Новости теория струн кратко и понятно

О проекте. Новости. Действительно, теория струн способна объединить квантовую теорию и гравитацию, но сделать это, как оказалось, можно пятью способами. Как и любая неподтвержденная теория, теория струн имеет ряд проблем, которые говорят о том, что она требует доработки.

Космический эксперимент поставил под сомнение теорию струн

1) «Теория струн» в первоначальном виде сама по себе уже устарела и сейчас это название закрепилось не за первоначальной теорией, а за целым семейством – собственно теория струн, теория суперструн и М-теория. Новости науки, высокие технологии и научные открытия. Почта Мой МирОдноклассникиВКонтакте Игры Знакомства Новости Поиск Облако VK Combo Все проектыВсе проекты.

Теория струн кратко и понятно

Ее парадигма подразумевает существование большого количества измерений. Кроме того, теория струн говорит, что мир состоит не из частиц, а из вибрирующих нитей — тех самых струн. Представьте себе гитару. Удар по струнам вызывает вибрацию, рождается звук.

Нравится вам это или нет а некоторым физикам, конечно, нет , теория струн никуда не денется. Теория струн переворачивает страницу стандартного описания Вселенной, заменяя все частицы материи и силы всего одним элементом: крошечными вибрирующими струнами, которые закручиваются и поворачиваются сложными способами, которые, с нашей точки зрения, выглядят как частицы. Струна определенной длины, бьющая на определенной ноте, может приобрести свойства фотона, а другая струна, свернутая и вибрирующая с другой частотой, может играть роль кварка, и так далее. В дополнение к укрощению гравитации, теория струн была привлекательна своим потенциалом для объяснения значений так называемых фундаментальных констант, таких как масса электрона. Теоретики надеялись, что следующим шагом будет поиск правильного способа описания сворачивания и движения струн, но эта кажущаяся простота оказалась на самом деле неожиданно сложной. Математика теории струн не работала в наших привычных четырех измерениях три пространственных и одно временное.

Это подтолкнуло физиков к необычному и потрясающему предсказанию — они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц. То есть существуют частицы материи, а есть частицы-переносчики взаимодействий. Таковым, например, является фотон — частица света. Ученые предсказывали, что именно этот обмен частицами-переносчиками — есть не что иное, как то, что мы воспринимаем как силу. Это подтвердилось экспериментами. Так физикам удалось приблизиться к мечте Эйнштейна по объединению сил. А если вернуться во времени еще дальше, то электрослабое взаимодействие соединилось бы с сильным в одну суммарную «суперсилу».

Несмотря на то, что все это еще ждет своих доказательств, квантовая механика вдруг объяснила, как три из четырех сил взаимодействуют на субатомном уровне. Причем объяснила красиво и непротиворечиво. Эта стройная картина взаимодействий, в конечном счете, получила название Стандартной модели. Но, увы, и в этой совершенной теории была одна большая проблема — она не включала в себя самую известную силу макроуровня — гравитацию. Например, выкладки теории предсказали существование частиц, которых, как точно установили вскоре, не существует. Это так называемый тахион — частица, которая движется в вакууме быстрее света. Помимо прочего выяснилось, что теория требует целых 10 измерений.

Неудивительно, что это очень смущало физиков, ведь это очевидно больше, чем то, что мы видим. К 1973 году только несколько молодых физиков все еще боролись с загадочными выкладками теории струн. Одним из них был американский физик-теоретик Джон Шварц. В течение четырех лет Шварц пытался приручить непослушные уравнения, но без толку. Помимо других проблем, одно из этих уравнений упорно описывало таинственную частицу, которая не имела массы и не наблюдалась в природе. Ученый уже решил забросить свое гиблое дело, и тут его осенило — может быть, уравнения теории струн описывают, в том числе, и гравитацию? Впрочем, это подразумевало пересмотр размеров главных «героев» теории — струн.

Предположив, что струны в миллиарды и миллиарды раз меньше атома, «струнщики» превратили недостаток теории в ее достоинство. Таинственная частица, от которой Джон Шварц так настойчиво пытался избавиться, теперь выступала в качестве гравитона — частицы, которую долго искали и которая позволила бы перенести гравитацию на квантовый уровень. Именно так теория струн дополнила пазл гравитацией, отсутствующей в Стандартной модели. Но, увы, даже на это открытие научное сообщество никак не отреагировало. Теория струн оставалась на грани выживания. Но Шварца это не остановило. Присоединиться к его поискам захотел только один ученый, готовый рискнуть своей карьерой ради таинственных струн — Майкл Грин.

За открытие этих «оснований» в 2011 году была вручена Нобелевская премия по физике. Состояло оно в том, что расширение Вселенной не замедляется, как думали когда-то, а, наоборот, ускоряется. Объясняют это ускорение действием особой «антигравитации», которая каким-то образом свойственна пустому пространству космического вакуума. С другой стороны, на квантовом уровне ничего абсолютно «пустого» быть не может — в вакууме постоянно возникают и тут же исчезают субатомные частицы. Такое «мелькание» частиц, как полагают, и ответственно за существование «антигравитационной» темной энергии, которая наполняет пустое пространство. В свое время именно Альберт Эйнштейн, до конца жизни так и не принявший парадоксальные принципы квантовой механики которую он сам и предсказал , предположил существование этой формы энергии. Следуя традициям классической греческой философии Аристотеля с ее верой в вечность мира, Эйнштейн отказывался поверить в то, что предсказывала его собственная теория, а именно то, что Вселенная имеет начало.

