». Уже давно в поисках работают технологии искусственного интеллекта. Вообще, чтобы вы понимали, поисковая формула — это миллиарды параметров сейчас. Там есть нейронные сети на миллиарды параметров. До того, как туда пришли нейронные сети, это все равно примерно гигабайт информации. Просто одна формула, если ее записать в электронном виде, будет весить примерно гигабайт.
А чтобы записать ту же формулу от руки, нужно десять тысяч книг. И, конечно, такую формулу невозможно подбирать вручную. Она каждый раз ищется автоматически. Например, искусственный интеллект применяется сейчас для прогноза погоды, — говорит Александр Крайнов. В команде Яндекса, которая делает прогноз погоды, есть только один метеоролог. Его взяли просто потому, что нельзя делать прогноз погоды, если у тебя нет ни одного метеоролога. В противном случае ты не имеешь права таким делом заниматься, отберут лицензию. Вот поэтому он там должен быть. А вообще, для того чтобы сейчас сделать свой прогноз погоды, ты собираешь данные, берешь несколько специалистов, которые «умеют хорошо в машинное обучение, в искусственный интеллект».
И они там в результате, как мы говорим, «варят» некую формулу. Собирают какое-то что-то, что довольно точно может предсказать, где сейчас пойдет дождь. При этом, повторюсь, можно ничего не понимать в метеорологии. Ты просто рассматриваешь некое состояние атмосферы или еще что-то как набор изображений. У тебя есть историческая последовательность изображения. И ты по этой последовательности делаешь предсказание. То есть предполагаешь, какое изображение будет следующим. И тем самым решаешь задачу предсказания, какая будет погода. Хотя в целом ты работаешь просто с какой-то последовательностью картинок и тебе не нужно даже иметь специальные знания о дожде.
Тот же самый механизм работает, когда нейросеть выдает осмысленный текст. Выдача сводится просто к вычислению вероятностей появления нового слова в многократной последовательности. У нейросети нет модели реального мира! Нет понимания, как слова описывают явления этого мира. Лишь набор последовательностей. Хотя мы постоянно слышим и видим красивые заголовки статей, как искусственный интеллект обыграл кого-то в шахматы, в го или в покер, нарисовал картину, сочинил музыку. Он это сделал не думая. И в этом блеск и нищета ИИ одновременно. Научится ли он думать самостоятельно — вот главный вопрос, который волнует человечество.
ИИ — кто он: бог или дьявол? Летом прошлого года новость о том, что компания Google отстранила от работы инженера, нашедшего признаки сознания у ИИ, буквально взорвала информационное пространство. И это было предсказуемо. Ведь не только сам термин «искусственный интеллект», но и его понятие давно источник неистовых споров. Еще в прошлом веке кипели страсти, разворачивались дискуссии на тему «может ли машина мыслить». Сегодня все то же самое. Скептики твердят: никакого ИИ нет, существует лишь компьютер; он может работать по программе, написанной человеком.
Наряду с Phi компания также создала модель Orca-Math, которая ориентирована на решение математических задач. Конкуренты Microsoft занимаются разработкой небольших ИИ-моделей, многие из которых нацелены на решение более простых задач, таких как обобщение документов или помощь в написании программного кода. По словам Бойда, разработчики обучали Phi-3 по «учебному плану». Они вдохновлялись тем, как дети учатся на сказках, читаемых перед сном. Это книги с более простыми словами и структурами предложений, но в то же время зачастую в них поднимаются важные темы. Поскольку существующей литературы для детей при тренировке Phi-3 не хватало, разработчики взяли список из более чем 3000 тем и попросили большие языковые модели написать дополнительные «детские книги» специально для обучения Phi-3. Бойд добавил, что Phi-3 просто развивает дальше то, чему обучились предыдущие итерации ИИ-модели. Если Phi-1 была ориентирована на кодирование, а Phi-2 начала учиться рассуждать, то Phi-3 ещё лучше справляется с кодированием и рассуждениями. Расследование Reuters показывает, что санкционная продукция Nvidia продолжает поставляться в Китай. Источник изображения: Nvidia Агентство использовало для получения подобных выводов общедоступную конкурсную документацию, в которой отображались состоявшиеся закупки серверного оборудования, в составе которого содержались запрещённые к экспорту в Китай компоненты Nvidia. По словам представителей Reuters, уже после вступления новых ограничений в середине ноября прошлого года не менее 10 китайских учреждений смогли получить серверное оборудование, содержащее «запрещённые» ускорители Nvidia. В выборку попали конкурсные процедуры, которые проводились в период с 20 ноября прошлого года по 28 февраля текущего. Среди 11 поставщиков, выигравших конкурсные процедуры на поставку «запрещённой» вычислительной техники в Китай, все были малоизвестными торговыми компаниями из КНР, как поясняет Reuters. Поставляли ли они оборудование из запасов, сформированных до вступления в силу осенних изменений к правилам экспортного контроля, определить не удалось. Представители Nvidia заявили, что даже если указанные поставки и осуществлялись в обход санкций США, они составляют лишь малую часть оборота мирового рынка, и никак не дискредитируют ни саму компанию, ни её партнёров. Получателями оборудования по рассматриваемым конкурсам выступали государственные ВУЗы КНР и правительственные организации, а также пара исследовательских центров, работающих в аэрокосмической отрасли. Представители Super Micro заверили, что собственные требования компании к соблюдению правил экспортного контроля с запасом превосходят по строгости государственные, а поставленное в Китай оборудование относилось к прошлому поколению, которое под санкции США ранее не попадало. Китайские поставщики, которые участвовали в конкурсе, клиентами Super Micro не являлись. Dell разбирается в