Коэффициент поверхностного натяжения зависит от химического состава жидкости и от ее температуры. Поверхностное натяжение. Также поверхностное натяжение зависит от наличия примесей в жидкости, потому что, чем сильнее концентрация примесей в жидкости, тем слабее силы сцепления между молекулами жидкости. Сила поверхности натяжения зависит от плотности жидкости. (следовательно и от рода жидкости).
Поверхностное натяжение жидкости - формулы и определение с примерами
Вследствие этого возникает некая направленная вглубь жидкости равнодействующая сила. Поверхностные молекулы втягиваются внутрь жидкости, с помощью действия сил межмолекулярного притяжения. Однако все молекулы, в том числе и принадлежащие пограничному слою, должны находиться в состоянии равновесия. Оно достигается за счет сокращения расстояния между молекулами в пограничном слое и ближайшими их соседями в жидкости.
Таким же образом должны вести себя и молекулы газа при очень тесном сближении[69], и молекулы твердых тел[70]. Например, молекулы указательного и большого пальца отталкиваются при сжатии — какая другая причина могла бы помешать пальцам проникнуть один в другой? Но твердые вещества тоже сопротивляются попыткам растащить их в разные стороны; молекулы этих веществ должны притягивать друг друга. Мы представляем себе, что между молекулами твердых тел действуют два типа сил: силы отталкивания, которые, как показывает опыт, действуют только на очень малых расстояниях, т. В обычном ненапряженном твердом теле каждая молекула занимает нейтральное положение, так что равнодействующая этих сил равна нулю.
При сжатии твердого тела возрастающее отталкивание между молекулами оказывает сопротивление. Молекулы в твердом теле, жидкости и газе. Молекулы сохраняют более или менее постоянное положение, но по мере нагревания тела они колеблются все больше и больше; б — в жидкостях молекулы расположены близко друг к другу, как в твердых телах, но свободно перемещаются среди своих соседей. Чем выше температура, тем быстрее движение и тем более бурно происходят столкновения молекул; в — в газах молекулы находятся далеко друг от друга и быстро движутся, время от времени сталкиваясь чем выше температура, тем быстрее они движутся. Во время столкновений молекулы должны отталкиваться, в остальное время их действие друг на друга пренебрежимо мало. При растяжении твердого тела отталкивание уменьшается больше, чем притяжение, и снова возникает напряжение, сопротивляющееся нашим усилиям. Опыты показывают, что притяжение действует не на очень больших расстояниях, а лишь на расстоянии одного или двух диаметров молекул. Тут как будто возникает противоречие.
Жидкости должны были бы хоть немного растягиваться при растяжении, на самом же деле при попытке растяжения они распадаются на части и в них образуются пузырьки пара. Однако если позаботиться о тщательном удалении растворенного воздуха, жидкость можно заставить выдержать растяжение и вести себя необычным образом. Например, вода или ртуть держатся в верхней части барометра намного выше «высоты атмосферного столба», а сифон может работать в вакууме! Жидкости оказываются «слабыми, как вода» только в результате вредного влияния маленьких пузырьков воздуха. Молекулярное объяснение поверхностного натяжения. Итак, тот факт, что жидкости сохраняют свой объем, мы «объяснили» наличием дальнодействующих сил притяжения. Посмотрим, не смогут ли эти силы объяснить существование поверхностного натяжения. Представим себе состояние молекулы А в середине сосуда с водой фиг.
Со всех сторон ее толкают другие молекулы. Кроме того, со всех сторон ее притягивают ближайшие соседи — и равнодействующая сила притяжения равна нулю. Силы, действующие на молекулы, в жидкости. Теперь рассмотрим другую молекулу В, находящуюся на поверхности воды. Ее тоже толкают, но не со всех сторон, и тоже притягивают, но не во всех направлениях. В области действия сил притяжения у нее есть соседи снизу и с каждой стороны, но нет соседей сверху. Равнодействующая сил притяжения направлена внутрь жидкости и уравновешивается действием столкновений снизу. Таким образом, молекула В испытывает притяжение вниз, наподобие дополнительного веса.