Чтобы «увековечить» мироздание, Эйнштейн даже ввел в свою теорию некую космологическую постоянную, и таким образом описал энергию пустого пространства. К счастью, через несколько лет выяснилось, что Вселенная — вовсе не застывшая форма, что она расширяется. Тогда Эйнштейн отказался от космологической постоянной, назвав ее «величайшим просчетом в своей жизни». Сегодня науке известно — темная энергия все-таки существует, хотя плотность ее намного меньше той, что предполагал Эйнштейн проблема плотности темной энергии, кстати, — одна из величайших загадок современной физики. Но как бы ни была мала величина космологической постоянной, ее вполне достаточно для того, чтобы убедиться в том, что квантовые эффекты в гравитации существуют. Шварц и Грин принялись за их устранение. И усилия их не прошли даром: ученые сумели устранить некоторые противоречия теории.

Меньше чем за год число струнных теоретиков подпрыгнуло до сотен человек. Именно тогда теорию струн наградили титулом Теории Всего. Новая теория, казалось, способна описать все составляющие мироздания. И вот эти составляющие.

Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации. Данный подход, с одной стороны, позволяет избежать таких трудностей квантовой теории поля, как перенормировка, а с другой стороны, приводит к более глубокому взгляду на структуру материи и пространства-времени. Остальные ответы zz Гуру 3376 10 лет назад Подозреваю, что буду не прав, но выражу свою мысль: мы знаем, что каждая молекула во вселенной вибрирует, и состояния покоя не существует априори.

Теория струн, или Теория всего

Изучив странные моды колебаний струн, напоминающие частицы-переносчики, они поняли, что эти свойства удивительно точно совпадают с предполагаемыми свойствами гипотетической частицы-переносчика гравитационного взаимодействия — гравитона. Хотя эти «мельчайшие частицы» гравитационного взаимодействия до сих пор так и не удалось обнаружить, теоретики могут уверенно предсказать некоторые фундаментальные свойства, которыми должны обладать эти частицы. Шерк и Шварц обнаружили, что эти характеристики в точности реализуются для некоторых мод колебаний. Основываясь на этом, они предположили, что первое пришествие теории струн закончилось неудачей из-за того, что физики чрезмерно сузили область её применения. Шерк и Шварц объявили, что теория струн — это не просто теория сильного взаимодействия, это квантовая теория, которая, помимо всего прочего, включает гравитацию. В действительности, по воспоминаниям Шварца, «наша работа была проигнорирована всеми». Теория струн потерпела неудачу в своей первоначальной попытке описать сильное взаимодействие, и многим казалось бессмысленным пытаться использовать её для достижения ещё более великих целей. Последующие, более детальные исследования конца 1970-х и начала 1980-х гг. Создавалось впечатление, что гравитационная сила вновь смогла устоять перед попыткой встроить её в описание мироздания на микроскопическом уровне.

Так было до 1984 г. В своей статье, сыгравшей поворотную роль и подытожившей более чем десятилетние интенсивные исследования, которые по большей части были проигнорированы или отвергнуты большинством физиков, Грин и Шварц установили, что незначительное противоречие с квантовой теорией, которым страдала теория струн, может быть разрешено. Более того, они показали, что полученная в результате теория обладает достаточной широтой, чтобы охватить все четыре вида взаимодействий и все виды материи. Весть об этом результате распространилась по всему физическому сообществу: сотни специалистов по физике элементарных частиц прекращали работу над своими проектами, чтобы принять участие в штурме, который казался последней теоретической битвой в многовековом наступлении на глубочайшие основы мироздания. Я начал работу в аспирантуре Оксфордского университета в октябре 1984 г. Хотя я был восхищён раскрывавшимися передо мной достижениями квантовой теории поля, калибровочной теории и общей теории относительности, среди моих старших коллег-аспирантов было распространено скептическое убеждение, что бо? Была разработана стандартная модель, и замечательный успех, с которым она предсказывала результаты экспериментов, оставлял мало сомнений в том, что её полное подтверждение является делом не слишком отдалённого будущего. Выход за её пределы для включения гравитации и возможного объяснения экспериментальных данных, на которых базируется эта модель т.

Естественным следствием теории является описание гравитации. Именно поэтому ученые считают, что в ней содержится ключ к объединению силы тяжести с другими взаимодействиями. Концепция развивается Теория единого поля, теория суперструн, — сугубо математическая. Как и все физические концепции, она основана на уравнениях, которые могут быть определенным образом интерпретированы. Сегодня никто не знает точно, каким будет окончательный вариант этой теории. Ученые имеют довольно смутное представление об ее общих элементах, но никто еще не придумал окончательного уравнения, охватившего бы все теории суперструн, а экспериментально до сих пор не удалось ее подтвердить хотя и опровергнуть тоже. Физики создали упрощенные версии уравнения, но пока что оно не вполне описывает нашу вселенную.

Теория суперструн для начинающих В основе гипотезы положены пять ключевых идей. Теория суперструн предсказывает, что все объекты нашего мира состоят из вибрирующих нитей и мембран энергии. Она пытается совместить общую теорию относительности гравитации с квантовой физикой. Теория суперструн позволит объединить все фундаментальные силы вселенной. Эта гипотеза предсказывает новую связь, суперсимметрию, между двумя принципиально различными типами частиц, бозонами и фермионами. Концепция описывает ряд дополнительных, обычно ненаблюдаемых измерений Вселенной. Струны и браны Эти суперструны теория делит на два вида — замкнутые и открытые.

