Российская ядерная батарейка в отличие от традиционных источников питания получает электрическую энергию в результате естественного распада радиоактивных изотопов. Новость «Ученые разработали атомную батарейку для космических кораблей» вызвала бы определенный интерес.
В НИЯУ МИФИ создали прототип ядерной батарейки
80 лет без подзарядки: в России создали атомную батарею | В Китае создали компактную ядерную батарею, которая может проработать 50 лет. |
Российские ученые создали уникальную атомную батарейку | Такая атомная батарейка будет экологически безопасна и безвредна для человека за счёт производимого мягкого бета-излучения (и отсутствия опасной гаммы). |
Батарейка для Севморпути будет работать на плутонии-238
В батарейке МИФИ несколько иной принцип действия — изотоп в вакуумной камере нагревается до 1500 градусов Цельсия и начинает светиться. Ученые НИЯУ МИФИ вплотную подошли к созданию ядерной батарейки принципиально нового типа. Мощность ядерной батарейки Betavolt на данном этапе составляет 100 микроватт, а напряжение — 3 Вольта. Ядерные батарейки – это источники тока, в которых энергия радиоактивного распада метастабильных ядер преобразуется в электричество. Уникальность атомной батарейки еще и в размере. В сравнении с литий-ионными аккумуляторами, батарейка на основе никеля-63 в 30 раз компактнее.
Ядерное питание: российские учёные создали атомную батарейку повышенной мощности
По их заверениям, энергоэффективность атомных батареек настолько высока, что их можно ставить в пару с литиевыми аккумуляторами. "Росатом" изготовил первую опытную партию компактных ядерных батареек. Американцы первые образцы своих атомных батареек устанавливали на спутники Transit 4A и 4B.
Ядерное питание: российские учёные создали атомную батарейку повышенной мощности
Неоружейный плутоний: российские ученые создали уникальную ядерную батарейку | Мощность ядерной батарейки Betavolt на данном этапе составляет 100 микроватт, а напряжение — 3 Вольта. |
Российские ученые создали уникальную атомную батарейку | Смотрите видео онлайн «Атомная батарейка. 80 лет без подзарядки» на канале «Росатом» в хорошем качестве и бесплатно, опубликованное 17 июля 2023 года в 15:04, длительностью 00. |
Неоружейный плутоний: российские ученые создали уникальную ядерную батарейку | Срок службы такой батарейки составляет не менее 50 лет, стоимость – около 4000 долларов. |
Российские ученые оценили созданную в Китае ядерную батарейку - Онлайн-журнал «Энергия+» | Образец "ядерной батарейки" состоял из двухсот алмазных преобразователей, чередуемых слоями фольги из никеля-63 и стабильного никеля. |
Вечный заряд: российские ученые создают батарейку, способную работать десятилетиями | Причём батарейка может быть применена в нескольких функциональных режимах: в качестве аварийного источника питания и датчика температуры в устройствах. |
В Красноярском крае разработана атомная батарейка, работающая 50 лет
В Китае создали компактную ядерную батарею, которая может проработать 50 лет. Группа исследователей из НИТУ «МИСиС» продемонстрировала прототип атомной батарейки, величина которой сопоставима с USB-флешкой. Ядерные батарейки способны бесперебойно питать элементы годами, пока не достигнут периода полураспада радиоактивного изотопа. атомная батарейка. Батарейку можно применять в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах. На заводе «Элемаш» в Электростали делают батарейки для ядерных реакторов, которые используют по всему миру.
Ученые создали атомную батарейку. Она может работать 20 лет
Заново изобрели электричество: батарейка с сердечником из ядерных отходов будет работать 28 тысяч лет. Первую опытную партию ядерных батареек для космоса и авиации изготовил «Росатом». В Китае изобрели атомную батарейку BV100, которая может работать до 50 лет без подзарядки.
80 лет без подзарядки: в России создали атомную батарею
При этом стоит напомнить: чем меньше живет активный изотоп, тем выше при одинаковой энергии распада его мощность». Наследница советских РИТЭГов Применяемый в плутониевой батарейке принцип преобразования энергии ядерного распада в электрическую называется термофотовольтаическим. Альфа-источник окружен вакуумной капсулой, внешние стенки которой покрыты слоем наночастиц. Тепло от ионизирующего излучения нагревает капсулу примерно до 1,5 тыс. К, заставляя ее поверхность светиться. Это улавливают окружающие капсулу фотоэлементы, способные выдерживать колоссальную жару. И на выходе уже сейчас, на стадии прототипа, обеспечивается мощность, способная заставить светиться электрическую лампочку на несколько свечей. Казалось бы, зачем так сложно? Ведь тепло, неизменный спутник процесса радиоактивного распада, способно давать ток напрямую.