Во внутренних областях большой круглой капли молекулы будут, подобно молекуле А, испытывать равномерное притяжение со всех сторон. Молекулы на поверхности, подобно молекуле В, будут втягиваться внутрь. Так как такие молекулы В будут пытаться приблизиться к центру капли, поверхность будет стремиться сжаться; по существу создается впечатление, что капля имеет сжимающуюся оболочку. Очевидно, если на поверхности образуется гребень, молекулярное притяжение распрямит его, несмотря на мешающие возмущения небольшое углубление на поверхности также исчезнет, хотя это менее очевидно ; в результате притяжения молекул все неровности на поверхности будут сглаживаться фиг. Поверхностные силы в небольшой капле жидкости. Действующее на молекулы типа В притяжение соседей стремится придать массе жидкости сферическую форму. Заметьте, что сфера имеет минимальную поверхность при заданном объеме. Если на поверхности появляются небольшие неправильности, поверхностные силы стремятся устранить их.
Чтобы представить себе общую картину, сравните заполненную молекулами каплю с толпой людей, привлеченных уличной дракой. Прибывает все больше и больше заинтересованных зевак. Опоздавшие плохо видят, что происходит, они напирают на впереди стоящих — их притягивает любопытство, но они напирали бы так же, если бы их притягивали просто стоящие впереди соседи. Как влияет это притяжение к центру на толпу в целом? Подвижная толпа стягивается в круг с минимальным внешним периметром. Круг имеет меньшую протяженность периметра, нежели любая другая фигура с той же общей площадью. Человек А, находящийся в глубине толпы, оказывается сжатым, и если ему позволяет рост, то видит, что его неприятные ощущения вызваны напирающими на него людьми, нажимающими внутрь. Он будет страдать точно тай же, если накинуть на толпу огромный пояс и затягивать его.
Натянутый пояс будет влиять на внешнюю форму толпы и на тесноту внутри нее точно так же, как и стремление людей, находящихся снаружи, пробиться к середине. Поможет ли эта аналогия[72] понять, каким образом молекулярное притяжение оказывает то же действие, что и эластичная оболочка, растянутая по всей поверхности жидкости? С молекулярной точки зрения на поверхности жидкостей существует не реальная «шкурка», как у кролика, а особый слой внешних молекул. Соотношение между поверхностными и объемными эффектами. Насекомые и поверхностное натяжение Почему эта «оболочка» превращает маленькие капли в совершенные по форме шарики вопреки действию силы тяжести и не может сделать этого с более крупными лужами? С молекулярной точки зрения согласно нашей теории, если вам угодно это обусловлено особым поведением молекул, расположенных на поверхности. Эти силы действуют на поверхности и не связаны с основной массой жидкости. Но сила тяжести действует на всю жидкость, равным образом на ее внешние и внутренние слои.
Поверхностное натяжение — это «поверхностный эффект», а вес — «объемный эффект», и их относительная важность будет изменяться в зависимости от реального размера капли или лужи. Представим себе, что поверхностные силы возрастают прямо пропорционально величине поверхности[73], тогда как вес, конечно, возрастает пропорционально объему. Рассмотрим превращение небольшой капли в каплю, в 10 раз большую. Для простоты представим, что капли имеют вид кубиков[74]: маленького С1 фиг. Как соотносятся их поверхности? Кубические «капли». Сравнение поверхности и объема. Каждый куб имеет шесть граней.
Куб с десятикратными линейными размерами имеет в 102, или в 100 раз, большую поверхность. Как соотносятся объемы этих кубов? Они соответственно равны а3 и 10а 3, т. Объем одного куба превышает объем другого в 103, или в 1000 раз, и, следовательно, вес воды в нем будет в 1000 раз больше. При переходе от малого кубика к большому поверхностные эффекты возрастут только в 100 раз, но действие силы тяжести возрастет в 1000 раз; таким образом, ее относительное значение увеличится в 10 раз. На самом же деле силы поверхностного натяжения растягивают каждую границу, или край, поверхности. Поэтому они возрастают пропорционально линейным размерам, т. Для очень больших объемов сила тяжести во много раз превосходит влияние поверхностного натяжения; поэтому поверхность прудов плоская, а пролитое на пол ведро воды растекается под действием силы тяжести.
На форму маленьких капель сильно влияет поверхностное натяжение, для очень маленьких капель это влияние становится определяющим. Для ныряющего в воду человека главную опасность представляет давление на него воды. Для крошечного клопа, ползущего по капле дождя, непреодолимы силы поверхностного натяжения. Теперь понятно, почему маленькие водяные насекомые могут бегать по поверхности пруда не проваливаясь? Они ничем не рискуют: большинство из них водой не смачивается и провалиться не может. Даже если их насильно затолкнуть под воду, они немедленно выскочат наружу, причем помогает им поверхностный слой. Для крошечных насекомых, тело которых имеет способность намокать, капля воды оказывается тюрьмой. Частично смачиваемые водой насекомые могут держаться на ее поверхности, если они достаточно малы, но, погрузившись однажды в воду, случайно проскочив через упругую поверхность, они уже не смогут выбраться наружу.
