Новости искусственный интеллект в медицине и здравоохранении

Научное исследование возможности использования в системе здравоохранения города Москвы методов поддержки принятия решений на основе результатов анализа данных с применением передовых инновационных технологий. На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России.

«Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине

Применение искусственного интеллекта в медицине | ComNews Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств.
Искусственный интеллект в медицине | Обрфм Роль искусственного интеллекта в генетической диагностике Искусственный интеллект (ИИ) — это область компьютерных наук, которая занимается разработкой компьютерных систем, способных самостоятельно обучаться и принимать решения на основе полученных данных, что.
Возможности ИИ в здравоохранении – 8 революционных изменений в 2024 году Министр здравоохранения РФ Михаил Мурашко рассказал корреспонденту "Известий" Виктору Синеоку, как искусственный интеллект внедряют в сферу здравоохранения.
Интеллектуальный подход. 7 задач, которые решает ИИ в здравоохранении и фарме Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии.

ITM-AI 2024: искусственный интеллект внедряют в практическое здравоохранение по всей стране

Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. Провалы искусственного интеллекта в медицине происходят потому, что это вовсе не интеллект, а схожий с системой распознавания лиц алгоритм, сказал газете ВЗГЛЯД руководитель экспертного совета ЭИСИ (Экспертный институт социальных исследований) Глеб. О том, как искусственный интеллект внедряют в сфере медицины, рассказал директор АИИ Роман Душкин. Рассматриваем применение ИИ в здравоохранении на примере интеллектуальной системы «Джейн», которая помогает врачам ставить верные диагнозы. Благодаря чудесам искусственного интеллекта медицинские работники получают доступ к беспрецедентным сведениям, основанным на миллиардах точек данных.

Олия Артемова

Разрабатываем решения для медицины будущего с искусственным интеллектом. Специалисты с помощью искусственного интеллекта поставили свыше 8 миллионов диагнозов. Научное исследование возможности использования в системе здравоохранения города Москвы методов поддержки принятия решений на основе результатов анализа данных с применением передовых инновационных технологий.

Врачам и пациентам: как искусственный интеллект помогает в медицине

То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины. Это довольно сложный процесс, который может тянуться годами. Какая должна быть методика? И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний. Затем в ходе испытаний мы проходим по всем пунктам этой методики.

Пишем научно-технические отчёты. Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах. В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года. Почему же в больницах до сих пор очень мало таких программ? MYCIN считается первой интеллектуальной компьютерной системой, разработанной специально для медиков.

Её создали в 1970-х годах учёные Стэнфордского университета США. MYCIN предназначалась для подбора антибактериальной терапии. Название было образовано от суффикса «-мицин», часто встречающегося в названиях антибиотиков. Всё дело в доверии. Медицина — это область доверия.

Мы же доверяем врачу самое дорогое — своё здоровье и здоровье наших детей. Поэтому компьютерные системы должны не только выдавать рекомендации, но ещё и обладать функцией объяснения, обоснования предложенных решений. Это важный компонент доверия. Вот почему в сфере медицины очень сложно применять популярные сегодня нейронные сети и другие модели, основанные на методах восходящей парадигмы искусственного интеллекта. Если система, основанная на нейронных сетях, сможет объяснять свои решения, то, пожалуйста, применяйте.

Но обычно нейросети на это неспособны. Вопрос, как я уже сказал, в доверии. Врач или консилиум врачей должен иметь возможность проверить выводы программы. Если ИИ даёт второе мнение по какому-то пациенту, то доктору нужно понимать, почему алгоритм пришёл к таким выводам. В случаях, когда «Джейн» помогла уточнить диагнозы, фактически решение приняли врачи консилиум.

Система лишь обратила внимание на нестыковки и смогла обосновать альтернативное решение. Окончательное решение всегда остаётся за человеком. И поэтому она была основана не на нейросетях, а на наборах хранимых правил. То есть в ней была база знаний, правила вывода, семантические сети. При поиске решения применялось нечёткое сопоставление то есть правила нечёткой логики.

Я всегда мог объяснить врачам, почему система, основываясь на наблюдениях за состоянием пациента, сообщала о вероятности того или иного диагноза. Говоря научным языком, «Джейн» относилась к объяснимому искусственному интеллекту. Росстандарт принял первый в нашей стране ГОСТ по этой теме только несколько месяцев назад. К его созданию имел отношение Технический комитет по стандартизации ТК 164 «Искусственный интеллект», в работе которого я участвую. Новая серия стандартов «Системы искусственного интеллекта в клинической медицине» начала действовать с 1 марта 2022 года.

