Новости из чего состоит водородная бомба

Но испытанная водородная «царь-бомба» смогла остановить наращивание их ядерного потенциала. Конструктив водородной бомбы сформирован на использовании энергии, выделяемой в процессе реакции термоядерного синтеза лёгких ядер.

Читайте также

  • Что такое ядерное оружие и сколько его у России. Простыми словами
  • Как это устроено: все секреты термоядерной бомбы
  • Ядерная бомба — история появления ядерного оружия
  • Что включает в себя ядерное оружие
  • ВОДОРОДНАЯ БОМБА

60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США

тэги: водородная бомба, водородное оружие, вооружение россии 2013, стратегические вооружения, термоядерная бомба, термоядерное оружие. Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса. Водородные бомбы, также известные как термоядерные бомбы, намного мощнее атомных бомб и основаны на другом типе ядерной реакции, называемой синтезом. Водородная бомба Термоядерное оружие (она же водородная бомба) — тип ядерного, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например. Водородные бомбы, считающиеся ядерным оружием, работают с использованием комбинации ядерного деления и термоядерного синтеза.

Как работает водородная бомба

Термоядерная реакция начинается в момент, когда внешние слои капсулы ещё падают внутрь, а внутренние со всей ядерной силы уже стремятся наружу. На фронте столкновения ударных волн преодолевается потенциальный барьер, и ядра начинают сливаться. В качестве горючего используется дейтрид лития-6. Сам по себе литий, в действительности, не «горит». Но захватывая нейтрон появившийся в результате распада плутония , он распадается на тритий и гелий.

И уже тритий вступает в реакцию с дейтерием, порождая ещё одно ядро гелия и релятивистский нейтрон на бонус. И здесь в игру вступает уран из внешней и внутренней оболочек. Релятивистские нейтроны не захватываются ядрами, а разбивают их. Разваливающиеся ядра урана порождают тучи новых нейтронов уже подходящей для разложения лития энергии.

Если ядерное взрывное устройство поддерживает цепную реакцию лишь до момента своего разрушения, то термоядерный заряд запускается уже в плазменном агрегатном состоянии. В момент «горения» бомба напоминает звезду, являясь каплей более плотного, чем ртуть, полностью ионизированного вещества. Это настоящее чудо. Но нужен изотоп литий-6.

Кстати, ядерное топливо уран-235, который используется в атомной бомбе, делится не полностью. Например, атомная бомба, сброшенная американцами на Хиросиму, Япония, содержала 60 килограммов урана-235. Но успешному делению подверглось только 700 граммов топлива. Поэтому, если вы хотите создать крупную ядерную бомбу с большой мощностью и оснастить ею боеголовку управляемой ракеты, вы должны овладеть технологией водородной бомбы. Водородная бомба более сложная для изготовления. В принципе, водородная бомба основана на легком ядерном синтезе, также известном как термоядерный синтез. Отсюда у водородных бомб есть альтернативное название — термоядерное оружие. По сути, внутри термоядерной бомбы содержится небольшая атомная бомба, которая взрывается во время детонации, а высвобождаемая при этом энергия используется в качестве своеобразного термоядерного «детонатора». Топливо для ядерного синтеза нагревается до невероятно огромной температуры. Но этого мало для запуска термоядерного синтеза.

Создание необходимых условий обеспечивает плутониевый стержень, который в результате сжатия переходит в надкритическое состояние — начинается ядерная реакция внутри контейнера. Испускаемые плутониевым стержнем в результате деления ядер плутония нейтроны взаимодействуют с ядрами лития-6, в результате чего получается тритий, который далее взаимодействует с дейтерием. Если оболочка контейнера была изготовлена из природного урана, то быстрые нейтроны, образующиеся в результате реакции синтеза, вызывают в ней реакции деления атомов урана-238, добавляющие свою энергию в общую энергию взрыва. Подобным образом создается термоядерный взрыв практически неограниченной мощности, так как за оболочкой могут располагаться еще другие слои дейтерида лития и слои урана-238 слойка.