В жизни еще более мелких существ, например микробов, все определяется поверхностными силами; вес едва ли имеет для них какое-либо значение. Весь контакт с внешним миром они осуществляют через свою поверхность; через нее поступает пища, и, если они хотят двигаться, им надо изменять-форму своей поверхности. Не удивительно поэтому, что такие существа можно уничтожать с помощью ядов, которые покрывают их поверхность, подобно тому как краска наносится на волокна одежды. Размышления завели нас далеко от экспериментальных фактов. Некоторые из развитых идей подтверждаются последующими опытами, другие стоят лишь немногим более простой игры воображения, и их следует использовать только в той мере, в какой они приводят к плодотворным предположениям. Краевой угол с молекулярной точки зрения Все же мы можем развить дальше молекулярную картину и обсудить, как жидкости соприкасаются с твердыми телами, т. Возвращаясь к небольшим лужицам на столе и к классификации по краевым углам, нарисуем каплю, поверхность которой принимает выпуклую форму под влиянием поверхностных сил, действующих на молекулы фиг. Поверхностное натяжение и краевой угол с молекулярной точки зрения.
В том месте, где лужица соприкасается со столом, угловые молекулы должны также притягиваться столом. Совместное притяжение стола и жидкости и определяет краевой угол. Складывая силы притяжения как векторы, получаем равнодействующую R сил притяжения со стороны соседних молекул как жидкости, так и стола. Для поверхности жидкости эта равнодействующая играет роль «вертикали», и поверхность расположится перпендикулярно к ней, точно так же, как поверхность большой лужи принимает горизонтальное положение, перпендикулярно силе тяжести. Итак, краевой угол определяется направлением равнодействующей сил притяжения R; прежде чем продолжить обсуждение, рассмотрим подробнее силы, которые определяют форму поверхности. Молекулярные силы и поверхность жидкости Чтобы понять, почему поверхность жидкости располагается перпендикулярно равнодействующей сил притяжения R, вернемся к обсуждению сил, действующих на молекулу. На молекулы действуют: дальнодействующие силы: б притяжение соседей только в пределах нескольких диаметров молекул ; короткодействующие силы: в сильное отталкивание во время столкновений с соседями на расстоянии долей диаметра молекулы. Для описания поведения молекул вряд ли стоит применять термин «равновесие», но все же можно сказать, что в покоящейся жидкости каждая молекула в среднем находится в равновесии.
Коротко- и дальнодействующие силы. На любую молекулу на поверхности жидкости короткодействующие силы действуют со всех сторон и снизу, поэтому равнодействующая будут перпендикулярна поверхности. Равнодействующая дальнодействующих сил, которая уравновешивает эти короткодействующие силы, должна иметь противоположное направление, а следовательно, она также будет перпендикулярна поверхности. Из последнего утверждения следует и обратное — поверхность должна быть перпендикулярна равнодействующей сил притяжения, в противном случае все силы перемещали бы поверхность, пока она не приняла бы этого положения. Конечно, в молекулярном масштабе сама поверхность исчезает в хаосе беспорядочных движений, подобно границе толпы. Она представляется гладкой, только когда ее рассматривают издалека. Две из названных сил действуют на поверхность и меняют свое направление, когда поверхность изгибается. Это — короткодействующее отталкивание и дальнодействующее притяжение соседей.
Третья сила — земное притяжение — всегда направлена вертикально вниз. В большом пруду основное направление задается силой тяжести, которая превращает всю поверхность в горизонтальную плоскость; поэтому две другие силы также вертикальны. На молекулы же, расположенные вблизи твердой стенки или на поверхности небольшой искривленной капли, притяжение соседей влияет намного больше, чем сила тяжести. Поэтому для объяснения искривленного мениска или краевого угла силой тяжести можно пренебречь. Просто говорят: «Поверхность располагается перпендикулярно равнодействующей сил притяжения, которые действуют на молекулу, находящуюся на поверхности». Краевой угол и молекулярные силы Чтобы объяснить природу краевого угла с точки зрения молекулярных сил, рассмотрим силы притяжения, действующие на молекулу С, которая находится в том месте, где лужица жидкости соприкасается с твердым столом фиг. Силы, действующие на молекулу, находящуюся на краю небольшой лужицы жидкости. Лужица находится на столе, который сильно притягивает молекулы жидкости.