ГОСТ был разработан под руководством Научно-практического клинического центра диагностики и телемедицинских технологий Департамента здравоохранения города Москвы. Раньше ИИ в российской медицине находился, по сути, в серой зоне. И государство не шло на массовое распространение таких систем, потому что не было ни правовой, ни нормативно-технической базы, на основании которой можно было эти системы внедрять и использовать. Сейчас такая база появляется. И это очень хорошо.

Самый популярный в настоящий момент — сервис удаленной записи на прием к врачу через портал госуслуг. Напомним, что в 2022 г. В 2023 г. В целом, к сентябрю 2023 г.

В России также есть цифровая гистологическая лаборатория UNIM, которая исследует гистологические материалы при помощи нейронной сети для постановки верного диагноза.

Помимо этого, большой потенциал существует у использования ИИ в разработке и тестировании новых лекарств. Одна из крупнейших фармацевтических компаний — Novartis — совместно с Microsoft открыла ИИ-лабораторию, чтобы использовать "умные" алгоритмы в создании лекарственных препаратов. Подобными проектами занимается и Google: в 2018 году DeepMind смог лучше биологов предсказать форму свертывания белка. Это потенциально способно существенно ускорить процесс разработки новых лекарств. Основные препятствия Несмотря на большие перспективы, существует целый спектр ограничений для развития ИИ в медицине.

Эти стоп-факторы должны стать основным объектом для совместной работы технологических компаний и медицинских организаций, так как их минимизация способна существенно расширить возможности применения этой технологии в здравоохранении. Нехватка компетенций и сотрудников. Для эффективного внедрения технологии искусственного интеллекта необходимы квалифицированные специалисты, наличие ресурсов для тестирования гипотез и разработки эффективных бизнес-моделей. Это касается рынка систем ИИ в целом, и медицинские организации не меньше других сталкиваются с дефицитом кадров, недостатком квалификации уже работающих сотрудников, а также нехваткой ресурсов для внедрения технологии. Недостаток структурированных данных.

Далеко не во всех сферах здравоохранения достигнуты такие результаты, как, например, в борьбе с раком. Действительно, в медицине очень много неструктурированных данных, но для использования в системах машинного обучения их необходимо сначала структурировать и разметить.

Систему поддержки принятия врачебных решений для диагностики рака нижних отделов желудочно-кишечного тракта ЖКТ на базе алгоритмов искусственного интеллекта Polyptron при поддержке Фонда содействия инновациям разработали специалисты компании «ЭВА Лаб» из Челябинской области. Как сообщил ИА Регнум директор по продукту Евгений Алханов, система с помощью ИИ помогает врачам в режиме реального времени выявлять ранние признаки рака кишечника. ИИ распознает аномалии прямо во время эндоскопического исследования и информирует об этом врача.

Сейчас пилотный проект реализуется в больницах Челябинска, Екатеринбурга и Москвы. Только в челябинском областном онкоцентре проведено уже около 2,5 тыс. Как сообщало ИА Регнум, национальный проект «Цифровая экономика», реализуемый по решению президента Владимира Путина, призван содействовать ускоренному внедрению цифровых технологий в различных сферах жизни. Это повысит качество жизни людей, создаст условия для высокотехнологичного бизнеса, повысит конкурентоспособность страны на глобальном рынке и укрепит национальную безопасность.

Врачам и пациентам: как искусственный интеллект помогает в медицине

Министр здравоохранения РФ Михаил Мурашко рассказал корреспонденту "Известий" Виктору Синеоку, как искусственный интеллект внедряют в сферу здравоохранения. О том, как искусственный интеллект внедряют в сфере медицины, рассказал директор АИИ Роман Душкин. Рассматриваем применение ИИ в здравоохранении на примере интеллектуальной системы «Джейн», которая помогает врачам ставить верные диагнозы. Искусственный интеллект (ИИ) — это чудо современной технологии, которое уже не просто фантастика из фильмов, но и реальность, влияющая на множество сфер нашей жизни от смартфонов и голосовых помощников до систем автоматизации в производстве и медицине.

Роман Душкин: «Медицина — это область доверия»

Ещё один не менее важный результат – активное развитие технического регулирования систем искусственного интеллекта для клинической медицины. Министр здравоохранения РФ Михаил Мурашко рассказал корреспонденту "Известий" Виктору Синеоку, как искусственный интеллект внедряют в сферу здравоохранения. Искусственный интеллект стал лидером цифрового здравоохранения России по объему инвестиций. Провалы искусственного интеллекта в медицине происходят потому, что это вовсе не интеллект, а схожий с системой распознавания лиц алгоритм, сказал газете ВЗГЛЯД руководитель экспертного совета ЭИСИ (Экспертный институт социальных исследований) Глеб. Внедрение искусственного интеллекта (ИИ) в систему мирового здравоохранения во многом обязано американским IT-гигантам, которые с начала XXI в. инвестировали в эту сферу миллиарды. Новый федеральный проект «Цифровые сервисы здравоохранения», в рамках которого предусмотрено внедрение искусственного интеллекта (ИИ) в медицину, станет частью стратегии развития этой сферы.

