Новости пульсирующие звезды

Среди переменных звезд исследователи выделяют класс пульсирующих — изменение их блеска носит повторяющийся характер и вызвано процессами. Проанализировав 24 млн звезд, специалисты NASA обнаружили более 158 тысяч красных гигантов, которые постоянно пульсируют.

Турецкие астрономы открыли новую короткопериодическую пульсирующую переменную звезду

Классическая пульсирующая звезда — белый карлик, — это ZZ Кита, тип белого карлика, которая светится и гаснет в устойчивом ритме. Она мерцает так же надежно, как часы. Но астрономы сообщили, что они наблюдали огромные, нерегулярные вспышки света от этих, обычно ритмичных, звезд. Наблюдения за пульсирующими белыми карликами велись с 1960-х годов. Используя спектр звезды и вариативность яркости с течением времени, ученые смогли вычислить звездную массу, радиус вращения, химический состав и внутреннюю структуру. Однако, поскольку непрерывно наблюдать за звездой при помощи наземных телескопов не представляется возможным, были неизбежны пробелы в наблюдениях.

Звезда HD74423 находится в полутора тысячах световых лет от Земли, в галактике Млечный путь. Ее масса примерно в 1,7 раза превышает массу Солнца. Возраст звезды установить сложно, но специалисты определили, что она моложе Солнца. Сама по себе пульсация звезды — явление не новое.

Космос — такой близкий и такой далекий — это бесконечность, в исследовании которой мы сделали, наверное, полшага. Что нас ждет завтра: астероид или терраформирование Марса? Следите за самым интересным, что происходит за пределами стратосферы.

Цефеиды[ править править код ] Один из важнейших типов пульсирующих переменных звёзд — цефеиды. Эти звёзды — сверхгиганты спектральных классов F — K с периодами обычно от 1 до 50 суток и амплитудами — 0,1—2,5 m. Для цефеид существует зависимость между периодом и светимостью [10] , которая позволяет использовать их как стандартные свечи : из периода цефеид можно определять их абсолютную звёздную величину , и, сравнивая последнюю с видимым блеском , вычислять расстояние до звезды [11] [12]. Благодаря высокой светимости, цефеиды наблюдаются не только в нашей , но и в других галактиках [13]. Выделяют два основных типа цефеид: классические цефеиды и цефеиды II типа. У этих типов звёзд отличаются зависимости между периодом и светимостью: при равных периодах цефеиды II типа на 1,5m тусклее, чем классические. Цефеиды II типа — более старые и маломассивные звёзды, чем классические цефеиды, и относятся к населению II [14] [10]. Они, в свою очередь, делятся на переменные типа BL Геркулеса с периодами менее 8 суток и переменные типа W Девы с периодами более 8 суток [1] [15]. Переменные типа RV Тельца имеют периоды более 20 суток и могут рассматриваться и как подтип цефеид II типа, и как промежуточный тип звёзд между цефеидами и миридами см. Среди цефеид часто встречаются пульсирующие в основной моде и пульсирующие в первом обертоне, а у некоторых цефеид наблюдаются колебания одновременно в этих двух модах. В редких случаях встречаются цефеиды, пульсирующие иным образом: например, в первом и втором обертоне, или одновременно в трёх модах [11]. Эти звёзды находятся на горизонтальной ветви , имеют спектральные классы A — F и по физическим параметрам являются достаточно однородным классом звёзд [18]. Они распространены в шаровых скоплениях , их периоды обычно составляют менее суток, а амплитуды меньше, чем таковые у цефеид — до 2m. Они имеют практически одну и ту же абсолютную звёздную величину — около 0,6m, поэтому также используются как стандартные свечи [12] [19]. По виду кривых блеска переменные типа RR Лиры делят на два основных типа: RRAB с асимметричными кривыми блеска, рост яркости которых происходит резко, и RRC, кривые блеска которых симметричны. Первые пульсируют в основной моде, вторые — в первом обертоне.

Неожиданное открытие нового класса пульсирующих рентгеновских звезд

При таких пульсациях происходит увеличение фотосферы звезды и увеличение площади излучающей поверхности. Одновременно изменяется температура поверхности и цвет звезды. Блеск, соответственно, также меняется. У некоторых типов пульсирующих переменных блеск меняется периодически, а у некоторых нет никакой стабильности — их называют неправильными. Первой пульсирующей звездой была Мира Кита, открытая в 1596 году. Когда её блеск достигает максимума, её можно хорошо видеть невооруженным глазом. В минимуме же требуется хороший бинокль или телескоп. Период блеска Миры составляет 331.

Это гиганты с периодами от 1. Даже Полярная звезда принадлежит к цефеидам с периодом почти 4 суток и с колебаниями блеска от 2. Цефеиды также делятся на подклассы, а наблюдения их сыграли немалую роль в развитии астрономии в целом. График изменения блеска Дельты Цефея. Пульсирующие переменные типа RR Лиры отличаются быстрым изменением блеска — их периоды составляют менее суток, а колебания в среднем достигают одной звездной величины, что позволяет легко наблюдать их визуальным методом. Этот тип переменных также разделен на 3 группы, в зависимости от асимметрии их графика блеска. Еще более короткие периоды у карликовых цефеид — это еще один вид пульсирующих переменных.