Во-первых, на нее действует притяжение соседей, находящихся внутри слоя жидкости; равнодействующая этих сил равна F1 и направлена по биссектрисе угла клина направление подсказано симметрией. Во-вторых, ее притягивают молекулы твердого стола с равнодействующей F2, которая перпендикулярна столу снова по соображениям симметрии. Векторное сложение сил F1 и F2 и дает их равнодействующую R; поверхность жидкости должна расположиться перпендикулярно R. Это схематически изображено на фиг. В таком случае краевой угол невелик и жидкость смачивает стол. Можно сказать, что сильно притягивающий стол побуждает жидкость растекаться. Таким образом, смачивание зависит от относительной силы молекулярного притяжения. Если молекулы жидкости притягиваются молекулами твердого тела сильнее, чем соседними молекулами самой жидкости, жидкость будет смачивать стол и растекаться.
С другой стороны, если молекула жидкости предпочитает своих собратьев молекулам стола, силу F1 следует нарисовать больше F2 и картина примет такой вид, как на фиг. Для «водоотталкивания», по-видимому, требуется, чтобы молекулы жидкости испытывали со стороны соседних молекул стола меньшее притяжение, чем со стороны соседних молекул жидкости. Лужица находится на столе, который слабо притягивает молекулы жидкости. Водоотталкивание и смачивание Таково молекулярное объяснение смачивания и краевого угла. Разве это не просто волшебная сказка, выдуманная для того, чтобы свести концы с концами? Нет, это объяснение совсем не так плохо, поскольку оно основано на молекулярных представлениях, которые используются в других областях физики и химии. Кроме того, оно позволяет сделать полезные рекомендации: 1 Для улучшения смачивания мечта прачек надо сделать F2 больше, чем F1, т. Это можно осуществить, применяя молекулы-посредники, которыми на практике являются молекулы мыла.
Таким образом, мы раскрыли секрет мыла и указали путь к созданию новых синтетических моющих средств. На вопрос: «Какой толщины должно быть покрытие? На вопрос: «Какова толщина молекулы? Это особенно заметно, когда жидкости поднимаются в очень узких трубках; «капиллярность» — полезное свойство жидкостей, и мы сейчас его разберем. Нагрейте кусок стеклянной трубки, растяните его в очень тонкую трубку и опустите один ее конец в чернила фиг.
Изучение и изменение межмолекулярных взаимодействий могут привести к разработке новых жидкостей с оптимальными поверхностными свойствами для конкретных приложений, таких как промышленность, медицина и наука. Эффект температуры на поверхностное натяжение разных родов жидкостей Влияние температуры на поверхностное натяжение может быть разным для разных родов жидкостей. Обычно поверхностное натяжение уменьшается с увеличением температуры. Это связано с тем, что при повышении температуры увеличивается кинетическая энергия молекул, что приводит к увеличению количества молекул, обладающих достаточной энергией для преодоления межмолекулярных сил и выхода на поверхность жидкости. Однако у разных родов жидкостей этот эффект может проявляться по-разному. Например, у некоторых жидкостей, таких как вода, эффект температуры на поверхностное натяжение может быть наиболее выраженным и значительным. При повышении температуры вода может «распадаться» на отдельные молекулы и образовывать пар, что приводит к увеличению доступных для образования поверхностного слоя молекул и, как следствие, уменьшению поверхностного натяжения. С другими родами жидкостей, такими как масла или спирты, эффект температуры на поверхностное натяжение может быть менее значительным. Это связано с более слабыми межмолекулярными взаимодействиями в этих жидкостях, что делает эффект температуры на поверхностное натяжение менее выраженным. Таким образом, рода жидкости влияют на поверхностное натяжение различными способами, причем эффект температуры может варьироваться для каждого рода жидкости. Это явление имеет важное значение в различных областях науки и технологии, таких как химия, физика, биология и материаловедение.