Открытая струна имеет концы, которые не соприкасаются друг с другом, в то время как замкнутая струна является петлей без открытых концов. В итоге было установлено, что эти струны, называемые струнами первого типа, подвержены 5 основным типам взаимодействий. Взаимодействия основаны на способности струны соединять и разделять свои концы. Поскольку концы открытых струн могут объединиться, чтобы образовывать замкнутые, нельзя построить теорию суперструн, не включающую закольцованные струны. Это оказалось важным, так как замкнутые струны обладают свойствами, как полагают физики, которые могли бы описать гравитацию. Другими словами, ученые поняли, что теория суперструн вместо объяснения частиц материи может описывать их поведение и силу тяжести. Через многие годы было обнаружено, что, кроме струн, теории необходимы и другие элементы.

Их можно рассматривать как листы, или браны. Струны могут крепиться к их одной или обеим сторонам. Квантовая гравитация Современная физика имеет два основных научных закона: общую теорию относительности ОТО и квантовую. Они представляют совершенно разные области науки. Квантовая физика изучает мельчайшие природные частицы, а ОТО, как правило, описывает природу в масштабах планет, галактик и вселенной в целом. Гипотезы, которые пытаются объединить их, называются теориями квантовой гравитации. Наиболее перспективной из них сегодня является струнная.

Замкнутые нити соответствуют поведению силы тяжести. В частности, они обладают свойствами гравитона, частицы, переносящей гравитацию между объектами. Объединение сил Теория струн пытается объединить четыре силы — электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию — в одну. В нашем мире они проявляют себя как четыре различные явления, но струнные теоретики считают, что в ранней Вселенной, когда были невероятно высокие уровни энергии, все эти силы описываются струнами, взаимодействующими друг с другом. Суперсимметрия Все частицы во вселенной можно разделить на два типа: бозоны и фермионы. Теория струн предсказывает, что между ними существует связь, называемая суперсимметрией. При суперсимметрии для каждого бозона должен существовать фермион и для каждого фермиона — бозон.

К сожалению, экспериментально существование таких частиц не подтверждено. Суперсимметрия является математической зависимостью между элементами физических уравнений. Она была обнаружена в другой области физики, а ее применение привело к переименованию в теорию суперсимметричных струн или теория суперструн, популярным языком в середине 1970 годов. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные. Без суперсимметрии уравнения приводят к физическим противоречиям, таким как бесконечные значения и воображаемые энергетические уровни. Поскольку ученые не наблюдали частицы, предсказанные суперсимметрией, она все еще является гипотезой. Эти частицы могли существовать в ранней вселенной, но так как она остыла, и после Большого взрыва энергия распространилась, эти частицы перешли на низкоэнергетические уровни.

Другими словами, струны, вибрировавшие как высокоэнергетические частицы, утратили энергию, что превратило их в элементы с более низкой вибрацией. Ученые надеются, что астрономические наблюдения или эксперименты с ускорителями частиц подтвердят теорию, выявив некоторые из суперсимметричных элементов с более высокой энергией. Дополнительные измерения Другим математическим следствием теории струн является то, что она имеет смысл в мире, число измерений которого больше трех. В настоящее время этому существует два объяснения: Дополнительные измерения шесть из них свернулись, или, в терминологии теории струн, компактифицировались до невероятно малых размеров, воспринять которые никогда не удастся. Мы застряли в 3-мерной бране, а другие измерения простираются вне ее и для нас недоступны. Важным направлением исследований среди теоретиков является математическое моделирование того, как эти дополнительные координаты могут быть связаны с нашими. Последние результаты предсказывают, что ученые в скором времени смогут обнаружить эти дополнительные измерения если они существуют в предстоящих экспериментах, так как они могут быть больше, чем ожидалось ранее.

Понимание цели Объяснение материи и массы Одна из основных задач современных исследований — поиск решения для реальных частиц. Теория струн начиналась как концепция, описывающая такие частицы, как адроны, различными высшими колебательными состояниями струны. В большинстве современных формулировок, материя, наблюдаемая в нашей вселенной, является результатом колебаний струн и бран с наименьшей энергией. Вибрации с большей порождают высокоэнергичные частицы, которые в настоящее время в нашем мире не существуют. Масса этих элементарных частиц является проявлением того, как струны и браны завернуты в компактифицированных дополнительных измерениях. Например, в упрощенном случае, когда они свернуты в форме бублика, называемом математиками и физиками тором, струна может обернуть эту форму двумя способами: короткая петля через середину тора; длинная петля вокруг всей внешней окружности тора. Короткая петля будет легкой частицей, а большая — тяжелой.

При оборачивании струн вокруг торообразных компактифицированных измерений образуются новые элементы с различными массами. Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Свернутые измерения здесь гораздо сложнее тора, но в принципе они работают также. Возможно даже, хотя это трудно представить, что струна оборачивает тор в двух направлениях одновременно, результатом чего будет другая частица с другой массой. Браны тоже могут оборачивать дополнительные измерения, создавая еще больше возможностей. Определение пространства и времени Во многих версиях теория суперструн измерения сворачивает, делая их ненаблюдаемыми на современном уровне развития технологии. В настоящее время не ясно, сможет ли теория струн объяснить фундаментальную природу пространства и времени больше, чем это сделал Эйнштейн.