Росздравнадзор одобрил уже 17 российских медизделий с искусственным интеллектом

На сегодняшний день компания: создала собственную научно-производственную базу, опираясь на накопленные знания и инновационные разработки, а также передовой опыт внедрения высоких технологий; ведет активную работу по дальнейшему развитию и совершенствованию продуктов MVS; разрабатывает новые высокотехнологичные продукты с учетом потребностей врачей и администрации клиник; патентует ряд собственных разработок в сфере телемедицины; реализует проекты согласно плану мероприятий Правительства РФ по развитию телемедицины. Ключевыми клиентами компании являются медицинские организации, интенсивно использующие операционные. Компания запустила более 130 умных операционных, включая проекты в 16 крупнейших федеральных и частных медицинских центрах от Калининграда до Хабаровска, а с 2020 г. Решение для операционных Интегрированные операционные MVS помогут тратить меньше времени на оборудование и сконцентрироваться на самом важном — заботе о пациентах.

Еще ИИ дает возможность оценивать влияние медикаментов на организм человека. Это помогает врачам понять, как генетические особенности того или иного пациента влияют на течение заболевания и какой эффект может оказать новый лекарственный препарат.

С помощью приложения IBM Watson Health Cloud доктор получает и анализирует данные об организме пациента с электронного браслета и на основе этого подбирает эффективный курс лечения. И это лишь малая часть того, что способен делать искусственный интеллект. Но наряду с плюсами есть и минусы. Какие есть препятствия на пути внедрения ИИ в медицину? Почему некоторые медицинские эксперты относятся с недоверием к искусственному интеллекту?

Все дело в том, что технологии еще далеки от совершенства и их использование для лечения пациентов может быть небезопасным. Да, ИИ в медицине и здравоохранении значительно упростит жизнь врачам и пациентам, но только при его грамотном внедрении. Искусственный интеллект работает по принципу «черного ящика»: если в алгоритме будет какая-то ошибка, и система примет неверное решение, то на вопрос «почему» будет трудно ответить. К тому же, новые технологии стоят недешево. Многие клиники и больницы не смогут внедрить их в виду ограниченного бюджета.

Во внедрении ИИ в медицину есть еще множество неразрешенных вопросов. К примеру, кто будет нести ответственность за ошибки?

Со ссылкой на последние исследования и данные становится очевидной тенденция усиления значимости искусственного интеллекта в обеспечении здоровья нации. В этих целях всем медицинским организациям в субъектах РФ в 2024 году предписано внедрить не менее трех решений с ИИ , об этом сообщил заместитель министра здравоохранения РФ Павел Пугачев. Cтратегия также опубликована на сайте Правительства — Искусственный интеллект РФ , а также на ai.

Диагностика заболеваний Особенно искусственный интеллект преуспел в точности диагностики болезней. ИИ имеет доступ к большому количеству медицинских данных, поэтому может быстро анализировать и предлагать решения. Как это работает? Например, пациент сообщает чату симптомы: «головная боль» или «лихорадка». Нейронная сеть анализирует данные других пациентов со схожими медицинскими состояниями и предлагает возможный диагноз. Первоначально ей диагностировали клещевую инфекцию, но анализы по всем связанным с клещами инфекциям пришли отрицательные. Состояние Сасси ухудшалось. Владелец собаки использовал ChatGPT, чтобы узнать, что может быть с его собакой. Он ввел данные анализа крови Сасси в чат-бот, и искусственный интеллект предположил, что у собаки аутоиммунная гемолитическая анемия. А вот GPT-4 оказался достаточно умен» — говорит хозяин. Хозяин болеющей собаки вбил результаты ее анализов в ChatGPT в надежде получить верный диагноз питомца. Что из этого вышло? Читайте здесь. Аутоиммунная гемолитическая анемия — это состояние, при котором иммунная система организма ошибочно атакует и разрушает собственные эритроциты — красные кровяные клетки, что приводит к их недостаточности. Это разрушение происходит быстрее, чем костный мозг может производить новые эритроциты, в результате чего развивается анемия. Ветеринар подтвердил, что у Сасси действительно аутоиммунная гемолитическая анемия, и назначил соответствующее лечение. После лечения Сасси наконец-то стало лучше. BionMax — сервис на основе ИИ, который помогает в профилактике здоровья. Она предположила, что у него кариес или начали прорезываться зубы, но стоматолог исключил эти варианты. Помимо этого, Алекс жаловался на болевые ощущения и головокружение во время прыжков на батуте. Стоматолог отправил семью к ортодонту, специализирующемуся на обструкции дыхательных путей. Но и он не помог ребенку.