Однако, что наиболее важно, и то, что мало кто осознает, поверхностное натяжение позволяет вещам плавать, от листьев и семян до молекул и белков. Когда вы опускаетесь до микроскопического масштаба, поверхность любого водоема очень жива и поддерживается поверхностным натяжением молекул воды. Наши экосистемы не смогут выжить или даже развиваться без воздействия поверхностного натяжения, а сам состав воды будет менее стабильным, постоянно поступая и выходя из газообразного состояния. Поверхностное натяжение - это одна из тех деталей научного мира, которые, возможно, трудно осмыслить или оценить в вашей повседневной жизни, но на самом деле она лежит в основе всей жизни, как мы ее знаем. Поверхностное натяжение позволяет экосистемам процветать, оно позволяет семенам и молекулам плавать, и управляет большей частью жизни, хотя большинство людей не замечают этого. Это также дает интригующее напоминание о том, насколько сложна и замечательна каждая капля воды. В следующий раз, когда вы выдуете мыльный пузырь или капните воду с кончика листа, помните, что единственное, что делает эти маленькие чудеса возможными, это поверхностное натяжение!
ПОЧЕМУ ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ЗАВИСИТ ОТ РОДА ЖИДКОСТИ
В 19:58 поступил вопрос в раздел Физика, который вызвал затруднения у обучающегося. Вопрос вызвавший трудности Почему поверхностное натяжение зависит от рода жидкости? Ответ подготовленный экспертами Учись. Ru Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "Физика". Ваш вопрос звучал следующим образом: Почему поверхностное натяжение зависит от рода жидкости? После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом: Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии.
Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь.
Почему поверхностное натяжение зависит от рода жидкости? Силы взаимодействия между молекулами в различного рода жидкостях разные, избыточная потенциальная энергия их молекул на свободной поверхности жидкости также различная. Поэтому поверхностное натяжение в разных жидкостях разное.
Чем больше площадь поверхности жидкости, тем больше молекул, которые обладают избыточной потенциальной энергией, и тем больше поверхностная энергия. Коэффициент поверхностного натяжения — это физическая величина, которая характеризует данную жидкость и численно равна отношению поверхностной энергии к площади свободной поверхности жидкости. Коэффициент поверхностного натяжения не зависит от площади свободной поверхности жидкости, хотя может быть рассчитан с ее помощью. Если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать форму сферы, как капля воды или мыльный пузырь.
Если силы взаимодействия молекул жидкости с молекулами твердого тела больше сил взаимодействия между молекулами самой жидкости, то жидкость смачивает поверхность твердого тела случай с каплями воды на стекле. Краевой угол — угол между поверхностью твердого тела и касательной к поверхности жидкости в точке соприкосновения. Искривленная поверхность жидкости в узких цилиндрических трубках или около стенок сосуда называется мениском. Поверхность смачивающей жидкости вблизи твердого тела поднимается, и мениск — вогнутый. У несмачивающей жидкости её поверхность вблизи твердого тела несколько опускается, и мениск — выпуклый. Особенно хорошо наблюдается искривление мениска жидкости в тонких трубках, называемых капиллярами. Если в сосуд с жидкостью опустить капилляр, то жидкость в нем поднимется или опустится на некоторую высоту h.
Так как площадь поверхности мениска больше, чем площадь внутреннего сечения трубки, то под действием молекулярных сил искривленная поверхность жидкости стремится выпрямиться и этим создает дополнительное давление pл, которое при смачивании вогнутый мениск направлено от жидкости, а при несмачивании выпуклый мениск — внутрь жидкости. Величина этого давления была определена французским физиком Лапласом, поэтому его называют лапласовским давлением. Зарегистрируйте блог на портале Pandia. Бесплатно для некоммерческих и платно для коммерческих проектов. Регистрация, тестовый период 14 дней. Условия и подробности в письме после регистрации. Лапласовское давление — дополнительное давление, которое создается искривленной поверхностью жидкости.
При смачивании вогнутый мениск оно направлено от жидкости, а при несмачивании выпуклый мениск — внутрь жидкости. Для сферической формы свободной поверхности жидкости с радиусом R лапласовское довление выражается формулой Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра — капиллярах. Смачивающие жидкости поднимаются по капиллярам, несмачивающие — опускаются. Подъем смачивающей жидкости в капилляре. Верхний конец капилляра открыт. Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр. Вода практически полностью смачивает чистую поверхность стекла.
Наоборот, ртуть полностью не смачивает стеклянную поверхность. Поэтому уровень ртути в стеклянном капилляре опускается ниже уровня в сосуде, а уровень воды в стеклянном капилляре поднимается.