В ней измерения являются фоном для взаимодействия струн и самостоятельного реального смысла не имеют. Предлагались объяснения, до конца не доработанные, касавшиеся представления пространства-времени как производного общей суммы всех струнных взаимодействий. Такой подход не отвечает представлениям некоторых физиков, что привело к критике гипотезы. Конкурентная теория петлевой квантовой гравитации в качестве отправной точки использует квантование пространства и времени. Некоторые считают, что в конечном итоге она окажется лишь другим подходом ко все той же базовой гипотезе. Квантование силы тяжести Главным достижением данной гипотезы, если она подтвердится, будет квантовая теория гравитации. Текущее описание силы тяжести в ОТО не согласуется с квантовой физикой.

Последняя, накладывая ограничения на поведение небольших частиц, при попытке исследовать Вселенную в крайне малых масштабах ведет к возникновению противоречий. Унификация сил В настоящее время физикам известны четыре фундаментальные силы: гравитация, электромагнитная, слабые и сильные ядерные взаимодействия. Из теории струн следует, что все они когда-то являлись проявлениями одной. Согласно этой гипотезе, так как ранняя вселенная остыла после большого взрыва, это единое взаимодействие стало распадаться на разные, действующие сегодня. Эксперименты с высокими энергиями когда-нибудь позволят нам обнаружить объединение этих сил, хотя такие опыты находятся далеко за пределами текущего развития технологии. Пять вариантов После суперструнной революции 1984 г. Физики, перебирая версии теории струн в надежде найти универсальную истинную формулу, создали 5 разных самодостаточных варианта.

Какие-то их свойства отражали физическую реальность мира, другие не соответствовали действительности. М-теория На конференции в 1995 году физик Эдвард Виттен предложил смелое решение проблемы пяти гипотез.

Так что это предсказание пока ничем не подтверждено.

Второе предсказание. Частицы с дробным электрическим зарядом. Ну а это, то что частица может обладать дробным зарядом, для тех, кто знает, что ускоряемая частица излучает и поглощает это является послесказанием, а не предсказанием.

Излучившая частица потеряла часть заряда и массы, а поглотившая частица прибавила в заряде и массе. А величины этих изменений можно и посчитать. Для тех, кто этого не знал, выводы теории о дробности можно считать предсказанием.

Некоторые более отдалённые перспективы. Еще одно предсказание в теории струн Виттен увидел такое. Он предположил, что некоторые струны могут быть гигантских размеров, и они могут быть зарегистрированы астрономами.

Ладно, пусть регистрируют. А может это и зарегистрировал LIGO? А мы все это свалили на гравитацию.

Есть еще 5 примеров возможных предсказаний. Брайан полагает, что если бы эксперимент показал, что масса нейтрино отлична от нуля, то теория струн могла бы это объяснить, чего не может сделать другая теория, в частности стандартная модель. Группа квантов объединяется в фотон.

И таких фотонов с различным количеством квантов, то есть с различной энергией, множество, в том числе это и световые фотоны. А Столетов экспериментально доказал, что свет давит. Значит, фотоны света передают измерительному органу свой импульс, а это значит, что фотоны света обладают массой и эта масса создается неимоверным количеством квантов, составляющих эти фотоны.

Это не замысловатое рассуждение косвенно и подтверждает то, что масса нейтрино отлична от нулевой величины.

Но ведь "Почему? А началось все с одного служащего патентного бюро который придумал теорию относительности. Через "физический вакуум" каким то невообразимым способом распространяются поля и волны... Свет почему то имеет постоянную скорость независимо от источника, наблюдателя... При этом идея того что вакуум ни хрена не пуст отрицается и даже высмеивается. И вот теперь струны...

Вернее энергия первична, а материя вторична.

Где почитать о теории струн?

  • Популярные материалы
  • Квантовая механика – следствие теории струн?
  • Что такое теория струн и может ли она открыть дверь в другие измерения
  • Квантовая теория струн
  • Теория струн для чайников

Концепция развивается

  • Теория струн: кратко и понятно, доступно с фото и видео. Основные концепции и понятия теории.
  • Теория струн, Мультивселенная
  • На пути к теории струн / Хабр
  • Что такое теория струн

Что такое Теория струн и существует ли 10-ое измерение

20–минутное видео о теории струн. Про эту теорию впервые прочитал в журнале "Юный техник" ещё в школе. Рассказать о теории струн кратко вряд ли получится. Теория струн предполагает, что в нашей Вселенной существует гораздо больше измерений, чем четыре нам привычные: три пространственных плюс время.

Теория струн

Эта недоказанная теория в физике элементарных частиц объединяет квантовую механику и общую теорию относительности Эйнштейна. Некоторые физики считают, что при объединении квантовой физики и гравитации в одну именно у этой теории больше всего шансов стать "теорией всего" гипотетический фундамент, который объясняет абсолютно все физические явления. Однако есть и другие учёные, которые думают, что она является почти псевдонаукой, поскольку её практически невозможно проверить экспериментальным путём. Теория суперструн Теория суперструн — это сокращение от "суперсимметричная теория струн"; это ещё одна версия теории струн, которая для моделирования гравитации: учитывает фермионы частица с полуцелым значением спина , учитывает бозоны частица с целым значением спина , включает суперсимметрию связь между фермионами и бозонами. Теория струн — это общее название всей области. Главное теоретическое отличие между теорией струн и теорией суперструн заключается в существовании суперсимметрии. Варианты теории струн Вместо одной теории, которая объясняет всё во Вселенной, на данный момент существуют целых пять теорий струн. Различия между этими теориями очень сложны математически.