Примерно так рассуждали ученые прошлых поколений в Советском Союзе, когда конструировали и запускали в серийное производство радиоизотопный термоэлектрический генератор РИТЭГ. Он работал на бета-частицах стронция 90 по другому принципу — термоэлектрическому.
Через еще 87,7 лет останется лишь 250 граммов. Не получится загрузить на борт космического аппарата десяток батареек и менять их по мере надобности — они все начинают работу еще до того, как их подключают к системе. Постоянное уменьшение количества радиоактивного топлива означает и уменьшение тепла и электричества. Но не все так плохо. В космосе не только светло, но и темно В батарейках на основе диоксида плутония-238 увидели смысл в космической промышленности. Например, на околоземной орбите спутнику достаточно солнечных батарей размером с 4 парковочных места.
Для полета к Марсу понадобится вдвое большая площадь. К Юпитеру — еще увеличить раз в 8. Чем дальше от Солнца летит космический аппарат, тем меньше и меньше и меньше эффективность солнечных батарей. Поскольку абсолютно все тепло от работающей установки невозможно поглотить и передать на провода, она ощутимо нагревалась. Для космических аппаратов это оказалось даже плюсом — абсолютный минус черного межпланетного пространства уже не страшен. РИТЭГ давал спутникам и электричество, и тепло. Кстати, в фантастическом фильме «Марсианин» Ридли Скотта главный герой ищет решение — ему нужно поехать на ровере на большое расстояние. Чтобы не замерзнуть по ночам в зависимости от удаленности от полюсов температура там составляет от -80 С до -135 С , он берет с собой в путь небольшой РИТЭГ.
А еще он первым сделал снимки спутников Юпитера и Сатурна. Стоит рассмотреть миссию «Кассини-Гюйгенс» — она проработала почти 20 лет, передала без малого полмиллиона снимков и 635 гигабайт разных данных. Станция несла зонд, который спустился на поверхность Титана спутник Сатурна, на котором есть вода в стабильном состоянии и прислал фото с нее. На борту было 32,8 килограмм чистого и свежего 238-го. Затраты на миссию вышли больше, чем в 3,2 миллиарда долларов, так что плутония было «всего» миллионов на 50. Но самое важное — такое количество вещества ни одна страна в мире не могла произвести и за пару лет. Станция имела мощность 880 ватт в 1997 и около 670 ватт в 2010. Но это лишь тепло; в начале миссии установка выделяла 292 Ватта электроэнергии.
Единственный недостаток американского устройства — быстро выходит из строя. С появлением мобильных атомных источников питания эксперты ожидают настоящий бум " на рынке мобильной электроники. Электронные гаджеты разного типа смогут оснащаться не только упрощённой версией атомной батарейки, но также и более сложной конфигурацией с повышенной выработкой электроэнергии. Стоить самая простая батарейка будет в недалеком будущем примерно 100 долларов. Самые дорогие обойдутся в одну тысячу долларов США.
Расширится область применения атомных источников питания с увеличением выпуска электрических автомобилей. Возможно, будет проявлен интерес со стороны компаний Илона Маска. Внедрение атомных батарей упростит процесс подзарядки автомобилей. Простейший литий-ионный аккумулятор с атомной батарейкой внутри и генератором зарядится практически сразу, как появится необходимость. В результате в распоряжении водителей окажутся электромобили с неограниченным запасом хода.
Скорее всего с развертыванием масштабного производства атомных батареек начнется небывалая энергетическая гонка. В нее вступят главные производители оборудования для атомных устройств.
Сам Рязанов после согласования деталей будущего планетария с Моссоветом в 1927 году выехал в Германию и провел переговоры с компанией Carl Zeiss об изготовлении соответствующего оборудования. Торжественное открытие произошло 5 ноября 1929 года. В середине 1977 года научно-просветительное учреждение подверглось реконструкции. За год планетарий принял свыше 700 тысяч человек. В 1990 году была открыта народная обсерватория, в которой был установлен самый большой телескоп в Москве, доступный для массовых наблюдений. К сожалению, в 1994 году московский планетарий закрылся.
