«Росатом» приступил к строительству в России атомного энергоблока с инновационным реактором на быстрых нейтронах БРЕСТ-ОД-300. отметил директор Белоярской АЭС Иван Сидоров.
Ядерный спор: Ученый и "Росатом" разошлись в вопросе о развитии отрасли
"Росатом" завершил передачу 25 тонн высокообогащенного урана для первого китайского реактора на быстрых нейтронах. Многоцелевой научно-исследовательский реактор на быстрых нейтронах четвертого поколения поможет изучению технологий двухкомпонентной ядерной энергетики и другим научным целям. Эксперт Уваров: Россия сделала новый важный шаг к атомной энергетике будущего.
Не просто полностью безопасный, но ещё и сугубо мирный
- Россия сделала шаг к энергетике будущего
- К «Прорыву» добавляется реактор
- Ученые Росатома обсудили в Обнинске будущее развитие реакторов на быстрых нейтронах
- Ученые Росатома обсудили в Обнинске будущее развитие реакторов на быстрых нейтронах
Росатом делает значительный шаг вперед в трансмутации отходов уранового топлива
Сегодня ведутся работы по созданию более крупного коммерческого ректора на быстрых нейтронах — БН-1200. Все это непосредственно связано с событиями 50-летней давности, когда учёные сформировали основные технологические решения и многие научные достижения в этой области. Для справки: БН-350 — энергетический реактор на быстрых нейтронах с натриевым теплоносителем, пущенный в эксплуатацию 16 июля 1973 года на первой советской АЭС с реактором на быстрых нейтронах в г. Шевченко, Казахская ССР. Первый энергетический реактор на быстрых нейтронах БН-350 проработал более четверти века. Опыт его эксплуатации стал подтверждением научных и технических идей, которые были в него заложены. В процессе эксплуатации реактора БН-350 были выполнены многочисленные материаловедческие исследования, изготовлена партия экспериментальных ТВС со смешанным оксидным топливом, которые позволили провести измерения коэффициента воспроизводства и сравнить его с расчётным значением. Эксплуатация БН-350 подтвердила надёжность и безопасность энергоблоков с быстрыми натриевыми реакторами, их лёгкость в управлении.
Привычный нам мир держится на углеводородной энергетике — львиная доля электричества, которую мы потребляем, получена путем сжигания нефти и газа. Однако запасы углеводородов на планете ограничены, их, по разным оценкам, хватит еще на 40—60 лет, а спад в добыче нефти и газа по некоторым оценкам может начаться уже с 2020 года. Так что вопрос о том, как жить дальше, с каждым годом становится все острее, а работы по поиску энергетической альтернативы — все масштабней. Если не считать возможности использования энергии ветра и Солнца, до последнего времени науке было известно всего две такие возможности: извлечение энергии за счет деления ядер тяжелых элементов, или при слиянии ядер самых легкого — водорода — с образованием ядра атома гелия. К сожалению, обе эти возможности весьма опасны — ведь в первой, по существу, приходится приручать атомный взрыв, во второй — термоядерную реакцию, которая питает звезды и пугает нас водородной бомбой. В мире существует два класса ядерных реакторов: на медленных нейтронах водо-водяные, сокращенно ВВЭР, большой мощности канальные, или РБМК, на тяжелой воде и с шаровой засыпкой и газовым контуром и на быстрых нейтронах. Реакторы на быстрых нейтронах кардинально отличаются от всех остальных: плотность тепловыделения в них в несколько раз больше, поэтому в качестве теплоносителя там приходится использовать жидкий натрий или свинец вместо воды. При работе такого реактора происходит очень интенсивное выделение нейтронов, которые поглощаются слоем урана-238, расположенного вокруг активной зоны. Этот уран превращается в плутоний-239, который затем тоже может использоваться в реакторе как делящийся элемент. Именно этот факт стал основным аргументом в пользу новой программы "Росатома", которая предполагает использовать блоки с "быстрыми" реакторами в сочетании с реакторами на тепловых нейтронах. Предполагается, что с помощью "быстрых" реакторов можно будет эффективнее решать проблему накопления отработанного ядерного топлива ОЯТ "тепловых" реакторов, уменьшая радиотоксичность этого ОЯТ, чтобы в некой перспективе приблизиться к так называемому замкнутому топливному циклу, когда объем и токсичность захораниваемого ОЯТ сравняется с объемом и токсичностью природного сырья "на входе". Общий и все более существенный в современном нестабильном мире недостаток всей атомной энергетики состоит в том, она фактически исключает возможность контроля за нераспространением ядерного оружия на Земле: ведь каждое государство, имеющее на своей территории современную АЭС, которая постоянно производит плутоний, может теоретически сделать свою собственную атомную дубину.