Одним из ключевых моментов в развитии квантовой теории струн было осознание ограничений и проблем традиционной физики. Традиционная физика, основанная на точечных частицах, не могла объяснить некоторые фундаментальные вопросы, такие как объединение гравитации и квантовой механики, причина массы частиц и природа темной материи и энергии. В 1960-х годах физики начали исследовать модели струн, которые могли быть основой для новой теории. Однако, в то время не было достаточно математических инструментов для полного описания струнных моделей. В 1970-х годах были сделаны важные открытия, которые привели к развитию квантовой теории струн. Это был важный шаг вперед в понимании струнных моделей. В 1980-х годах были сделаны еще большие прорывы в развитии квантовой теории струн. Операционализация и экспериментальное подтверждение квантовой теории струн до сих пор остаются сложными задачами. В настоящее время нет прямых экспериментальных данных, которые бы подтверждали предсказания квантовой теории струн. Однако, теория имеет ряд математических и концептуальных преимуществ, которые делают ее привлекательной для физиков исследователей. Развитие квантовой теории струн продолжается, исследователи по-прежнему работают над различными аспектами теории и ищут возможности для экспериментальной проверки. Квантовая теория струн предлагает новый подход к пониманию фундаментальных взаимодействий и структуры Вселенной, и ее развитие может привести к новым открытиям и пониманию природы на более глубоком уровне. Свойства и особенности квантовой теории струн Квантовая теория струн обладает рядом уникальных свойств и особенностей, которые делают ее отличной от традиционных теорий физики. Вот некоторые из них: Дополнительные измерения и сверхпространство Одной из ключевых особенностей квантовой теории струн является наличие дополнительных измерений, помимо традиционных трех пространственных и одного временного измерений. Струны могут колебаться в пространствах большего числа измерений, таких как 10-мерное или 11-мерное пространство. Эти дополнительные измерения не наблюдаются в нашем мире из-за их свернутой или скрытой природы. Сверхпространство — это пространство, в котором существуют дополнительные измерения. Оно может быть представлено как некоторая компактифицированная или свернутая форма, которая не проявляется в нашем мире. Сверхпространство играет важную роль в квантовой теории струн, поскольку оно позволяет объединить гравитацию и другие фундаментальные взаимодействия. Суперсимметрия и симметрии струнных моделей Суперсимметрия — это математическая концепция, которая позволяет установить связь между частицами с разными спинами бозоны и фермионы. В квантовой теории струн суперсимметрия играет важную роль, поскольку она позволяет устранить некоторые проблемы, связанные с наличием различных типов частиц и их взаимодействием. Струнные модели также обладают различными симметриями, которые определяют их свойства и поведение. Некоторые из них включают конформную симметрию, которая сохраняется при преобразованиях масштаба, и симметрию Пуанкаре, которая описывает инвариантность физических законов относительно преобразований пространства и времени. Уникальные математические свойства и симфония гравитации и квантовой механики Квантовая теория струн имеет уникальные математические свойства, которые делают ее сложной и интересной для исследования. Она требует использования различных математических инструментов, таких как теория групп, топология и теория функций. Математические методы, используемые в квантовой теории струн, часто связаны с алгебрами Ли, теорией представлений и дифференциальной геометрией. Квантовая теория струн также стремится объединить гравитацию и квантовую механику, две фундаментальные теории, которые до сих пор не были полностью совмещены.