График их блеска похож на график обычных цефеид. Они представляют большой интерес для наблюдений. Существует еще немало видов пульсирующих переменных звёзд, хотя они не так распространены или не очень удобны для любительских наблюдений. Например, звезды типа RV Тельца имеют периоды от 30 до 150 суток, и на графике блеска имеются некоторые отклонения, отчего звезды этого типа относят к полуправильным. Неправильные переменные звёзды Неправильные переменные звезды также относятся к пульсирующим, но это большой класс, включающий множество объектов. Изменения их блеска очень сложные, и зачастую их невозможно предвидеть заранее. Однако у некоторых неправильных звезд в долговременной перспективе удается выявить периодичность.

При наблюдениях в течении нескольких лет, например, можно заметить, что неправильные колебания складываются в некую среднюю кривую, которая повторяется. Неправильные переменные звезды недостаточно изучены и представляют большой интерес. На этом поле еще предстоит сделать много открытий.

Они демонстрируют радиальные и нерадиальные пульсации с периодом от 20 минут до восьми часов. Изучение поведения пульсации переменных Дельты Щита может помочь нам расширить наши знания о звездных недрах. В результате команда Аликавуса обнаружила пять звезд Дельта Щита, одну переменную Гамму Золотой Рыбы и четыре гибридные системы. TIC 308447073 — единственная переменная Gamma Doradus, идентифицированная в исследовании.

Астрономы из Австралии, сделавшие открытие, полагают что это пульсар со сверхкоротким периодом вращения. Пульсары Пульсары — это вращающиеся нейтронные звезды, которые под воздействием гравитации сжались до компактных размеров — всего 10-20 километров. При этом их масса сравнима с массой Солнца — для сравнения его диаметр составляет без малого 1 400 000 километров.

То есть речь идет о невероятно плотных объектах.

Такие волны от множества событий искажают ткань пространства-времени, что находит отражение во временных задержках импульсов от пульсаров. Это позволяет как лучше изучать процессы во Вселенной, так и проверять наши теории о ней.

Вечерний 3DNews Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий. Материалы по теме.

Астрофизики NASA опубликовали запись "голоса" звёзд

Как худеют звезды на карантине: Сергей Жуков, Вера Брежнева и другие звезды расстаются с лишними килограммами «Комсомолка» раскрыла секреты тех знаменитостей, которые знают. Звёзды Дельты Щита – это пульсирующие переменные со спектральными классами между A и F, названные в честь переменной Дельты Щита в созвездии Щита. Если Бетельгейзе пульсирует с таким длительным циклом, ее радиус должен быть гораздо больше, чем предполагается, а именно в 1300 или 1400 раз больше, чем у Солнца.

Астрономы нашли 155 редких звезд: ученые считают их космическими маяками

Звезда HD74423 пульсирует только с одной стороны. Кроме того, учёные выявили аномальные химические концентрации веществ в её материи. Пульсирующие звезды находятся в тесных двойных системах и периодически меняют свою яркость, подобно биению сердца на ЭКГ. Известно, что пульсирующие звёзды действительно существуют, их называют цефеиды. Новости окружающая среда Астрономы сообщили об открытии сотен мёр. Японские и европейские астрономы изучили пульсации в недрах Бетельгейзе после недавнего потускнения этой звезды и пришли к выводу. Звезды Дельты Щита — это пульсирующие переменные со спектральными классами от A0 до F5, названные в честь переменной Дельты Щита в созвездии Щита.

Китайский телескоп FAST заметил около 660 новых пульсаров

Волны высотой в три Солнца заметили на поверхности гигантской звезды Источник МИР 24 11 Август 2023 11:32 8 Нейтральная окраска записи Астрономы описали необычную пару пульсирующих звезд. Такие объекты также называют «звезды-сердцебиения», поскольку они периодически меняют яркость, подобно ритму бьющегося сердца на аппарате ЭКГ. Звезды в таких системах вращаются по вытянутым овальным орбитам. Каждый раз, когда они сближаются, гравитация порождает приливы — так же, как Луна создает океанские приливы на Земле. Приливы растягивают и искажают форму звезд, изменяя количество исходящего от них света, что и вызывает эффект мерцания для земного наблюдателя. В ходе исследований ученые обнаружили экстремальную двойную звездную систему, чье «сердцебиение» примерно в 200 раз сильнее, чем у других звезд такого типа.

Их высота составляла 4,3 миллиона км, что эквивалентно трем звездам размером с Солнце, поставленным друг на друга. Модель показала, что волны зарождались как сравнительно небольшая рябь, затем набирают высоту и в конечном итоге разбиваются, оставляя «большое пенистое месиво». Этот процесс приводит к тому, что вращение звезды все больше ускоряется.

Звездный газ выбрасывается наружу, образуя вращающуюся и светящуюся атмосферу. Новые волны возникают на поверхности звезды примерно раз в месяц. Ученые заявили, что намерены провести поиск других звездных систем с похожими свойствами, сообщает Nature Astronomy.