Теперь их просто не нужно накапливать, ведь отработанное топливо будут использовать снова. Кроме того, заменили теплоноситель в реакторе. В нем нет натрия, только свинец, у которого высокая температура кипения. То есть, как говорят специалисты, вероятность какой-либо серьезной аварии ничтожно мала. После того как опытный образец покажет свою эффективность, подобные или более мощные реакторы начнут возводить по всей России.
Реакторы на тепловых и быстрых нейтронах станут работать совместно, обеспечивая повторное использование отработавшего ядерного топлива ОЯТ и дожигание долгоживущих изотопов из него, а также наработку нового топлива из оставшихся после обогащения природного урана так называемых урановых хвостов. Бридер-долгожитель и бридер-инноватор Белоярская АЭС — единственная станция в мире с реакторами на быстрых нейтронах промышленного уровня мощности. Его изготовили на опытных производствах объединения «Маяк» и Научно-исследовательского института атомных реакторов. Для таблеток используется обедненный уран и высокофоновый плутоний, извлеченный из облученного топлива тепловых реакторов. Американский журнал Power, одно из старейших профессиональных изданий, назвал это событие в числе главных в мировой энергетике.
К «Прорыву» добавляется реактор
Несмотря на то, что разработкой реакторов на быстрых нейтронах занимались еще в СССР, для промышленного производства МОКС-топлива пришлось построить отдельный завод. Реактор четвертого поколения на быстрых нейтронах даст дополнительный импульс развитию отрасли. И реактор на быстрых нейтронах немного уменьшает их количество. Элементы многоцелевого исследовательского реактора на быстрых нейтронах (МБИР) отправлены из Волгодонска в Димитроград на место постоянной сборки.
"Росатом" начнет испытания топлива для "реактора будущего" на Белоярской АЭС в 2023 году
The Program is intended to create a new technological platform for the nuclear engineering based on the closed fuel cycle involving fast reactors. The purpose of the MBIR construction is to have a high-flux fast test reactor with unique capabilities to implement the following tasks: in-pile tests and post-irradiation examination, production of heat and electricity, testing of new technologies for the radioisotopes and modified materials production.
Вряд ли кто-то из простых обывателей обратил внимание на недавно мельком проскочившую в СМИ информацию — о том, что правительство России утвердило предложенный "Росатомом" план сооружения на территории страны целого ряда объектов ядерной энергетики, которые должны быть введены в эксплуатацию до 2030 года. Сообщалось также, что "в рамках проекта "Прорыв" будет отработана новая технология ядерной энергетики будущего — полное замыкание ядерного топливного цикла". Скорая реакция источников, близких к "Росатому," в формате: "правительство России согласилось с предложенным "Росатомом" календарным планом настоящей атомной технической революции, которая позволит ей окончательно закрепить за собой роль лидера высоких технологий" говорит о том, что это событие - отнюдь не рядовое. Ведь что бы ни говорили представители атомного лобби о мнимой дешевизне атомного киловатта, капитальные затраты на реализацию этой программы существенны - к примеру, стоимость строительства одной только Курской АЭС-2 это четыре двухблочных АЭС с водо-водяным энергетическим реактором ВВЭР-1300, см. Что дадут "быстрые нейтроны" в ближайшей перспективе?