Урок 21. Лабораторная работа № 05. Измерение поверхностного натяжения жидкости (отчет)
- Смотрите также
- Почему поверхностное натяжение зависит от рода
- Почему поверхностное натяжение зависит от рода воды? - Физика »
- Урок 21. Лабораторная работа № 05. Измерение поверхностного натяжения жидкости (отчет)
Почему поверхностное натяжение зависит от рода воды?
Чем обусловлено это удивительное явление и почему величина поверхностного натяжения так сильно зависит от природы жидкости? Поверхностное натяжение на границе двух жидкостей зависит от полярности. Сила поверхности натяжения зависит от плотности жидкости. (следовательно и от рода жидкости). Правильный ответ здесь, всего на вопрос ответили 1 раз: Почему поверхностное натяжение зависит от рода жидкости?
Поверхностное натяжение жидкости
На вопросы могут отвечать также любые пользователи, в том числе и педагоги. Консультацию по вопросам и домашним заданиям может получить любой школьник или студент. Почему поверхностное натяжение зависит от рода воды?
Равнодействующая этих сил равна нулю. Равнодействующая же сил притяжения, действующих на молекулы поверхностного слоя, не равна нулю так как над поверхностью жидкости находится пар, плотность которого во много раз меньше, чем плотность жидкости и направлена внутрь жидкости. Под действием этой силы молекулы поверхностного слоя стремятся втянуться внутрь жидкости, число молекул на поверхности уменьшается, и площадь поверхности сокращается. Но все молекулы, разумеется, не могут уйти вовнутрь.
На поверхности остается такое число молекул, при котором площадь поверхности оказывается минимальной в каждом конкретном случае — при заданном объеме жидкости, силах, действующих на жидкость. Для перенесения молекул из глубины объема жидкости в ее поверхностный слой необходимо совершить работу по преодолению равнодействующей сил притяжения, действующих на молекулу в поверхностном слое.
Водородные связи, дисперсионные силы и диполь-дипольные взаимодействия являются примерами таких сил. В зависимости от химического состава и структуры молекул, эти силы могут быть различными для разных жидкостей. Межмолекулярные силы определяют, насколько сильно молекулы притягиваются друг к другу и как они упорядочены на поверхности жидкости.
В 1985 году аналогичный взгляд на физическую природу поверхностного натяжения как части внутренней энергии при решении другой физической задачи был опубликован В. Вайскопфом в США [5].
Поверхностное натяжение возникает на границе газообразных , жидких и твёрдых тел. Обычно под термином «поверхностное натяжение» имеется в виду поверхностное натяжение жидких тел на границе жидкость — газ. В случае жидкой поверхности раздела поверхностное натяжение правомерно также рассматривать как силу, действующую на единицу длины контура поверхности и стремящуюся сократить поверхность до минимума при заданных объёмах фаз.
Почему поверхностное натяжение зависит от состава и свойств жидкости
почему поверхностное натяжение зависит от рода жидкости | Дзен | Чем обусловлено это удивительное явление и почему величина поверхностного натяжения так сильно зависит от природы жидкости? |
Глава 6 Поверхностное натяжение: капли и молекулы | Поверхностное натяжение жидкости является причиной появления капиллярного эффекта. |
Форум самогонщиков, пивоваров, виноделов | Правильный ответ здесь, всего на вопрос ответили 1 раз: Почему поверхностное натяжение зависит от рода жидкости? |
Поверхностные явления
Почему поверхностное натяжение зависит от рода воды? Почему поверхностное натяжение зависит от рода жидкости?
Поверхностное натяжение Наличие свободной поверхности в жидкостях является одной из самых интересных ее особенностей.
В отличие от газов, жидкость не заполняет весь объем сосуда, в котором она находится. Между жидкостью и газом, возможно паром, возникает граница раздела, находящаяся в особых условиях по сравнению с остальной массой жидкости. В отличие от молекул в глубине жидкости, молекулы, располагающиеся в пограничном ее слое, окружены другими молекулами этой же жидкости не со всех сторон.