Лишь 12 июня 2011 года, после реконструкции, он вновь стал принимать посетителей. Московский планетарий находится по адресу ул. Садовая-Кудринская, д. С программой мероприятий и временем работы заведения вы можете ознакомиться на официальном сайте центра. За основу разработки специалисты взяли технологию MEMS microelectromechanical systems, микроэлектромеханические системы. В качестве элемента питания — радиоактивный изотоп. В итоге атомная батарейка способна проработать не менее 50 лет. А теперь более подробно.
Атомная батарейка в современном мире
Компания Betavolt Technology создала атомную батарейку для смартфонов, способную работать 50 лет | Американцы первые образцы своих атомных батареек устанавливали на спутники Transit 4A и 4B. |
«Это совершенно безопасно» — в Китае создали ядерную батарейку размером меньше монеты | Ядерные батарейки способны бесперебойно питать элементы годами, пока не достигнут периода полураспада радиоактивного изотопа. |
В России разработана атомная батарейка | Новости 24 | Такая атомная батарейка будет экологически безопасна и безвредна для человека за счёт производимого мягкого бета-излучения (и отсутствия опасной гаммы). |
Неоружейный плутоний: российские ученые создали уникальную ядерную батарейку | Мощность ядерной батарейки Betavolt на данном этапе составляет 100 микроватт, а напряжение — 3 Вольта. |
Неоружейный плутоний: российские ученые создали уникальную ядерную батарейку
При этом ее стержень «фонит» до 28 тыс. Разные форм-факторы атомных батереек Фото: ndb. Их конструкция работает на никелевом бета-гальваническом элементе, который служит около 20 лет. Эти элементы можно размещать на одежде и использовать их энергию для зарядки мобильных устройств.
Термохимические ячейки Фото: misis. Эти панели можно будет устанавливать в окнах домов и офисов. Они будут аккумулировать энергию солнечного света в течение дня.
А в 2020 году Tesla презентовала собственный инвертор солнечной энергии, который дополнит линейку домашних солнечных батарей компании. Он будет преобразовывать солнечную энергию в энергию постоянного тока, а затем — в энергию переменного тока для бытового потребления. В зависимости от числа трекеров точки максимальной мощности, оно сможет выдавать от 3,8 кВт до 7,6 кВт мощности.
Инвертор Tesla Фото: electrek. Система объединит солнечные тепловые коллекторы с параболическими зеркалами фокусируют лучи в одной точке , подземное хранилище тепла в осадочных породах образуются при низких температурах и давлении и электрогенерирующее оборудование на пару в виде трубок и турбины. При нагревании солнцем вода в трубках будет испаряться, а пар будет входить в турбину и одновременно закачиваться под землю, разогревая осадочную породу.
Ночью вода под землей будет испаряться уже под воздействием разогретой породы. Получаемый пар используют для выработки электроэнергии. Эту жидкость поместят в баки с теплоизоляцией и низким давлением.
Нагревание вернет воздух в газообразное состояние, а газ приведет в действие турбины генераторов, которые будут вырабатывать электричество. Схема работы CRYOBattery В мае 2021 года международная группа ученых представила новые ультратонкие металлические электроды из золота, которые можно будет применять для разработки прозрачных солнечных панелей. Потенциально такие панели можно будет встраивать в окна домов и офисов, чтобы аккумулировать энергию.
Большинство из них нестабильны: одни распадаются миллиарды лет, другие - за доли секунды. При распаде выделяется энергия, которую можно использовать себе во благо. Самый очевидный пример - атомные электростанции, в которых тепло от распада урана-237 превращается в электроэнергию. Такой источник энергии не обязательно должен быть громадным, как АЭС. Например, на космических аппаратах "Пионер" и "Вояджер" установлены вполне компактные энергетические установки, работающие на изотопе плутония.
Благодаря им эти аппараты смогли покинуть пределы Солнечной системы и продолжают свой путь во Вселенной. Другой вариант использования энергии распада изотопа - новая технология под названием бетавольтаика. Как она работает? В результате бета-распада ядро изотопа выбрасывает электрон и антинейтрино либо - реже - позитрон и нейтрино излучение попадает в полупроводник, который преобразует его в электрический ток. Аналогичным образом устроена солнечная батарея, только здесь вместо фотонов от Солнца улавливается электрон от изотопа.