Например, в теории струн обязательно присутствовала частица, тахион, квадрат массы которой был меньше нуля. Ну ты понел, да? У нее масса получалась мнимая. Суперсимметрия, все дела[ править ] Ученые нашли в уравнениях теории хэш-коды. Однако упоротые фанаты теории струн так просто не собирались сдаваться. В 1971 году была создана обновлённая теория струн, уже под названием «теория суперструн». Обновление заключалось в том, что если первый вариант теории включал в себя описание только бозонов, то теория суперструн схавала ещё и фермионы. Тут нужно остановиться и уяснить подробнее. Демонстрация полуцелого спина на примере кофе Все элементарные частицы обладают такой характеристикой, как спин. Школьники могут вообразить это себе как скорость вращения частицы вокруг собственной оси подобно тому, как Земля вертится вокруг себя, сменяя день и ночь. Хотя на самом деле спин показывает как бы крутилась частица, если бы крутилась, причем по расчетам скорость ее оборота превышает световую и при всем прочем создает магнитное поле. Имеется и другой вариант объяснения сути спина «на пальцах», не менее, впрочем, майндфачный в итоге: спин — это количество оборотов вокруг своей оси, которые надо сделать частице, чтобы выглядеть так же, как вначале. И если для спинов в пределах единицы все вроде понятно любому предмету неправильной формы можно приписать «спин», равный единице , то при попытке представить себе форму объекта, который надо прокрутить вокруг оси дважды, чтобы он выглядел так же, как вначале, могут произойти необратимые изменения в коре головного мозга или замещающего органа. Чтобы уменьшить градус майндфака, попробуйте повернуть на 360 градусов чашку кофе, стоящую на ладони. Получилось то же, с чего начали? Ощущения в руке вам подскажут, что не совсем то. А вот если… впрочем, гляньте-ка лучше видео. Бозонами называются те частицы, которые имеют целочисленный спин. Фермионы — те, у кого спин полуцелый. Так вот, первая версия теории струн описывала только бозоны, что было ещё одной из причин, по которым она до сих пор стоит на морозе. Обновлённый вариант теории струн включал в себя и фермионы, и тут все поняли, что при таком подходе проблема ненужных тахионов, как и множество других противоречий, исчезает! Но, как всегда, не обошлось без проблем. Новая теория струн не только заставила всех просветлиться, но и вбросила говна на вентилятор: по ней получалось, что для каждого бозона должен существовать соответствующий фермион, то есть между бозонами и фермионами должна существовать определённая симметрия. Такой вид симметрии предсказывался и раньше — под названием «суперсимметрия». Фейл заключался в том, что никто и никогда не наблюдал эти самые суперсимметричные фермионы. Объяснение тому нашли простое: по расчётам, суперсимметричные фермионы должны обладать огромной для микромира массой, и потому в обычных условиях их хрен получишь. Для того, чтобы зарегистрировать их, нужны огромные энергии, которые достигаются при столкновении лёгких частиц на почти световых скоростях. Физики, осознав, в какой жопе они оказались, стали плакаться в жилетку всем, кому ни попадя, и причитать «бида-бида, канец науке». Неизвестно, кому они продали душу , но в итоге им удалось разжалобить больших дядь на серьёзные бабки для строительства Большого адронного коллайдера и пары коллайдеров поменьше. Да-да, именно так, Анон — одной из целей воздвижения этой НЁХ было именно получение суперсимметричных фермионов. Доводы школолофизика о 9-и измерениях, часть рас часть два Итак, теорию струн заменили теорией суперструн, но легче не стало: не успели физики прийти в себя от бодуна после празднования новой теории, как во все дыры полезли новые глюки. В итоге помощь пришла оттуда, откуда совсем не ждали. Ещё в далёком 1919 году никому тогда не известный немецкий математик Калуца прислал Эйнштейну письмо, где изложил свою теорию: наша Вселенная, вполне может статься, не трехмерная, а измерений может иметься более 9000. В своих работах Калуца делал допущение, что на самом деле Вселенная может быть четырехмерной в пространстве, и в доказательство своих слов приводил свои расчёты, из которых получалось, что при таком условии ОТО замечательно согласовывается с теорией электромагнитного поля Максвелла, чего невозможно достичь в обычной трехмерной Вселенной. Эйнштейна письмо не впечатлило ещё бы, он только что придумал охуительно сложную теорию, хочется дать продохнуть мозгам, а тут ещё какой-то укуренный немец лезет со своим атсралом , и он ответил лишь « Окей ». В 1926 году физик Оскар Клейн заинтересовался работами Калуцы и усовершенствовал его модель. По Клейну получалось, что дополнительное измерение действительно может существовать, но оно находится в «свёрнутом» и зацикленном на самом себе виде. Причём свернуто четвёртое измерение очень туго — до размеров элементарных частиц, поэтому мы его и не замечаем. Вспомнили о Калуце в восьмидесятых годах, когда теория струн в очередной раз оказалась в жопе. Воспалённые мозги физиков в попытке объяснить несоответствия теории струн с квантовой механикой докатились до того, что было выдвинуто предположение — вся хуйня в расчётах была в том, что струны в нашей теории могут колебаться всего лишь в трёх направлениях, которыми располагает наша Вселенная. Вот если бы струны могли бы колебаться в четырёх измерениях… О, да тут же был какой-то Калуца, кстати, где он? Расчёты показали, что и в этом случае следует неиллюзорный фейл, но зато число противоречий в уравнениях вроде уменьшилось. Взбодренные физики продолжали увеличивать число измерений, пока не ввели все 9!!! И тогда физики громогласно провозгласили, что на самом деле мы живём в десятимерной Вселенной, в том числе одно измерение во времени, три знакомых нам измерения развернуты до космических размеров, а остальные шесть свернуты в микроскопических масштабах и потому незаметны. Такие дела. Причём ни подтвердить, ни опровергнуть это на эксперименте практически никак нельзя, ибо речь идёт о таких малых масштабах струн и свернутых измерений, что современная аппаратура ничего не найдёт. Физики были счастливы, общественность охуевала и окончательно утвердилась в мысли, что физика — бесполезная наука. Рождение M-теории[ править ] Двумерная проекция трехмерной визуализации пространства Калаби-Яу Окрыленные новыми успехами, физики ринулись в бой, но скоро опять стали раздаваться возгласы: « WTF? Основным успехом явилось то, что физикам удалось по крайней мере, на бумаге установить общий вид шести свернутых измерений, необходимый для того, чтобы наш мир при этом оставался таким, какой он есть. Оказалось, что этот вид соответствует некоторым математическим объектам из группы под названием «Многообразия Яу» названа по имени развеселого и улыбчивого китайского математика по фамилии Яу, описавшего ее. Главный фейл — то, что хотя общий вид этих объектов и вычислили, но точный вид, как оказалось, нельзя установить без эксперимента. Без нахождения точного вида пространства Калаби-Яу нашей Вселенной вся теория струн скатывалась практически в гадание на кофейной гуще. Впрочем, работы продолжались, и постепенно физикам удалось вычленить из общей массы гипотез пять более-менее правдоподобных теорий, которые могли бы описать нашу Вселенную. Ситуация сложилась вообще аховая — теперь теорий стало больше, чем надо, и это было нехорошо.