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ

ИИ можно использовать для разработки точных методов лечения рака путем анализа генетической информации пациента. Эти методы лечения могут быть адаптированы в соответствии с конкретной генетической мутацией, ответственной за конкретный рак. Роль ИИ в мониторинге пациентов ИИ можно использовать для постоянного наблюдения за пациентами, отслеживания состояния их здоровья и изменения планов лечения по мере необходимости. Собирая и отслеживая данные о здоровье пациентов с помощью носимых устройств и других датчиков, ИИ можно использовать для удаленного наблюдения за пациентами. Это может помочь в раннем выявлении потенциальных проблем со здоровьем. Анализируя собранные данные, ИИ можно использовать для удаленной диагностики. Это могло бы улучшить доступ к диагностическим услугам, особенно в сельских или недостаточно обслуживаемых районах. Будущее ИИ в здравоохранении ИИ изменит здравоохранение в ближайшие годы. Что отличает ИИ от традиционных технологий в здравоохранении, так это способность собирать данные, обрабатывать их и предоставлять конечным пользователям четко определенные выходные данные.

Основная цель приложений искусственного интеллекта в здравоохранении будет заключаться в анализе взаимосвязи между клиническими методами и результатами для здоровья пациентов. Методы искусственного интеллекта будут все чаще использоваться в таких областях, как диагностика, разработка протоколов лечения, разработка лекарств, персонализированная медицина, а также мониторинг и уход за пациентами. Полезная информация Какова роль ИИ в будущем здравоохранения? ИИ может преобразовать здравоохранение за счет повышения эффективности, персонализации и результатов лечения пациентов. От диагностической визуализации, прогнозирования рисков для пациентов до автоматизации административных задач ИИ может обеспечить точность, скорость и экономичность. Кроме того, ИИ помогает разрабатывать персонализированные планы лечения и обеспечивает удаленный мониторинг пациентов, расширяя сферу применения телемедицины. Как ИИ меняет диагностические процедуры в здравоохранении? ИИ значительно улучшает диагностические процедуры, анализируя медицинские изображения с высокой точностью и скоростью.

Алгоритмы машинного обучения могут распознавать закономерности и аномалии при сканировании, которые могут быть пропущены человеческим глазом. Это может привести к раннему выявлению таких состояний, как рак, болезни сердца и неврологические расстройства, что позволит своевременно принять меры. Какое влияние ИИ окажет на расходы на здравоохранение в будущем? ИИ потенциально может снизить расходы на здравоохранение за счет повышения эффективности и сокращения потерь. Это может упростить административные задачи, уменьшить диагностические ошибки и свести к минимуму повторные госпитализации. Используя прогностическую аналитику, ИИ также может помочь в упреждающем уходе за пациентами, уменьшая бремя лечения хронических заболеваний. Может ли ИИ улучшить качество обслуживания пациентов в сфере здравоохранения? Да, ИИ может значительно улучшить качество обслуживания пациентов.

Чат-боты на базе искусственного интеллекта могут оказывать помощь круглосуточно и без выходных, отвечая на вопросы и помогая пациентам в их лечении. Индивидуальные планы лечения и удаленный мониторинг с помощью ИИ могут обеспечить более удобное и индивидуальное медицинское обслуживание. Как ИИ помогает в открытии и разработке лекарств? ИИ революционизирует поиск и разработку лекарств, сокращая время выхода новых лекарств на рынок. Алгоритмы ИИ могут анализировать огромные объемы данных для выявления потенциальных кандидатов в лекарства и прогнозирования их эффективности и безопасности. Это может привести к более целенаправленной терапии и снизить затраты и частоту неудач клинических испытаний. Каковы этические соображения при использовании ИИ в здравоохранении? Этические соображения включают конфиденциальность и безопасность данных, алгоритмическую предвзятость и риск чрезмерной зависимости от технологий.

Несмотря на то, что искусственный интеллект может улучшить уход за больными, крайне важно обеспечить надежную обработку данных пациентов. Кроме того, системы искусственного интеллекта должны быть прозрачными и свободными от предубеждений, которые могут негативно повлиять на результаты лечения пациентов.

Фрагмент реестра медизделий с ИИ, имеющих регистрационное удостоверение Предварительная оценка решения. На него стоит обращать внимание при соблюдение первого критерия можно смотреть и на второй. Сюда может относиться как изучение реальных кейсов, советов коллег по цеху, репутации разработчика, так и непосредственная работа с продуктов в тестовом режиме.