Почему бетавольтаика так перспективна? Она даёт энергию долго - десятилетиями. Не требует обслуживания. Да, у такой батарейки низкая мощность, но зато высокая энергоёмкость. И тут не нужны тяжёлые радиоактивные изотопы вроде плутония.
Бета-распад куда более невинен. Как получить тяжёлый никель Патент на бетавольтаику был получен ещё в 1957 году, но реализовать его удалось только сейчас. Одно дело теория, другое - реально работающий гаджет.
Но это очень-очень дорого и сложно. Потребуется много радиоактивного материала, батарейки начнут вскрывать, а это уже вопросы безопасности производства, использования и переработки», — сообщил в разговоре с RT Сергей Леготин. В настоящий момент разработка МИСиС проходит процедуру международного патентования, а сам вуз признан зарубежными экспертами «одним из ключевых участников мирового рынка бетавольтаических батарей», отмечает пресс-служба университета. С учётом улучшенных характеристик российская атомная батарейка сможет занять существенную долю этого рынка, уверены исследователи. Ошибка в тексте?
Отсюда закономерный вопрос: поскольку долговременный источник работает фактически автономно в безлюдной местности, как его контролировать? То есть для учета состояния ядерной батареи собираемся задействовать весь набор современных телекоммуникационных систем. К тому же монтировать их предлагаем сразу в антивандальных контейнерах, форма и габариты которых определятся по результатам эксплуатационных испытаний. По истечении срока службы батарею будут утилизировать, а ядерный компонент изымать и захоранивать в рамках принятой в «Росатоме» программы», — добавляет Петр Борисюк. Первая тройка Ядерная батарейка вошла в Единый отраслевой тематический план научно-исследовательских и опытно-конструкторских работ «Росатома». Через несколько лет ученые рассчитывают предложить заказчику линейку изделий с разным сроком службы и мощностью вплоть до нескольких сотен ваттов. Это и автономные метеопосты, и створные навигационные знаки, и гидрографические станции, и маяки, и даже космические спутники, — уверяет Петр Борисюк.
Пока речь идет о создании трех автономных источников питания, которыми можно будет запитать, например, метеостанции для передачи информации о погоде на Большую землю посредством телеметрии. На этом этапе мы хотим добиться пятиваттной мощности». Северный морской путь — судоходный маршрут и главная морская коммуникация в российской Арктике. Одна из стратегических целей Госкорпорации «Росатом» - сделать Северный морской путь эффективной транспортной артерией, связывающей Европу, Россию и Азиатско-Тихоокеанский регион.
Ученые создали атомную батарейку. Она может работать 20 лет
Электронные гаджеты разного типа смогут оснащаться не только упрощённой версией атомной батарейки, но также и более сложной конфигурацией с повышенной выработкой электроэнергии. Стоить самая простая батарейка будет в недалеком будущем примерно 100 долларов. Самые дорогие обойдутся в одну тысячу долларов США. Расширится область применения атомных источников питания с увеличением выпуска электрических автомобилей. Возможно, будет проявлен интерес со стороны компаний Илона Маска. Внедрение атомных батарей упростит процесс подзарядки автомобилей. Простейший литий-ионный аккумулятор с атомной батарейкой внутри и генератором зарядится практически сразу, как появится необходимость.
В результате в распоряжении водителей окажутся электромобили с неограниченным запасом хода. Скорее всего с развертыванием масштабного производства атомных батареек начнется небывалая энергетическая гонка. В нее вступят главные производители оборудования для атомных устройств. В перспективе и крупные промышленные гиганты не только в военной, но и в гражданской сфере смогут перейти на обеспечение энергии от портативных атомных источников. Правда, есть и сомнения.