Ланге, эмигрировавший в СССР 1935 г. Еще в 1940 году Ланге и сотрудники его лаборатории В. Шпинель и В. Маслов подали Наркомату обороны СССР предложение о работах по «урановому боеприпасу», не получившее поддержки руководства. С началом войны объемы ядерных исследований были сокращены до минимума, лаборатории закрывались или эвакуировались. Советская разведка скопировала стенограмму английского «Комитета M. После этого ядерные исследования в СССР были засекречены, перед учеными были поставлены задачи разработки технологий очистки урана, разработке конструкции оружия. В этой программе были изучены методы бета-спектроскопии ядер, обнаружено ядерное деление под действием космического излучения, в импульсных количествах получен препарат плутония. Полная технология выделения плутония из облученного урана была разработана Радиевым институтом 1946 г. Хованский, Я. Зильберман создали технологическую часть для строительства радиохимического завода. Руководителем советского атомного проекта стал И. В, Курчатов март 1943 г. До этого назначения сорокалетний ученый: был приглашен академиком А. Иоффе в ЛФТИ 1925 г. На первом этапе проекта 1943-1945 гг. Для этих работ Курчатов добился демобилизации из армии нужных специалистов. После американских взрывов практические работы резко ускорились. Были построены экспериментальный реактор на основе циклотрона, перевезенного из Ленинграда и рабочий реактор для получения оружейного плутония декабрь 1946 г. Для получения изотопов урана использовалась газодиффузионная методика. На их основе в закрытой зоне «Комбинат 817» Озерск Челябинской области заработал промышленный реактор июнь 1948 г. Комбинат «Маяк» начал производство плутония по ацетатно-осадительной технологии, произвел оружейный плутоний в количестве, необходимом для первого испытания 1949 г. Одновременно были изобретены запалы для бомб на полоний-бериллиевых источниках. Правой рукой Курчатова в атомном проекте стал Ю. Под его научным руководством был построен и заработал секретный КБ-11 в закрытой зоне «Кремлев», «Арзамас-75», «Арзамас-16», Саров Нижегородской области. Игорь Васильевич Курчатов и Юлий Борисович Харитон на отдыхе в Семипалатинске Главный конструктор засекреченного КБ-11 был занят конструированием плутониевого устройства, увеличением мощности, снижением веса бомбы, скопированной с американской схемы полученной от советских разведчиков. При этом был найден ряд новых решений, позволивших вдвое улучшить исходные параметры американского образца. Третьей ключевой точкой промышленного изготовления боеприпаса стало сборочное производство, организованное под Заречным Пензенская область. На загородных закрытых территориях, которые в обиходе назывались «Второе производство», «База оборудования» до 2002 года собирались все устройства разработки Сарова и Снежинска «Челябинск-50». В Заречном, на базе ПО «Старт», работает один из трех российских музеев ядерного оружия. Два других музея открыты в Сарове и Снежинске дублер «Арзамаса-16» был построен под Челябинском в 1957 г. Испытания «РДС-1» кодовое название наземного устройства без авиационной оболочки были проведены на Семипалатинском полигоне в 1949 г. К утру 29 августа устройство было собрано. В 7 утра с пульта руководства была отдана команда на подрыв заряда в 20 килотонн. Подлинный пульт запуска ядерного устройства на первых испытаниях демонстрируется в музее Сарова На полигоне в 170 километрах от областного центра была построена сорокаметровая стальная вышка, По территории полигона концентрическими окружностями разместили несколько тысяч приборов и датчиков излучения. На десятикилометровом круге были построены военные фортификации, гражданские объекты жилые дома, бетонные производственные цеха. На позициях разместили технику — танки, самолеты, орудия. В войсковых укрытиях окопах и блиндажах были привязаны овцы и козы. На дальнем диаметре разместились вольеры с подопытными животными кроликами, свиньями, крысами. Все дома, мосты были разрушены или сгорели, так же как грузовики. Ударной волной перевернуло пушки и танки. Уцелели только монолитные каркасы зданий из железобетона. В конструкции термоядерной бомбы советские физики применили бомбардировку оболочки из урана-238 быстрыми нейтронами. Номинальная мощность трехоболочечного заряда могла составить полторы мегатонны.

В целом же, даже если шла речь о защищённых лабораториях и зданиях, то находящиеся на расстоянии 14 км от эпицентра в буквальном смысле стирались с лица земли. В-53 С В-53 было несколько проблем. Во-первых, она была слишком большая, поэтому её было легко обнаружить средствами ПВО и сбить. Во-вторых, так разбрасываться ценными территориями никто не хотел. До недавнего времени более новая В-83 считалась наиболее оптимальным решением, поскольку была действительно небольшой и при весе в 1. Это уже всего сотня Херосим, но ещё слишком много. Средства ПВО постоянно совершенствуются, а значит даже такая сравнительно небольшая боеголовка с высокой вероятностью не достигнет своей цели. И вот здесь и наступает самое интересное, ведь американцы интенсивно вывозят из Европы В-83, а на место считающегося малоэффективным против РФ боеприпаса идёт В61-12. Известно, что боеголовка крайне мала и имеет мощность не выше 50 килотонн, что измеряется всего тремя Хиросимами.