Специалисты «МеркуриМед» проводили полноценное тестирование технологии, прежде чем допустить ИИ к работе с реальными ситуациями. На первом этапе врачи проверяли выборочно «сложные случаи» в которых были сомнения. Однако весьма скоро они поняли что ИИ «реально работает», несмотря на все предубеждения». Александр Тюрнин Спустя несколько недель в «МеркуриМед» стали использовать систему на всем потоке и производить мониторинг результатов Отношение врачей к искусственному интеллекту Во времена бурного развития искусственного интеллекта главным вопросом является возможность технологии заменить человека на рабочем месте, стать более эффективной, точной и экономичной версией работника. В какой-то момент и правда, представители множества профессий напряглись, что их место могут занять «компьютеры».

Но врачи в этом списке точно в самом конце. Правительство обяжет компании внедрять ИИ при получении субсидий ИИ, особенно в сфере здравоохранения, не является совершенной технологией, способной полностью заменить специалиста. Даже отдельные направления, такие как рентгенография, на сегодняшний день невозможно переложить на технологию и вряд ли это получится сделать в обозримом будущем.

К примеру, проект InnerEye помогает онкологам-радиологам повышать эффективность лечения различных типов рака, ускоряя работу со снимками внутренних органов и тканей пациентов. Другой недавний пример — это использование суперкомпьютера IBM Watson в Токио, чтобы уточнить диагноз 60-летнего пациента с лейкемией и назначить успешное лечение, сопоставив генетические данные миллионов исследовательских работ. И таких кейсов становится все больше: так, белорусский стартап DBrain вместе с американской компанией LigoLabs с помощью технологий ИИ и блокчейн повышают точность диагностики онкологических заболеваний. Подобные технологии используются и в России — российская платформа Botkin. AI позволяет выявлять онкологические заболевания легких благодаря анализу медицинских изображений с помощью технологий искусственного интеллекта в облаке Microsoft Azure. Решение уже успешно внедрено в нескольких регионах страны.

В России также есть цифровая гистологическая лаборатория UNIM, которая исследует гистологические материалы при помощи нейронной сети для постановки верного диагноза. Помимо этого, большой потенциал существует у использования ИИ в разработке и тестировании новых лекарств. Одна из крупнейших фармацевтических компаний — Novartis — совместно с Microsoft открыла ИИ-лабораторию, чтобы использовать "умные" алгоритмы в создании лекарственных препаратов. Подобными проектами занимается и Google: в 2018 году DeepMind смог лучше биологов предсказать форму свертывания белка. Это потенциально способно существенно ускорить процесс разработки новых лекарств. Основные препятствия Несмотря на большие перспективы, существует целый спектр ограничений для развития ИИ в медицине. Эти стоп-факторы должны стать основным объектом для совместной работы технологических компаний и медицинских организаций, так как их минимизация способна существенно расширить возможности применения этой технологии в здравоохранении.

Искусственный интеллект для визуализации и обработки ренгенологических изображений 10. HUB Telemed Телемедицина Телемедицинская платформа для врачей с возможностью выбора метода описания лучевых исследований на основе ИИ Применение искусственного интеллекта в медицинских нейросетях предлагает обещающие перспективы для будущего здравоохранения в России. Использование этих систем может значительно улучшить диагностику, ускорить процесс лечения и сделать медицинские услуги более доступными и персонализированными для пациентов.

Искусственный интеллект в медицине: добро или зло?

Для этого необходимо участие экспертов в наполнении базы, нужны подготовленные с их помощью размеченные выборки данных для обучения нейросетей, оцифрованные порядки и стандарты оказания медпомощи, клинические рекомендации. Сейчас сложно анализировать данные, которые есть в медицинских информационных системах. Как врач на приеме вводит данные в систему? В условиях ограниченного времени на прием нередко встречаются некорректное построение предложений, необщепринятые сокращения, аббревиатуры, использование нестандартных символов, отсутствие разделения слов. Врач понимает, что он написал, и другой врач поймет или догадается, потому что это их предметная область, которую они научились понимать, но, к сожалению, это большие сложности для систем анализа медицинских данных, негативно влияющие на те результаты, которые формирует нам ИИ. Еще одна сложность — большое количество данных, необходимых для обучения. В идеале все данные из истории заболеваний должны быть оцифрованы, информация структурирована. Необходимо учитывать, что методология лечения, сбора отчетных данных, перечень отображаемых в медицинской документации сведений продолжает динамично изменяться, а для разработчиков ИИ это означает, что системы нужно будет время от времени переучивать.