Пока ведутся испытания прототипов разных форм-факторов. Без кобальта В конце 2019 года IBM представила образец аккумулятора без никеля и кобальта, из материалов, которые могут быть получены из морской воды. Он включает комбинацию катодного материала без тяжелых металлов и безопасного жидкого электролита с высокой температурой горения. Специалисты уже подсчитали, что эти материалы могут сделать аккумуляторы дешевле существующих литий-ионных и при этом будут иметь более высокие характеристики скорости зарядки и энергетической плотности, а также будут менее огнеопасными. Авторы разработки считают, что у нее есть потенциал для внедрения в отрасль электромобилей. Кроме того, тесты показали, что батарея способна прослужить достаточно долго, чтобы ее можно было использовать в интеллектуальных электросетях и новой энергетической инфраструктуре. Для будущего производства аккумуляторов IBM уже заключила коммерческое соглашение с Mercedes-Benz, поставщиком электролита Central Glass и производителем батарей Sidus. Полимеры В 2017 году стартап Ionic Materials презентовал полимерный аккумулятор, который в перспективе сможет заменить литий-ионные. Компания заявила, что полимерные литий-металлические аккумуляторы будут безопаснее, долговечнее и экономически выгоднее, так как процесс их производства похож на производство пластиковой упаковки. Аккумулятор Ionic Materials Фото: ionicmaterials. Прототип, как заявляет производитель, выдерживает до 400 циклов заряда-разряда. Компания работает над тем, чтобы увеличить этот показатель втрое. Полимер для аккумуляторов получили из алюминия и других распространенных материалов. На цинке EnZinc, стартап по производству цинковых батарей, заявил в 2021 году, что нашел способ для замены лития на нетоксичный и дешевый цинк в аккумуляторах. До этого на рынке существовали только неперезаряжаемые цинковые батареи. Они выдерживают несколько тысяч циклов зарядки и разрядки. Ведутся испытания образцов. Их можно будет масштабировать для мобильных телефонов и до транспортных систем, а также для нужд электроэнергетики. Разработка имеет специальный корпус из синтетических алмазов, внутрь которого помещен радиоактивный центр, работающий на переработанных ядерных отходах углерода-14.
Кроме высокой удельной мощности, важны также простота и удобство наработки радионуклида например, в атомном реакторе и такой параметр, как отсутствие гамма-излучения. Поэтому, скажем, для ядерных батареек в кардиостимуляторах или датчиках артериального давления и показателей крови подходят только плутоний-238 и никель-63. Требование безопасного радиоизотопа резко сужает круг потенциальных кандидатов, поскольку ядра при распаде должны либо все переходить в основное состояние дочернего ядра, либо заселять возбужденные состояния дочернего ядра с очень низкой вероятностью. Кроме выбора радиоизотопа, принципиально важным при разработке радиоизотопных источников энергии является и выбор схемы преобразования энергии ядерного распада в электричество. На практике преобразование ядерной энергии в электрическую осуществляется преимущественно по непрямому ступенчатому принципу: кинетическая и кулоновская энергия альфа- и бета-частиц сначала превращаются в иную, например, тепловую, химическую, механическую, световую и т. Это наиболее перспективный радионуклид в бета-вольтаике — средняя энергия бета-частиц 63Ni 17. Группа ученых из Института ЛаПлаз под руководством Петра Борисюка предложила оригинальную физическую систему на основе 63Ni, позволяющую провести эффективную генерацию вторичных электронов непосредственно внутри наноструктурированных пленок никеля и значительно увеличить токовый сигнал, вызванный каскадом многократных неупругих соударений бета-частиц. Эта система является относительно простой с точки зрения экспериментальной реализации и представляет собой ансамбль плотно упакованных нанокластеров никеля с градиентным распределением наночастиц по размеру, осажденных на поверхности широкополосного диэлектрика — оксида кремния.
Наука Атомная батарейка: разработан прототип, способный держать зарядку тысячи лет Американский стартап Nano Diamond Battery NDB представил прототип атомной батареи, которая способна проработать десятки тысяч лет. Тестирование прототипа уже завершено, его работоспособность подтверждена, и стартап обещает вывести на рынок готовый продукт уже в конце 2020 года. Сможет она продержаться без подзарядки десятки тысяч лет — разбирался научный обозреватель Николай Гринько. У него нет разъема для подзарядки, но гаджет все равно исправно работает — день за днем, месяц за месяцем, не требуя подключения к розетке. Спустя несколько лет смартфон сломался, и вы купили новый. Но прежде чем избавиться от старого, вы вынули из него батарейку, вставили ее в новый, и он проработал еще несколько лет. Вы еще много раз меняли гаджеты, каждый раз используя в них одну и ту же батарейку — ту самую, первую. Затем вы завещали ее сыну.
В России создана миниатюрная и долговечная атомная батарейка
Китайские ученые создали «вечную» ядерную батарею, которая может производить энергию до 50 лет без подзарядки. В 2016 году учёные уже сообщали о разработке прототипа ядерной батарейки на основе никеля-63. Российская «атомная батарейка» способна проработать 20 лет!