ситуации, но на момент подготовки материала к печати заявила, что не располагает доказательствами поставки запрещённого к экспорту в Китай оборудования в адрес упоминаемых агентством Reuters китайских организаций и компаний. Gigabyte Technology просто заявила, что соблюдает международные правила торговли и законы Тайваня. Источник изображения: unsplash. Аналитики компании считают, что «поставки и внедрение ноутбуков с генеративным ИИ ускорятся в 2025—2026 годах вместе с появлением новых функций и вариантов использования генеративного ИИ, поддерживаемых новыми процессорными платформами производителей чипов». Источник изображения: Counterpoint Research Рейтинг пяти крупнейших брендов не изменился по сравнению с прошлым годом, при этом самыми успешными по росту поставок производителями остались Lenovo и Acer. Некоторые делают это публично, другие в закрытых презентациях, и последний из каналов позволяет нам узнать, что Microsoft к концу текущего года хочет утроить количество эксплуатируемых ускорителей до 1,8 млн штук. Источник изображения: Microsoft О наличии таких планов у Microsoft со ссылкой на служебную документацию корпорации сообщил на прошлой неделе ресурс Business Insider. В документе сообщается, что Microsoft рассчитывает увеличить закупки ускорителей вычислений на основе GPU в три раза по сравнению с прошлым годом, и к декабрю располагать примерно 1,8 млн соответствующих ускорителей, преимущественно поставленных компанией Nvidia. В отдельном документе ранее сообщалось, что уже во второй половине прошлого года Microsoft достигла рекордного количества эксплуатируемых ускорителей на базе GPU, хотя точное значение и не называлось. Близкие к Microsoft источники смогли подтвердить Business Insider, что эта сумма близка к реальной. Поскольку в планы компании входит утроение закупок ускорителей, и продукцией только Nvidia она ограничиваться не собирается, легко предположить, что затраты текущего года будут измеряться в десятках миллиардов долларов США. Получается, что Microsoft замахивается на количество ускорителей, измеряемое как минимум одним миллионом штук. По его словам, компания пытается значительную часть вычислений поручить локальным компонентам пользовательских устройств.
Год 2030 выбран не случайно, по мнению «AI100» именно к этому времени человечество переживет главный бум внедрения искусственного интеллекта в повседневную жизнь. После этого дальнейшее развитие упрется в социальный и физический ресурс, пути преодоления которого пока предвидеть невозможно. Итак, вот какие изменения нас ждут согласно прогнозам. В итоге это приведет не только к снижению аварийности, но и изменению городской инфраструктуры — люди смогут жить вдали от работы, ведь время, проведённое в дороге, больше не будет приносить усталость — можно поспать, решить личные вопросы или спокойно позавтракать. Главный вопрос, которым задаются эксперты: «Как регулировать правовое поле в случае аварий с участием человека и ИИ? Вряд ли производители данных систем будут брать на себя все возможные риски, в то время как владелец будет лишь рядовым пользователем. Здравоохранение Уже сегодня существуют системы автономной первичной консультации. Через 15 лет вам не придется стоять в очередях, чтобы за 5 минут изложить симптомы и получить стандартный перечень рекомендаций по лечению. Уже после пациент сможет записаться на прием к врачу лично для оценки заболевания и более глубокой диагностики, если это потребуется. Будем откровенны, лишь предрассудки мешают эффективно использовать такие системы в 2017-м повсеместно, но экономический и социальный факторы неизбежно должны изменить эту ситуацию.
Что еще почитать
- Ключевые тенденции-2024 в области ИИ
- Будущее искусственного интеллекта: перспективы и выгоды
- Будущее искусственного интеллекта
- Что сегодня представляет из себя искусственный интеллект
- Samsung заключила контракт с AMD на поставку HBM3E на сумму $3 млрд
Как использовать ИИ в онлайн-обучении в 2024 году
Роль искусственного интеллекта в цифровой трансформации современной россии. В статье узнаете, какие возможности сегодня появились благодаря ИИ в сфере EdTech, как искусственный интеллект может помочь преподавателям и учащимся повысить эффективность и результативность учебного процесса в 2024 году. Актуальность проекта заключается в важности развития технологий искусственного интеллекта для таких прогрессивных отраслей науки, как кибернетика, робототехника, для более быстрого, удобного доступа к мировым информационным. Эксперты рекламируют искусственный интеллект (ИИ) как настоящий инструмент в борьбе за выживание планеты, но говорят, что комбинация с другими новыми технологиями может даже увеличить шансы.
82% россиян позитивно относятся к технологиям искусственного интеллекта
Обучили нейросеть на данных открытых источников, в основном это новости СМИ и публикации открытых Telegram-каналов, посвященные теме искусственного интеллекта, за 2022 год. Актуальность данной статьи состоит в том, что в современном мире искусственный интеллект (ИИ) имеет довольно серьезную роль в выполнении множества процессов. Среди тех, кто интересуется технологиями искусственного интеллекта и готов платить за них, 44,4% регулярно используют нейросети для решения задач. Прогресс искусственного интеллекта оказывает существенное воздействие на сферу электронной коммерции.
Вы находитесь здесь: итоги 2023 года в сфере ИИ
Актуальность данной статьи состоит в том, что в современном мире искусственный интеллект (ИИ) имеет довольно серьезную роль в выполнении множества процессов. В каких отраслях, тесно связанных с искусственным интеллектом, Россия не только конкурирует, но и опережает Европу и США, в подробном обзоре от ФедералПресс. Энтузиасты искусственного интеллекта говорят о большом потенциале новых технологий, в то время как скептики напоминают о рисках и советуют не слишком спешить навстречу прогрессу.