И здесь возникает вызов — как научиться делать это быстро. Итак, для корректной работы ИИ нужны «чистые» машиночитаемые данные, подготовленные и размеченные высококвалифицированными специалистами выборки данных для обучения нейросетей, оцифрованные порядки оказания медицинской помощи, клинические рекомендации и стандарты оказания медицинской помощи. При смене методологии медицинские информационные системы тоже начинают наполняться новыми данными только с появлением утвержденных изменений в методологии диагностики, лечения, наблюдения пациента и т. Симбиоз или противостояние? Если мы смотрим на искусственный интеллект глазами разработчика, то видим набор алгоритмов и математических методов, которые могут обучаться на данных, анализировать изображения, искать неочевидные связи и сходства в огромных массивах данных, обнаруживать различия там, где естественный интеллект может просто их не заметить. Но для врача работа искусственного интеллекта — это черный ящик. Врачу непонятно «мышление» системы и то, как ИИ получил итоговый результат.

Формировать доверие медицинских работников к ИИ возможно, объясняя базовые алгоритмы его работы и то, на каких данных обучаются системы. Возможно также более широкое участие врачей в рабочих группах по подготовке данных для обучения нейросетей. Объяснять базовые алгоритмы работы искусственного интеллекта необходимо в рамках вузовской подготовки специалистов на цифровых кафедрах и в рамках профессиональной переподготовки.

Компания предлагает линейку готовых решений и продуктов в области телемедицины и интегрированных «Умных» операционных, основанных на программном обеспечении собственной разработки для управления рабочими процессами в рамках оперблока, видеоменеджмента внутри и за пределами операционных, создания видеоархивов операций и др. На сегодняшний день компания: создала собственную научно-производственную базу, опираясь на накопленные знания и инновационные разработки, а также передовой опыт внедрения высоких технологий; ведет активную работу по дальнейшему развитию и совершенствованию продуктов MVS; разрабатывает новые высокотехнологичные продукты с учетом потребностей врачей и администрации клиник; патентует ряд собственных разработок в сфере телемедицины; реализует проекты согласно плану мероприятий Правительства РФ по развитию телемедицины.

Ключевыми клиентами компании являются медицинские организации, интенсивно использующие операционные. Компания запустила более 130 умных операционных, включая проекты в 16 крупнейших федеральных и частных медицинских центрах от Калининграда до Хабаровска, а с 2020 г.

Перейти к источнику Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Авторы отмечают, что существует ряд условий, необходимых для дальнейшего развития ИИ в сфере здравоохранения: совершенствование нормативного регулирования, разработка единых стандартов по распоряжению биомедицинскими данными, их контролю и определению границ использования ИИ, этических норм; создание общедоступных датасетов, репрезентативных, релевантных и корректно структурированных медицинских данных, необходимых для обучения моделей, которые должны быть разработаны совместно с экспертным сообществом; стимулирование спроса со стороны государственных органов и медицинских организаций в виде грантов и субсидий на использование ИИ-продуктов и сбора данных для общего пользования внутри медицинских организаций; разработка ускоренных процедур сертификации и регистрации или решений на основе ИИ в медицине с четко определенной процедурой, сроками, алгоритмами для тестирования и апробации систем. Документы pdf16.

Чат-боты на базе искусственного интеллекта могут оказывать помощь круглосуточно и без выходных, отвечая на вопросы и помогая пациентам в их лечении. Индивидуальные планы лечения и удаленный мониторинг с помощью ИИ могут обеспечить более удобное и индивидуальное медицинское обслуживание.

Как ИИ помогает в открытии и разработке лекарств? ИИ революционизирует поиск и разработку лекарств, сокращая время выхода новых лекарств на рынок. Алгоритмы ИИ могут анализировать огромные объемы данных для выявления потенциальных кандидатов в лекарства и прогнозирования их эффективности и безопасности. Это может привести к более целенаправленной терапии и снизить затраты и частоту неудач клинических испытаний. Каковы этические соображения при использовании ИИ в здравоохранении? Этические соображения включают конфиденциальность и безопасность данных, алгоритмическую предвзятость и риск чрезмерной зависимости от технологий. Несмотря на то, что искусственный интеллект может улучшить уход за больными, крайне важно обеспечить надежную обработку данных пациентов.

Кроме того, системы искусственного интеллекта должны быть прозрачными и свободными от предубеждений, которые могут негативно повлиять на результаты лечения пациентов. Заменит ли ИИ медицинских работников в будущем? Хотя ИИ может автоматизировать определенные задачи, он не может заменить чуткий уход, оказываемый медицинскими работниками. ИИ может быть инструментом, который помогает медицинским работникам, снижая их рабочую нагрузку и позволяя им больше сосредоточиться на уходе за пациентами. Будущее здравоохранения, скорее всего, будет сочетанием услуг, управляемых человеком и искусственным интеллектом. Как ИИ может улучшить профилактическое здравоохранение? ИИ может помочь в профилактическом здравоохранении, анализируя данные пациентов, чтобы выявлять факторы риска и прогнозировать потенциальные проблемы со здоровьем до того, как они возникнут.