Петлевая же гравитация занимается именно этим, то есть пытается склеить ТО и квантовую механику. Для этого уравнения Эйнштейна переписываются совсем в другом но эквивалентном исходному, это важно виде, в совершенно других переменных. При этом оказывается, что в таком виде уравнения уже поддаются квантованию, пусть и не совсем классическому. Полученные при этом квантовые переменные могут пониматься как петли — отсюда и название. Насколько эти петли связаны с нашими струнами и связаны ли вообще все-таки звучит похоже , мы пока не знаем. Петлевая гравитация, конечно, менее экзотична, чем теория струн. В ней не требуются дополнительные измерения, не нужна суперсимметрия. То есть их можно добавить, но сами по себе они не возникают. Тут, однако, возникает тонкий момент — уверен, что специалисты по петлевой квантовой гравитации со мной не согласятся. Смотрите, стандартная Ньютонова механика получается как предел квантовой при устремлении к нулю некоторого параметра. Традиционно считается, что квантование — это обратный процесс, то есть построение теории, зависящей от параметра, которая, при стремлении этого параметра к нулю, дает нам доквантовую теорию. Так вот, на самом деле не очень понятно, получаются ли из петлевой квантовой гравитации обычная квантовая механика и теория относительности при переходе к некоторому пределу? Специалисты по этой теории считают, что получается и никакой проблемы тут нет. И возможно, они правы, а я нет — все-таки я не разбираюсь в деталях теории так, как они. Но издалека лично мне кажется, что там все не очень корректно. А есть какие-то предсказания петлевой гравитации, которые отличались бы от предсказаний теории струн? Желательно, чтобы эти предсказания еще и можно было проверить. Я думаю, если бы перед вами сидел специалист по петлевой квантовой гравитации, ответ был бы иным. Я ни в коем случае не утверждаю, что кто-то там нечестен, просто речь идет скорее о том, что у людей есть разные воззрения на то, что считать предсказанием и что считать фальсифицируемостью конкретной теории. Как бы то ни было, но я смею утверждать, что ни у кого из этих специалистов нет утверждения такого уровня: если не выполнено некоторое X, то вся теория не верна. Я никогда не слышал от них такого утверждения и думаю, они не могут его сделать. Мы, правда, тоже не можем ничего такого заявить на данном уровне развития технологии — в этом смысле мы с ними в равных условиях. Есть ли какие-нибудь еще теории? За годы их было довольно много скажем, причинная динамическая триангуляция , но ни одна из них не была доведена до уровня теории струн или теории петлевой гравитации. В частности, конечно, в вопросах внутренней непротиворечивости последних была проделана огромная работа, намного опередившая остальных конкурентов. Конечно, теории отдельно проверялись в экстремальных теоретических экспериментах — например, насколько хорошо та или иная теория описывает физику в окрестности, скажем, сверхмассивных черных дыр. Это ведь очень полезная работа — посмотреть на теорию в экстремальных условиях. Даже если мы не можем получить нужные условия экспериментально, такой подход бывает очень плодотворным. Недавно, например, в таком теоретическом эксперименте были получены довольно интересные результаты. Тут снова надо сделать небольшое отступление в прошлое. В 70-х годах прошлого века Стивен Хокинг заинтересовался вот каким вопросом: что происходит с материей, когда она падает в черную дыру? Ученые до него сказали бы, что все понятно — материя падает, пропадает, она в черной дыре, конец. Однако Хокинг обнаружил, что черные дыры могут излучать. Это означает, что как минимум часть материи, попавшей в черную дыру, попадает наружу в виде излучения. Свое открытие Хокинг сделал, добавив в теорию относительности немного квантовой механики. Он не объединил эти теории полностью, но объединил их в достаточной мере, чтобы делать конкретные космологические предсказания, которые позволяли кое-что в этой самой космологии объяснить. В 1997 году Хокинг уже на пару с Кипом Торном заключил пари на полное издание Британской энциклопедии с Джоном Прескиллом, профессором Калифорнийского технологического института и директором Института квантовой информации. Прескилл утверждал, что информация в черной дыре не исчезает — просто мы не в состоянии расшифровать то, что дыра излучает. В августе 2004 года на Международной конференции по общей теории относительности и космологии в Дублине Хокинг признал правоту Прескилла и предложил примерный механизм излучения информации правда, не принятый до конца научным сообществом. Как бы то ни было, возник вопрос. Квантовая механика требует, чтобы информация сохранялась. Это означает, что излучение дыры должно нести информацию о том, что в нее попало. Однако расчеты Хокинга показали, что излучение дыры имеет тепловой спектр. Это означает, что дыра излучает как абсолютно черное тело определенной температуры — в частности, это излучение не несет никакой информации о том, что в эту самую дыру упало. Возникает проблема исчезновения информации в черной дыре, которую сам Хокинг считал вовсе не проблемой, а просто законом природы. Мол, так устроена жизнь и информацию можно уничтожить. Потом пришла теория струн. И только совсем недавно, летом 2012 года, когда физики стали разбираться в тонкостях того, что происходит с информацией в черной дыре, как она «вырывается» наружу, они обнаружили, что три факта о черных дырах, которые до последнего времени считались верными, на самом деле противоречат друг другу. Речь идет о представлении горизонта событий черной дыры как гладкого региона пространства, в окрестностях которого ничего особенного, вообще говоря, не происходит; представлении о том, что квантовая механика унитарна то есть, в частности, требует сохранения информации , а также о том, что при достаточно низких энергиях на достаточном удалении от самой дыры применимы методы квантовой теории поля. Как разрешить это противоречие, пока никто не знает. Это, кстати, заставляет уже многих ученых ставить под сомнение саму теорию струн. Например, тот же Леонард Зюскинд, которого я упоминал выше, в связи с этим парадоксом выдвинул гипотезу, что, мол, теория струн в современном понимании, возможно, не полностью квантует гравитацию. А мы в это верили многие десятилетия. И это здорово, это именно то, что нужно — пусть не реальные эксперименты, а теоретические, но они заставляют ученых пересматривать теорию. Это чем-то напоминает зеркальную симметрию, о которой мы говорили раньше, только это соответствие более кардинальное. Дело в том, что на первый взгляд между этими теориями нет вообще ничего общего, ничего, что даже отдаленно могло бы их связывать. Но дело даже не в том, что две такие разные теории оказываются одним и тем же. Ее просто нет в уравнениях. А раз нет гравитации, то, значит, нет и проблем с унитарностью — ведь они появляются только в присутствии гравитации. Из этого, например, можно с уверенностью заключить, что всякая квантовая теория гравитации должна быть унитарной. Я даже больше скажу — в ту половину двойственности, которая с гравитацией, можно вписать черную дыру. Но при переходе к суперсимметричной части двойственности черная дыра превращается просто в нагретое скопление частиц. Такой объект, конечно, унитарен. Значит, и черные дыры в теории струн должны быть унитарны и никакая информация никуда не девается. Кроме таких вот теоретических построений эта двойственность где-нибудь еще используется? Да, конечно.