Привычный нам мир держится на углеводородной энергетике — львиная доля электричества, которую мы потребляем, получена путем сжигания нефти и газа. Однако запасы углеводородов на планете ограничены, их, по разным оценкам, хватит еще на 40—60 лет, а спад в добыче нефти и газа по некоторым оценкам может начаться уже с 2020 года. Так что вопрос о том, как жить дальше, с каждым годом становится все острее, а работы по поиску энергетической альтернативы — все масштабней. Если не считать возможности использования энергии ветра и Солнца, до последнего времени науке было известно всего две такие возможности: извлечение энергии за счет деления ядер тяжелых элементов, или при слиянии ядер самых легкого — водорода — с образованием ядра атома гелия. К сожалению, обе эти возможности весьма опасны — ведь в первой, по существу, приходится приручать атомный взрыв, во второй — термоядерную реакцию, которая питает звезды и пугает нас водородной бомбой. В мире существует два класса ядерных реакторов: на медленных нейтронах водо-водяные, сокращенно ВВЭР, большой мощности канальные, или РБМК, на тяжелой воде и с шаровой засыпкой и газовым контуром и на быстрых нейтронах.
Реакторы на быстрых нейтронах кардинально отличаются от всех остальных: плотность тепловыделения в них в несколько раз больше, поэтому в качестве теплоносителя там приходится использовать жидкий натрий или свинец вместо воды.
Мы предлагаем источники бесперебойного питания ИБП следующих производителей: IMD, GE, Delta, Mwell, Riello, Eaton, которые обеспечивают надежную защиту качественной электроэнергией практически любой объект или оборудование. Источники бесперебойного питания представляют собой устройства, которые используют энергию заряда аккумуляторных батарей для питания нагрузки в «аварийном» режиме работы. ИБП используются в целях защиты различного высокочувствительного электрооборудования, такого как рабочие станции ,системы телекоммуникаций, системы управления технологическими процессами, торговые терминалы, компьютеры, измерительные приборы. Источники бесперебойного питания решают проблемы при некачественном питании сети или полной потери питания.
Действительно, успешное испытание реактора данного типа означает начало практически безотходной ядерной энергетики с доступом к урану-238. Его хватит человечеству на миллионы лет. Сообщается, что отечественные реакторы на быстрых нейтронах ранее загружались обычным урановым топливом, т. Перевод реактора на МОКС-топливо позволит ответить на целый ряд важных вопросов, а также приблизит создание технологической платформы, в основе которой будет замкнутый ядерный топливный цикл.
Быстрое семейство
- БН-800 — Википедия
- Бесконечная энергия: «Росатом» строит первый в мире реактор с замкнутым циклом
- Также по теме
- Радиационные явления в реакторных материалах обсудили в Обнинске
"Росатом" начнет испытания топлива для "реактора будущего" на Белоярской АЭС в 2023 году
Он также зачитал поздравление от имени депутатов Государственной Думы Российской Федерации, адресованное коллективу Физико-энергетического института им. От имени администрации Обнинска к участникам обратился Глава городского самоуправления, Председатель Обнинского городского Собрания Геннадий Артемьев. Он подчеркнул, что вклад ученых Физико-энергетического института оказался решающим в этом историческом событии. Доктор физико-математических наук, профессор, президент ядерного общества Казахстана Владимир Школьник в своем выступлении отметил перспективность технологии быстрых реакторов и актуальность направления по выводу отработавших ядерных установок из эксплуатации. Сочетание быстрых и тепловых реакторов в организации замкнутого цикла и исследования тех лет остаются актуальными, и я очень рад, что в Физико-энергетическом институте данные работы продолжаются, так как они имеют важное значение для будущего развития атомной энергетики. Эту тему нужно продолжать. Очень приятно отметить работы по материаловедению, особенно систематизированные данные исследований по радиационному распуханию. Это послужит дальнейшему развитию реакторов на быстрых нейтронах и пониманию, что происходит в радиационных полях с различными материалами».
Для тепловых реакторов нужно постоянно добывать уран из-под земли, обогащать его, а потом этот драгоценный изотоп уран-235 выгорает. А в случае уранплутониевого топлива получается так: мы берём обеднённый уран и плутоний, кладём в реактор, там плутоний одновременно и выгорает, и нарабатывается.