Это может привести к своевременным вмешательствам и более здоровому образу жизни. Например, носимые устройства, интегрированные с искусственным интеллектом, могут отслеживать показатели жизнедеятельности и предупреждать людей о потенциальных проблемах со здоровьем. Как ИИ способствует точной медицине? ИИ вносит свой вклад в точную медицину, позволяя анализировать большие наборы данных, таких как геномные данные, для выявления закономерностей, влияющих на здоровье и болезни. Это может помочь в разработке индивидуальных стратегий лечения, основанных на индивидуальном генетическом составе, образе жизни и окружающей среде. Что мешает внедрению ИИ в здравоохранение? Барьеры включают проблемы с конфиденциальностью данных, отсутствие стандартизированных данных и нехватку навыков для внедрения и управления решениями ИИ.

Кроме того, существует проблема интеграции систем искусственного интеллекта в существующие инфраструктуры здравоохранения. Преодоление этих барьеров требует тщательного планирования, правил и междисциплинарного сотрудничества. Какую роль ИИ играет в охране психического здоровья? ИИ играет важную роль в охране психического здоровья, предлагая инструменты для раннего выявления, лечения и поддержки. Алгоритмы ИИ могут анализировать речевые паттерны и поведение в социальных сетях, чтобы обнаруживать признаки проблем с психическим здоровьем. Кроме того, чат-боты с поддержкой ИИ могут оказывать психологическую поддержку и терапию тем, у кого может быть ограниченный доступ к традиционным службам охраны психического здоровья. Может ли ИИ помочь в лечении хронических заболеваний?

Да, ИИ может внести значительный вклад в борьбу с хроническими заболеваниями. Алгоритмы ИИ могут прогнозировать развитие таких заболеваний, как диабет, болезни сердца и рак, что позволяет медицинским работникам разрабатывать персонализированные планы лечения. Кроме того, носимые устройства с искусственным интеллектом могут помочь пациентам следить за своим здоровьем и соблюдением режима лечения дома. Как ИИ поддерживает телемедицину? ИИ поддерживает телемедицину, обеспечивая удаленный мониторинг, диагностику и лечение пациентов.

VR для ПТСР и роботы да Винчи: как передовые технологии изменили медицину в 2023 году

Применение ИИ в медицине Данные о пациентах Информация о пациентах может храниться в десятках клиник и медицинских карточек. Это усложняет сбор анамнеза и постановку диагноза. Интерпретация анализов, тестов и снимков тоже может быть недостаточно точной из-за объема данных. Даже если у врача на руках находится вся необходимая информация, он не всегда может правильно ее интерпретировать и заметить каждую деталь. От этого могут зависеть жизни пациентов. Google Deepmind Health анализирует симптомы и предлагает несколько диагнозов. Результаты поиска основаны на миллионах страниц научной информации, которые содержат даже самые малоизвестные заболевания. Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента. Диагностика Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии.

Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца. Создание лекарств Разработка вакцины и последующие клинические исследования — это долгие и дорогостоящие процессы. ИИ может уменьшить время на разработку новых лекарств в несколько раз, анализируя молекулярные структуры существующих препаратов и предлагая новые согласно заданным требованиям.