Звездный газ выбрасывается наружу, образуя вращающуюся и светящуюся атмосферу. Новые волны возникают на поверхности звезды примерно раз в месяц. Ученые заявили, что намерены провести поиск других звездных систем с похожими свойствами, сообщает Nature Astronomy. Ранее ученые исследовали самую далекую звезду во Вселенной.

Им удалось определить ее тип.

Разница между обычной нейтронной звездой и пульсаром заключается, в общем, в пульсации. Пульсары испускают мощные струи радиации со своих полюсов, словно прожектор, освещающий пространство. Еще одна вещь, которую делают пульсары, — это вращение, часто невероятно быстрое. И мы говорим очень быстро. Некоторые из этих звезд, известные как миллисекундные пульсары MSP , могут совершить один оборот за 10 миллисекунд. Фактически самый быстрый из известных пульсаров вращается со скоростью 716 раз в секунду.

Вот несколько импульсов пульсаров, преобразованных в звук, чтобы понять, что это значит. Вращаясь, эти лучи могут проноситься мимо Земли, подобно космическому маяку. Нам известно около 3400 пульсаров.

Ученые открыли уникальные пульсирующие звезды

Астрофизики NASA записали и опубликовали звуки, которые издают найденные искусственным интеллектом пульсирующие звезды. В итоге подобных взрывов возникают пульсирующие и не пульсирующие нейтронные звезды, либо черные дыры, либо звезды именуемые ханиса, каниса. Авторы нового исследования обнаружили 155 пульсирующих звезд или кандидатов OB-типа, в том числе 38 звезд Oe/Be. Звезда, которая пульсирует на одной стороне был обнаружен в Млечном Пути около 1500 световых лет от Земли. Астрономы обнаружили звезду, которая пульсирует только с одной стороны.

Новый тип пульсирующих звёзд открыли астрономы-любители

В большинстве из них лучи излучения попадают в радиодиапазоны. Но небольшое количество пульсаров может испускать самое мощное из известных излучений во Вселенной — гамма-лучи. Гамма-пульсары ускоряют частицы до чрезвычайно высоких энергий в своих мощных магнитных полях, что приводит к вспышкам мощного невидимого света. Согласно новому каталогу, около 10 процентов известных пульсаров сейчас являются излучателями гамма-излучения. Хотя то, что мы можем обнаружить, может быть подвержено некоторой предвзятости отбора — например, ограничениям нашей технологии — это достаточно значительная выборка, чтобы выяснить, что делает пульсар гамма-излучателем по сравнению с радиопопуляцией. Есть и другие применения нового населения.

Пульсары часто чрезвычайно точны в выборе времени, особенно те, скорость вращения которых измеряется миллисекундами, 144 из которых включены в каталог. Это означает, что их можно использовать для таких приложений, как космическая навигация, что важно, поскольку все больше миссий отправляются к звездам. Мы также можем использовать их для обнаружения гравитационных волн, основываясь на аномалиях синхронизации сигналов.

Предполагается, что такие ядра могут существовать и без оболочки, но до сих пор такого не наблюдалось. Ученые заметили ее в скоплении изучаемых звезд и обратили внимание на необычный световой спектр, излучаемый ей. Они также отмечают: для того, чтобы такой объект существовал, что-то должно было «содрать» оболочку с обычной звезды, оставив после себя лишь ядро. Оголенное ядро почти невозможно заметить: они существуют всего 10 тысяч лет, что очень мало по астрономическим меркам.

Может тебе еще и размер ботинок написать?! Заходи и читай.

Мы всем рады. А вот если после прочтения ты вдруг решишь со мной жестко поспорить, то вот тут-то надо оставить о себе немного информации. Может, даже размер ботинка. Чтобы я понимал, с кем имею дело, когда буду принимать решение - спорить ли с тобой вообще…» Это, конечно, шутка. Но я хотел бы вам сказать, что мы не строим копию Твиттера или ВКонтакте.

Поэтому суммарная амплитуда изменения блеска нерадиально пульсирующей звезды не велика и как правило не превосходит сотых долей звездной величины. Именно по этой причине подавляющее большинство неради-ально пульсирующих звезд было обнаружено лишь в последние годы благодаря значительному прогрессу в методах звездной фотометрии и спектроскопии. В настоящее время поверхностная температура звезд уверенно измеряется методами спектрального анализа, в то время как светимость известна недостаточно вследствие неопределенности в расстояниях до звезд.

Для пульсирующих переменных проблема местонахождения звезды на диаграмме Герцшпрунга-Рес-села существенно упрощается, поскольку можно использовать дополнительные сведения: период пульсаций, амплитуда и форма кривой блеска, характерное поведение отдельных спектральных линий в течение пульса-ционного цикла. Первое, что бросается в глаза при рассмотрении пульсирующих звезд на диафамме Герцшпрунга-Рессела, - существование полосы, в пределах которой размещены наиболее известные и многочисленные группы пульсирующих переменных. В верхней части этой полосы расположены радиально пульсирующие гиганты... Пульсирующие переменные звезды на диаграмме Герцшпрунга-Рессела.

Похожие новости:

Оцените статью
Добавить комментарий