И дальше уже вопрос баланса. Козёл, МОХ и жёлтый кек: как хорошо вы понимаете язык атомщиков Есть так называемый коэффициент воспроизводства, то есть соотношение между тем, сколько плутония мы запихнули в реактор, и тем, сколько выгрузили после того, как сборка отработает. Если он меньше единицы, значит, выработалось меньше, чем сгорело. На тепловых реакторах коэффициент воспроизводства топлива гораздо меньше единицы. Для справки Идею быстрых реакторов предложил ещё в 30-е годы XX века лауреат Нобелевской премии по физике Энрико Ферми, «папа» первого в мире ядерного реактора. Он доказал, что быстрые реакторы способны создавать делящиеся материалы и поэтому в них можно попробовать максимально использовать возможности урана. Эту идею тут же подхватили в СССР. Первый быстрый реактор, БН-1, построили в нашей стране в 1955 году. Он обладал низкой мощностью, зато проведённые на нём исследования доказали: в быстрых реакторах действительно можно воспроизводить топливо.
Эксперименты продолжились. Начиная с 1969 года в НИИ атомных реакторов в Димитровграде работает БОР-60 — в нём исследуют топливо и материалы для быстрых реакторов. Затем был БН-600, который запустили в 1980-м, — он, кстати, также действует до сих пор. В январе 1997 года получил лицензию на производство проект реактора БН-800, в декабре 2015-го блок с этим реактором заработал на Белоярской АЭС. Мы берём ядерные отходы, делаем из них МОКС-топливо, кидаем его в реактор, оно там выделяет энергию, производит плутоний — и так до бесконечности? Если говорить простым языком, из отработанного МОКС-топлива сначала удаляются вредные и ненужные продукты ядерной реакции — осколки деления. А уран и плутоний остаются. Мы «подливаем» в них недостающие элементы — и вот тогда снова отправляем работать в реактор. У МОКС-топлива есть ещё одно преимущество, как подарок будущим поколениям, — замыкание топливного цикла с точки зрения утилизации америция и нептуния.
Это два очень вредных продукта деления ядерной реакции в любом реакторе. И реактор на быстрых нейтронах немного уменьшает их количество. То есть если топливо изначально содержит америций или нептуний, то можно таким образом облучить это топливо в реакторе на быстрых нейтронах, что они выгорят или превратятся во что-то более нейтральное, — и всё, не нужно это опасное вещество где-то хранить. Для справки В чём различие между тепловым и быстрым реактором?
Единственными серьезными конкурентами России в этой области сейчас являются китайцы, которые, однако, используют российское топливо с обогащенным ураном: они запустили экспериментальный реактор на быстрых нейтронах CEFR в 2011 году, а сейчас строят демонстрационный блок, который должен заработать в ближайшие годы. Первый китайский опытный реактор CEFR мощностью 65 мегаватт проектировался в 90-х годах в России, но строился китайцами самостоятельно. Пущенная в 2010 году эта установка стала для Китая своего рода полигоном, где нарабатывается понимание, каким образом строить и эксплуатировать быстрые натриевые реакторы. Однако с 2011 года и по сей день CEFR находится в полурабочем состоянии. Не выполнена и задача перевода реактора на собственное МОКС-топливо. Отдельно насчет «вечности». Сейчас на всех мировых АЭС, кроме Белоярской, используется уран-235, который составляет менее одного процента имеющегося в природе урана. Топлива для реакторов на быстрых нейтронах хватит человечеству более чем на три тысячи лет. Создается он в рамках росатомовского проекта «Прорыв». Это упрощает управление и повышает энергоэффективность реактора. Конструкция БРЕСТ-300 обеспечивает так называемую естественную безопасность: на этом реакторе невозможна авария из-за неконтролируемого выброса нейтронов, приводящего к цепным реакциям, например в случае разгона реактора по мощности. Реактор такого типа с электрической мощностью 300 МВт уже начали возводить в Северске Томская область. Вокруг него будет построен комплекс, который позволит решать задачи регенерации топлива.