Как работает водородная бомба

Гидрид, применяемый в водородных бомбах, отличается своим изотопным составом. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. тэги: водородная бомба, водородное оружие, вооружение россии 2013, стратегические вооружения, термоядерная бомба, термоядерное оружие.

Содержание

  • Водородная и атомная бомбы: сравнительные характеристики
  • Виды ядерных зарядов (ядерных бомб)
  • «Дитя не плачет — мать не разумеет»
  • Ядерная бомба: год создания в СССР и США, первое испытание, самая мощная

Водородная и атомная бомбы: сравнительные характеристики

Создать водородную (термоядерную) бомбу решили участники «Манхэттенского проекта». Взрыв термоядерных или водородных бомб способен вызвать яркий шар огня с температурой, сравнимой с температурой центра Солнца. Испытание первой водородной бомбы на Семипалатинском полигоне. Мировое сообщество было разочаровано новостью о создании водородной бомбы, считает историк Клим Жуков. Взрыв термоядерных или водородных бомб способен вызвать яркий шар огня с температурой, сравнимой с температурой центра Солнца. Термоядерная (водородная) бомба — также достаточно проста по конструкции.

Поражающие факторы взрыва водородной бомбы. Водородная бомба

Термоядерные реакции. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. Изотопы водорода. Атом водорода — простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды H2O показали, что в ней в ничтожном количестве присутствует «тяжелая» вода, содержащая «тяжелый изотоп» водорода — дейтерий 2H.

Ядро дейтерия состоит из протона и нейтрона — нейтральной частицы, по массе близкой к протону. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли , где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов. Разработка водородной бомбы. Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы HB. Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным.

Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4 ё 8 Мт в тротиловом эквиваленте. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно «Счастливый дракон», а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции.

Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную примерно 15 Мт авиабомбу. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции.

Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу. Слайд 6 Описание слайда: Механизм действия водородной бомбы. Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы: Сначала взрывается находящийся внутри оболочки HБ заряд-инициатор термоядерной реакции небольшая атомная бомба , в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития - соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Слайд 7 Описание слайда: Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе.

Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы.

Для этого в апреле 1946-го на базе Лос-Аламосской национальной лаборатории начала работать группа специалистов, которую возглавил физик Эдвард Теллер. Теллер разработал схему прямолинейной реализации «зажигалки» — атомной бомбы в толще жидкого дейтерия. Для реализации проекта нужно было много трития. Пришлось построить ряд реакторов. Термоядерное устройство его назвали Mike начали разрабатывать лишь полгода спустя. Американцы справились быстро.

Именно благодаря этим частицам, которые могут приобретать после распада атома высокую скорость, и возможны цепные реакции, лежащие в основе атомного оружия. В результате образуются осколки деления и два нейтрона, каждый из которых также может поразить атом урана. Таким образом количество распадов начинает увеличиваться в геометрической прогрессии. Однако, чтобы запустить такой процесс, нужно достичь критической массы материала. Если в атомном заряде масса урана будет меньше критической, то никакого взрыва не произойдет. Поэтому в атомную бомбу закладывают несколько кусочков радиоактивного материала, отделенных друг от друга. В момент взрыва детонирующие заряды сталкивают эти кусочки, достигается критическая масса и начинается взрывной процесс. В водородной бомбе вместо радиоактивного распада используется реакция ядерного синтеза. В ходе нее ядра атомов сливаются воедино, образуя более тяжелый элемент.

Термоядерное оружие: Как устроена водородная бомба

Из истории создания водородной бомбы в США и СССР. В принципе, водородная бомба основана на легком ядерном синтезе, также известном как термоядерный синтез. тип ядерного оружия, разрушительная сила которого Разработка водородной бомбы. Термоядерное оружие (водородные бомбы) предусматривает использование энергии неуправляемой реакции ядерного синтеза, то есть преобразования легких элементов в более тяжелые (например, двух атомов "тяжелого водорода", дейтерия, в один атом гелия).

Водородная бомба

Как теперь известно, американская водородная бомба начинает свою историю с 1946 года. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами. Водородную бомбу было решено взорвать на поверхности земли, несмотря на то, что конфигурация позволяла сбросить ее с самолета.

Похожие новости:

Оцените статью
Добавить комментарий