В жидкой воде, например, силы поверхностного натяжения обусловлены водородными связями между молекулами см. Химические связи. Поверхность стекла водой смачивается, поскольку в стекле содержится достаточно много атомов кислорода, и вода легко образует гидрогенные связи не только с другими молекулами воды, но и с атомами кислорода. Если же смазать поверхность стекла жиром, водородные связи с поверхностью образовываться не будут, и вода соберется в капельки под воздействием внутренних водородных связей, обусловливающих поверхностное натяжение. В химической промышленности в воду часто добавляют специальные реагенты-смачиватели — сурфактанты, — не дающие воде собираться в капли на какой-либо поверхности. Их добавляют, например, в жидкие моющие средства для посудомоечных машин. Попадая в поверхностный слой воды, молекулы таких реагентов заметно ослабляют силы поверхностного натяжения, вода не собирается в капли и не оставляет на поверхности грязных крапин после высыхания см.
Силы сцепления ответственны за поверхностное натяжение, склонность поверхности жидкости сопротивляться разрыву при растяжении или напряжении. Почему вода имеет сильное поверхностное натяжение и почему это важно? Вода имеет высокое поверхностное натяжение потому что водородные связи между молекулами воды сопротивляются растяжению или разрыву поверхности. Молекулы воды сильнее связаны друг с другом, чем с воздухом. Что вызывает высокое поверхностное натяжение, низкое давление пара и высокую температуру кипения воды? Многие уникальные и важные свойства воды, в том числе ее высокое поверхностное натяжение, низкое давление пара и высокая температура кипения, являются результатом водородная связь. Структура льда представляет собой правильный открытый каркас из молекул воды в шестиугольном расположении.
Молекулы воды удерживаются вместе посредством водородных связей. Почему вода имеет большее поверхностное натяжение, чем глицерин? Из-за относительно высоких сил притяжения между молекулами воды из-за сети водородных связей. Как вы объясните тот факт, что вода имеет наибольшее поверхностное натяжение, но самую низкую вязкость? Вода имеет самое высокое поверхностное натяжение, но самую низкую вязкость. Поскольку молекулы воды маленькие, они движутся очень быстро, что приводит к большому избытку энергии и, следовательно, к высокому поверхностному натяжению и низкой вязкости. Смотрите также, как безопасно наблюдать за солнцем Чем отличается поверхностное натяжение воды?
Чем отличается поверхностное натяжение воды от поверхностного натяжения большинства других жидкостей? Это выше. Имеет ли вода высокое поверхностное натяжение? Вода имеет высокую или низкую вязкость? Вязкость описывает внутреннее сопротивление жидкости течению и может рассматриваться как мера трения жидкости. Таким образом, вода «тонкая», имеющий низкую вязкость, а растительное масло «густое» с высокой вязкостью. Почему вещества с высоким поверхностным натяжением обладают высокой вязкостью?
Почему вещества с высоким поверхностным натяжением также имеют высокую вязкость? Жидкости с более сильными межмолекулярными силами притяжения удерживают молекулы ближе друг к другу. Почему вода прилипает к поверхностям? Вода очень клейкая; он хорошо прилипает к различным веществам.
Ответ подготовленный экспертами Учись.Ru
- Капиллярные явления
- Поверхностное натяжение • Джеймс Трефил, энциклопедия «Двести законов мироздания»
- Ответ подготовленный экспертами Учись.Ru
- Содержание
- Почему зависит поверхностное натяжение от рода жидкости
- Почему зависит поверхностное натяжение от рода жидкости
Почему поверхностное натяжение зависит от вида жидкости
Поверхностное натяжение Наличие свободной поверхности в жидкостях является одной из самых интересных ее особенностей. В отличие от газов, жидкость не заполняет весь объем сосуда, в котором она находится. Между жидкостью и газом, возможно паром, возникает граница раздела, находящаяся в особых условиях по сравнению с остальной массой жидкости. В отличие от молекул в глубине жидкости, молекулы, располагающиеся в пограничном ее слое, окружены другими молекулами этой же жидкости не со всех сторон.
Поскольку поверхностная энергия зависит от площади поверхности, значит, любой жидкости энергетически невыгодно иметь большую площадь поверхности.
Иными словами, в свободном состоянии жидкость будет стремиться сделать свою поверхность минимальной. В этом легко убедиться, экспериментируя с мыльной пленкой. Если окунуть в мыльный раствор некий проволочный каркас, то на нем образуется мыльная пленка, при чем пленка приобретет такую форму, чтобы площадь ее поверхности была минимальной рис. Фигуры из мыльного раствора Убедиться в существовании сил поверхностного натяжения можно при помощи простого эксперимента.