Исключение выделения плутония в топливном цикле при переработке облучённого ядерного топлива [20]. Более чем 50-кратное увеличение использования добываемого природного урана, и обеспечение атомной энергетики России топливом на длительную перспективу за счёт своего воспроизводства. Утилизация отработанного ядерного топлива с АЭС на тепловых нейтронах. Утилизация радиоактивных отходов путём вовлечения в полезный производственный цикл отвального урана и плутония. Энергообеспечение развития экономики Свердловской области. До октября 2016 года — выполнение обязательств по утилизации оружейного плутония в рамках соглашения [21]. Выполнение обязательств приостановлено на основании Федерального закона от 31. При награждении было отмечено, что данный энергоблок: является самым мощным в мире реактором-размножителем на быстрых нейтронах с жидкометаллическим натриевым теплоносителем является универсальным устройством, пригодным для производства электроэнергии, утилизации плутония, утилизации отработанного ядерного топлива с АЭС на тепловых нейтронах, производства изотопов играет решающую роль в формировании экологически чистого «замкнутого» ядерного топливного цикла, увеличении объёмов производства ядерного топлива, увеличении мощности АЭС и сокращении ядерных отходов Безопасность реакторов типа БН, в частности БН-800[ править править код ] В разделе не хватает ссылок на источники см. Это качество убедительно продемонстрировано в процессе длительной эксплуатации предшествующего реактора БН-600. Принят целый ряд новых решений: они основываются на пассивных принципах. Это означает, что эффективность не зависит от надёжности срабатывания вспомогательных систем и действий человека.
Радиационные явления в реакторных материалах обсудили в Обнинске
Кстати, до того, как Россия представила неопровержимые доказательства, многие зарубежные учёные просто отказывались верить, что созданная на нашей земле новая силовая установка не только не оставляет после себя грязных радиоактивных отходов, но ещё и полностью безопасна: она может выдержать и ураган, и землетрясение, и наводнение, не навредив ни людям, ни окружающей среде. Одна из тайн нашего чудо-реактора заключается в том, что, в качестве теплоносителя, он использует свинец. Этот металл, даже в случае попадания в «горячую зону» силовой установки, не вступает в реакцию. Соответственно, отравления окружающей среды не произойдёт. Да и заставить кипеть свинец крайне трудно. Даже если и случится внештатная ситуация, реактор остынет и надёжно законсервирует сам себя. В зарубежных «быстрых» реакторах в качестве теплоносителя используют натрий, что гораздо опаснее.
Справка В России сейчас около 18 тысяч тонн радиоактивных отходов, требующих захоронения или глубокой переработки. Для сравнения, в США таких отходов 110 тысяч тонн, а всего в мире - 345 тысяч тонн. Экономика решает всё Однако, помимо безопасности, повышенной энергоотдачи и безотходности, есть у нашего «Прорыва» и ещё один козырь: с точки зрения экономики, он крайне низкозатратен. Теперь когда прототип реактора уже создаётся, ответственные ведомства уточнили свои планы.
Его цель - создание ядерно-энергетического комплекса, который позволит организовать пристанционный замкнутый ядерный топливный цикл, что даст возможность не только производить электричество, но и готовить из топлива, выгружаемого из активной зоны реактора, новое. Сообщалось, что общий объем инвестиций в проект "Прорыв" по состоянию на сентябрь 2022 года оценивался в 240 млрд рублей.
RU 2264 В России стартовала реализация уникального проекта в области энергетики. В Томской области начато строительство опытно-демонстрационного энергоблока под названием БРЕСТ-300-ОД с реактором на быстрых нейтронах, использующим свинцовый теплоноситель. По факту нашу «страна-бензоколонка» приступила к созданию технологии замкнутого ядерного цикла. Как же такое стало возможным, и что это означает для отечественной и мировой энергетики? Фото из открытых источников При всем уважении к модной нынче «зеленой» энергетике, полностью заменить собой традиционную она не в состоянии. Последняя тоже не является панацеей, поскольку запасы ископаемого топлива для нее угля, газа, нефти являются исчерпаемыми. Хорошие перспективы имеются у ядерной энергетики с привычными реакторами на тепловых нейтронах, но для их работы также требуется редкий и дорогой уран U-235. Однако есть вариант с так называемым «замкнутым топливным циклом», где ставка делается на реакторы на быстрых нейтронах, которые могут перерабатывать природный U-238 и торий. Что же это за технология такая, и почему будущее именно за ней? Во время работы обычного ядерного реактора тяжелое ядро урана, плутония или тория при делении выпускает несколько «лишних» нейтронов, что приводит к эффекту наведенной радиоактивности.