Кроме того, существует проблема интеграции систем искусственного интеллекта в существующие инфраструктуры здравоохранения. Преодоление этих барьеров требует тщательного планирования, правил и междисциплинарного сотрудничества. Какую роль ИИ играет в охране психического здоровья? ИИ играет важную роль в охране психического здоровья, предлагая инструменты для раннего выявления, лечения и поддержки. Алгоритмы ИИ могут анализировать речевые паттерны и поведение в социальных сетях, чтобы обнаруживать признаки проблем с психическим здоровьем. Кроме того, чат-боты с поддержкой ИИ могут оказывать психологическую поддержку и терапию тем, у кого может быть ограниченный доступ к традиционным службам охраны психического здоровья. Может ли ИИ помочь в лечении хронических заболеваний? Да, ИИ может внести значительный вклад в борьбу с хроническими заболеваниями. Алгоритмы ИИ могут прогнозировать развитие таких заболеваний, как диабет, болезни сердца и рак, что позволяет медицинским работникам разрабатывать персонализированные планы лечения. Кроме того, носимые устройства с искусственным интеллектом могут помочь пациентам следить за своим здоровьем и соблюдением режима лечения дома. Как ИИ поддерживает телемедицину? ИИ поддерживает телемедицину, обеспечивая удаленный мониторинг, диагностику и лечение пациентов. Приложения на базе искусственного интеллекта могут давать медицинские советы в зависимости от симптомов, а виртуальные помощники помогают планировать встречи. Кроме того, ИИ может анализировать данные с носимых устройств, чтобы предупреждать врачей о любых серьезных проблемах со здоровьем, обеспечивая своевременное дистанционное вмешательство. Какова роль ИИ в анализе данных здравоохранения? ИИ играет ключевую роль в анализе данных здравоохранения. Он может анализировать огромные объемы данных — от историй болезни пациентов до клинических исследований — для извлечения информации, которая поможет принять решение о лечении. Алгоритмы машинного обучения могут выявлять закономерности и тенденции, прогнозировать результаты лечения пациентов и помогать организациям здравоохранения принимать решения на основе данных. Какое влияние ИИ оказывает на хирургические процедуры? ИИ оказывает значительное влияние на хирургические процедуры. Хирургические роботы с искусственным интеллектом могут выполнять точные движения, снижая риск человеческой ошибки. Кроме того, ИИ может помочь в хирургическом планировании, предоставляя подробные персонализированные 3D-модели анатомии пациента. Кроме того, ИИ может контролировать жизненно важные органы пациента во время операции, предупреждая команду о любых потенциальных проблемах. Как ИИ меняет управление больницами? ИИ упрощает администрирование больниц, автоматизируя такие задачи, как планирование, выставление счетов и управление картами пациентов. ИИ может прогнозировать поток пациентов, чтобы оптимизировать расписание, сократить время ожидания и повысить качество обслуживания пациентов. Кроме того, искусственный интеллект может отмечать потенциальные ошибки в выставлении счетов или записях пациентов, повышая точность и эффективность. Каковы некоторые перспективные инновации ИИ в здравоохранении? Многообещающие инновации ИИ в здравоохранении включают диагностические инструменты на базе ИИ, платформы для разработки лекарств, носимые устройства для отслеживания состояния здоровья, виртуальных помощников пациентов и хирургических роботов. Кроме того, приложения ИИ в геномике и точной медицине являются многообещающими разработками, которые могут революционизировать персонализированный уход. Какую роль ИИ играет в реагировании на пандемию и управлении ею? ИИ играет решающую роль в реагировании на пандемию и управлении ею. Это может помочь прогнозировать вспышки, отслеживать распространение болезни и определять потенциальные стратегии лечения. Во время пандемии COVID-19 ИИ использовался для быстрого анализа огромных объемов исследовательских данных и разработки прогностических моделей для распределения ресурсов и управления ими. Как ИИ может помочь в медицинском образовании и обучении?

Поделиться новостью Нажимая на кнопку вы даете согласие на обработку персональных данных и соглашаетесь с политикой конфиденциальности.

Такой доступ обычно есть у государственных организаций, клиник, больниц. И в дни пандемии, когда на базе «НМЦ-Томографии» была сделана не одна тысяча снимков для определения эффекта «матового стекла» и процента поражения лёгких, одна компания, специализирующаяся на исследованиях снимков с помощью AI вышла на нас с предложением запустить пилот анализа результатов КТ для определения патологий и новообразований в лёгких пациентов. Мы наладили процесс передачи обезличенных снимков в эту компанию, и в ответ нам приходили рекомендации о приёме специалистов для ранней диагностики тех или иных пациентов. Примерно из 3000 снимков в 120 были обнаружены подозрения на новообразования, которые потом перепроверял врач. Подтвердили в итоге всего пять. Могу сказать, что если в фармацевтике вполне можно незатратно моделировать химические соединения, экономя время и ресурсы, то в такой консервативной области, как медицина, сотканной из исключительных сценариев с высокими рисками, полностью положиться на ИИ мы сможем нескоро. В случае наступления осложнений вряд ли можно переложить ответственность на ИИ.

Для чего в российских регионах используют ИИ в медицине

Решения с использованием искусственного интеллекта в медицине внедряют 70 российских регионов, сообщил заместитель министра здравоохранения РФ Павел Пугачев, выступая на форуме "Биотехмед". Искусственный интеллект все активнее применяется в здравоохранении — он помогает в диагностике, принятии клинических решений и управлении данными. Технологии на базе искусственного интеллекта охватывают всё больше сфер здравоохранения. Там проектами, связанными с искусственным интеллектом, стали активно интересоваться инвесторы — крупные раунды подняли медицинские компании WoundMetrics, Genuity Science, Tempus, AI Therapeutics. Подкомитет «Искусственный интеллект в здравоохранении» (ПК 01). Анализ искусственного интеллекта в медицине включает прогноз рынка на 2024–2029 годы и исторический обзор.

Похожие новости:

Оцените статью
Добавить комментарий