Если к проволочному кольцу в двух местах привязана нить, причем так, чтобы длина нити была несколько больше длины хорды, соединяющей точки крепления нити, и обмакнуть проволочное кольцо в мыльный раствор рис. Если теперь порвать пленку с одной стороны нити, мыльная пленка, оставшаяся с другой стороны нити, сократится и натянет нить рис. Эксперимент по обнаружению сил поверхностного натяжения Почему же так произошло? Дело в том, что оставшийся сверху мыльный раствор, то есть жидкость, стремится сократить площадь своей поверхности.
Таким образом, нить вытягивается вверх. Итак, в существовании силы поверхностного натяжения мы убедились. Теперь научимся ее рассчитывать. Для этого проведем мысленный эксперимент.
Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна рис. Будем растягивать мыльную пленку, действуя на подвижную сторону рамки силой.
Почему коэффициент поверхностного натяжения жидкостей зависит от рода жидкости? Чому и как коэффициент поверхностного натяжения зависит от температуры?
Для чистых жидкостей не смесей. При увеличении температуры коэффициент поверхностного натяжения уменьшается, причем вдали от критической точки практически прямо пропорционально увеличению температуры коэфф поверх.
Под действием сил межмолекулярного притяжения и вследствие текучести жидкости на её поверхности остаётся такое количество молекул, при котором площадь поверхности минимальна для данного объёма свободной жидкости, т. Процесс сокращения площади поверхности на этом прекращается, поверхность жидкости остаётся неизменной. В этом состоянии силы притяжения молекул поверхностного слоя, направленные внутрь жидкости, в среднем уравновешиваются силами отталкивания, возникшими при сближении молекул поверхностного слоя с молекулами внутри жидкости, вызванном её сжатием.
Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного притяжения совершат положительную работу. Поверхностный слой состоит из таких же молекул, что и вся жидкость. Отличие лишь в том, что молекулы поверхностного слоя обладают избыточной потенциальной энергией по сравнению с молекулами, находящимися внутри жидкости. Эту энергию называют поверхностной энергией Епов. Поверхностная энергия пропорциональна площади свободной поверхности жидкости: 8.
Поверхностное натяжение — физическая величина, равная работе внешних сил по увеличению площади поверхности жидкости на единицу площади при сохранении объёма и температуры жидкости неизменными: 8. От теории к практике Рис. Например, капли воды при соприкосновении сливаются в одну, форма которой отличается от сферической из-за воздействия силы тяжести и силы реакции опоры. Чем меньше радиус капли, тем большую роль играет поверхностная энергия по сравнению с потенциальной энергией капли в гравитационном поле Земли и тем ближе форма капель жидкости на опоре к сферической.
Почему вода имеет поверхностное натяжение?
- Почему рода жидкости влияет на поверхностное натяжение?
- Природа поверхностного натяжения жидкостей
- Почему поверхностное натяжение зависит от состава и свойств жидкости
- Почему поверхностное натяжение зависит от вида жидкости
Поверхностное натяжение воды. НПК.
Поверхностное натяжение жидкости: определение в физике. Как определить коэффициент поверхностного натяжения, формула, примеры решения. По причине воздействия сил поверхностного натяжения на капли жидкости и их действия внутри мыльных пузырей появляется некоторое избыточное давление. Поверхностное натяжение и температура Поверхностное натяжение жидкости зависит от различных факторов, включая род жидкости и температуру. Поверхностное натяжение жидкости (коэффициент поверхностного натяжения жидкости) – это физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости. Получи верный ответ на вопрос Почему поверхностное натяжение зависит от вида жидкости?
Поверхностное натяжение жидкости
Поверхностное натяжение жидкости (коэффициент поверхностного натяжения жидкости) – это физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости. Гипотеза подтверждается, поверхностное натяжение жидкости зависит от рода жидкости, т. е. от сил притяжения между молекулами данной жидкости. Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода жидкости).
Форум самогонщиков, пивоваров, виноделов
Попытаемся выяснить, как поверхностное натяжение зависит от рода жидкости, наличия примесей, температуры. Поверхностное натяжение жидкости зависит от. Причины поверхностного натяжения. Таким образом, рода жидкости влияют на поверхностное натяжение различными способами, причем эффект температуры может варьироваться для каждого рода жидкости. Поверхностное натяжение жидкости (коэффициент поверхностного натяжения жидкости) – это физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости. 6 ответов на вопрос “Почему поверхностное натяжение зависит от рода жидкости?”.