Благодаря интегральной компоновке весь объем теплоносителя собран в реакторе, поэтому аварии с потерей охлаждения активной зоны невозможны. Такие особенности установки позволили отказаться от массивной гермооболочки, ловушки расплава, большого объема обеспечивающих систем, а также дали возможность снизить класс безопасности внереакторного оборудования. Новое топливо Для быстрых реакторов необходимо специальное топливо, обычно оксиды урана или урана и плутония. СНУП-топливо получают из обедненного урана, оставшегося после обогащения, и энергетического плутония, произведенного из облученного топлива, с помощью технологии карботермического синтеза. По мнению ученых, применение нитридов позволит удлинить топливную кампанию, то есть время работы топливной сборки, и тем самым улучшить экономические показатели эксплуатации. Новая жизнь атомной энергетики Как уже было сказано, блок с реактором БРЕСТ — компонент опытно-демонстрационного энергетического комплекса. Кроме реакторного блока в ОДЭК входит пристанционный завод, состоящий из модуля переработки облученного смешанного уран-плутониевого топлива и модуля фабрикации-рефабрикации, где будут изготавливаться тепловыделяющие элементы для БРЕСТ. На заводе планируется производить топливо, компоненты которого со временем будут извлекаться из облученного ядерного топлива ОЯТ. Благодаря переработке ОЯТ топливный цикл удастся замкнуть.
Создание такого цикла на ОДЭК предусматривает включение в топливо минорных актинидов радиотоксичных трансурановых элементов, образующихся в процессе облучения для их последующей трансмутации. Благодаря взаимодействию с быстрыми нейтронами кюрий, нептуний и америций будут превращаться в другие, менее опасные химические элементы. Первый — БН-800, в котором также используются обедненный уран и плутоний из облученного топлива.
"Росатом" начнет испытания топлива для "реактора будущего" на Белоярской АЭС в 2023 году
О строительстве уникального энергоблока с реактором на быстрых нейтронах, о неиссякаемом источнике безопасной атомной энергии и о том, почему небольшой сибирский город Северск становится одной из мировых атомных столиц, — в материале «». Программа «Росатома» предполагает использовать блоки с «быстрыми» реакторами в сочетании с реакторами на тепловых нейтронах. Интерфакс: Реактор на быстрых нейтронах БРЕСТ-300 в Томской области может быть введен в 2028-2029 гг., сообщил глава госкорпорации "Росатом" Алексей Лихачев в интервью телеканалу "Россия-24".
Ученые Росатома обсудили в Обнинске будущее развитие реакторов на быстрых нейтронах
Затем контейнеры с готовыми изделиями доставляют на Урал и уже на атомной станции, словно батарейки, загружают в реактор. Реактор БН-800 — изделие экспериментальное и для мировой энергетики было своего рода вызовом. Теперь, когда стабильная работа на МОКС-топливе доказана, на основе уральской установки создадут серийное изделие БН-1200. Будущий флагман отечественной и мировой атомной энергетики. Второй момент — мы в десятки раз уменьшаем количество поступающего на хранение отработанного ядерного топлива и решаем проблему с утилизацией высокоактивных радиоактивных отходов", — заявил Валерий Шаманский, замглавного инженера БАЭС по безопасности и надежности. Главный критерий, за которым предельно внимательно следили на всех этапах работы передового реактора — безопасность. После аварии на Фукусиме в конструкцию даже внесли дополнительные изменения. Хотя и без этого она надежно защищена.
The purpose of the MBIR construction is to have a high-flux fast test reactor with unique capabilities to implement the following tasks: in-pile tests and post-irradiation examination, production of heat and electricity, testing of new technologies for the radioisotopes and modified materials production.
Отрицательно сказываются на увеличении общих затрат и такие факты, как отставание наших ядерных энергоблоков по мощности от зарубежных аналогов. И мы верим, что госкорпорация «Росатом» справится с имеющимися сложностями. Названные выше меры, предпринимаемые в целях развития ядерной энергетики в нашей стране, - еще не весь объем необходимых работ. В России он должен быть комплексным - от добычи урана до захоронения радиоактивных отходов. Сегодня для заключительной стадии ядерной энергетики под Красноярском г. Железногорск срочно строится хранилище для отработанных твэлов. В практике ядерной энергетики всегда было три направления окончания ядерного топливного цикла.
Понятно, что со временем позиции стран претерпевают изменения. Так, в США объем захоронений ОЯТ может стать столь велик, что трудно будет найти новые площадки помимо ныне строящегося хранилища в горах Юкка-Маунтин в штате Невада примерно в 145 км от Лас-Вегаса , поэтому придется принимать решение о переработке ОЯТ и т. Наиболее перспективным направлением является, конечно, полезное использование плутония, а с ним и других накапливающихся трансурановых элементов нептуния, америция, кюрия. Оптимальным в этом направлении является также использование плутония в реакторах на быстрых нейтронах. Это позволяет производить в них и сжигание урана-238, и увеличение за этот счет сырья для ядерной энергетики на сотни и тысячи лет. Данное направление, к сожалению, в мире пока осваивается с трудом. Так, в США разработки опытного реактора на быстрых нейтронах были прекращены без каких-либо конкретных планов по строительству более мощных промышленных установок. Но сегодня США пытаются вернуться к развитию этого направления. Во Франции после многолетних исследований на опытном реакторе «Феникс» 14 января 1986 г.
Его эксплуатация закончилась неудачно, и в июне 1 997 г. В то же время продолжаются испытания реактора «Феникс», а также есть планы создания нового промышленного реактора. Япония продолжает работы по повторному введению в эксплуатацию опытного быстрого реактора «Мондзю» мощностью 280 МВт. Он был остановлен в 1 995 г. Японские специалисты считают, что «наличие в Японии быстрых реакторов признано жизненно важным для успешного развития национальной ядерной энергетики» [6]. А в местечке Роккасё префектуры Аомори завершаются работы по вводу в строй завода по переработке ОЯТ и получению уран-плутониевой смеси» [7]. Опытный реактор на быстрых нейтронах построен и в Китае. Об этом подробно писал журнал «Бюллетень по атомной энергии» в 2007 г. Индия в рамках программы, рассчитанной до 2017 г.
Вопросам развития направления быстрых реакторов большое внимание уделяет индийское руководство, о чем свидетельствует хотя бы следующее сообщение: «Индия в рамках программы, рассчитанной до 2017 года, решила соорудить еще четыре 500-мегаваттных реактора на быстрых нейтронах» [9]. В настоящее время на площадке ядерного комплекса Калпаккам сооружается две установки на быстрых нейтронах, ассигнования на это уже составили более 727 млн долл. Там же планируются построить еще две из названных АЭС, а еще для двух ищут место. Невольно возникает вопрос, а не отстанет Россия, ныне передовая страна со своим реактором на быстрых нейтронах БН-600, от Индии в области строительства быстрых реакторов? Советский Союз постоянно работал над созданием замкнутого топливного цикла в своей стране. И создание реакторов на быстрых нейтронах было одним из основных и постоянных направлений программы развития ядерной энергии. Опытный аппарат БН-60 в г. Димитровграде, ныне остановленный опытно-промышленный реактор БН-350 в Казахстане, а также успешно работающий один из лучших реакторов России БН-600 на Белоярской АЭС - все это серьезный опытный полигон будущего быстрой ядерной энергетики. В декабре 2006 г.
Кириенко сказал: «Блок на быстрых нейтронах БН-600, расположенный на Белоярской атомной станции, уникален. Это зона наших конкурентных преимуществ. Здесь Россия безусловный лидер. Следующий шаг - это строительство БН-800. Своевременный ввод БН-800 является ключевой позицией и принципиальным вопросом с точки зрения значимости для будущего развития ядерной энергетики» [10]. Ввод в эксплуатацию БН-800 Федеральной целевой программой «Развитие атомного энергопромышленного комплекса России на 2007-2010 годы и на перспективу до 2015 года» запланирован на 2012 г. Дальше это будет положено в основу разработки уже коммерческого реактора в полном смысле этого слова. Мы настроены оптимистично: он может появиться к 2020 г. Хочется сослаться еще на одну статью, связанную с проблемой быстрых реакторов.
Он отметил, что в июне 2006 г.
Его изготовили на опытных производствах объединения «Маяк» и Научно-исследовательского института атомных реакторов. Для таблеток используется обедненный уран и высокофоновый плутоний, извлеченный из облученного топлива тепловых реакторов. Американский журнал Power, одно из старейших профессиональных изданий, назвал это событие в числе главных в мировой энергетике. Через год загрузили более крупную партию, еще 160 тепловыделяющих сборок, и с того времени при всех последующих перегрузках использовали только инновационное топливо. Осенью 2023 года заменили и их.