Что не устраивает в Стандартной Модели?

  • Теория струн для чайников
  • Теория струн и квантовая механика
  • Что такое теория струн? Простой обзор |
  • Варианты теории струн
  • Теория струн кратко и понятно – смотреть видео онлайн в Моем Мире | ₻Sapsan₻ 26
  • Что такое теория струн простыми словами (насколько это возможно)?

Что такое теория струн?

Ну это относится даже не к теории струн, а ко всей физике элементарных частиц. То есть прямо так: строгие математические утверждения можно получать экспериментально? Не понимаю, что вас смущает. Вот есть теория относительности Эйнштейна — математическая теория. Если наблюдать за движениями космических объектов, то можно много что узнать о геодезических свойствах самой метрики, которая фигурирует в уравнении Эйнштейна в поле тяжести массивного тела объекты малой массы движутся по геодезическим — кривым, являющимся решением подходящей системы дифференциальных уравнений — прим. Строгие математические факты. Так же и в теории элементарных частиц.

Вы правы. А приведите примеры, какие факты удается узнать таким образом про компактифицированные пространства? Есть важный геометрический вопрос, касающийся этих компактифицированных пространств — сколькими вариантами в эти пространства можно вложить сферы. Речь здесь идет про вложение голоморфным образом — но это детали, они в данном случае не имеют значения. До вмешательства физиков математики могли ответить на этот вопрос только в случае, когда число вращения — то есть то, сколько раз такая сфера обмотана вокруг себя самой, — достаточно мало. Один, два или три.

Для чисел больше ничего известно не было. В теории струн оказалось, что эти числа связаны с амплитудами рассеивания. То есть для их подсчета достаточно было провести опыт, сделать преобразование Фурье, и первые, точно посчитанные коэффициенты в полученном ряду давали ровно то, что было нужно. Нужно больше коэффициентов? Просто проводим дополнительные эксперименты — и все. Сначала математики не поверили, конечно: мол, как так — мы бились, у нас ничего не получалось, а тут какой-то эксперимент и все?

Но потом, поглядев на эти числа достаточно долго, они вдохновились и придумали, как решить задачу уже для произвольных чисел вращения. Теория струн не единственная претендует на звание теории всего. Расскажите про ее основных конкурентов. Пожалуй, лучше всего развита петлевая квантовая гравитация. Чтобы понять основную идею, нужно сделать шаг назад. Необходимо понимать, что изначально физики пытались применить к уравнениям теории относительности стандартный подход квантовой механики, то есть проквантовать их так же, как, например, электромагнитное взаимодействие.

Из этого ничего не получилось. Если обратиться к теории струн, то «квантованная» в некотором смысле гравитация там появляется сама собой. Она оказывается следствием фундаментальных свойств самой теории, нам не приходится насильно склеивать теорию относительности и квантовую механику. Петлевая же гравитация занимается именно этим, то есть пытается склеить ТО и квантовую механику. Для этого уравнения Эйнштейна переписываются совсем в другом но эквивалентном исходному, это важно виде, в совершенно других переменных. При этом оказывается, что в таком виде уравнения уже поддаются квантованию, пусть и не совсем классическому.

Полученные при этом квантовые переменные могут пониматься как петли — отсюда и название. Насколько эти петли связаны с нашими струнами и связаны ли вообще все-таки звучит похоже , мы пока не знаем. Петлевая гравитация, конечно, менее экзотична, чем теория струн. В ней не требуются дополнительные измерения, не нужна суперсимметрия. То есть их можно добавить, но сами по себе они не возникают. Тут, однако, возникает тонкий момент — уверен, что специалисты по петлевой квантовой гравитации со мной не согласятся.

Смотрите, стандартная Ньютонова механика получается как предел квантовой при устремлении к нулю некоторого параметра. Традиционно считается, что квантование — это обратный процесс, то есть построение теории, зависящей от параметра, которая, при стремлении этого параметра к нулю, дает нам доквантовую теорию. Так вот, на самом деле не очень понятно, получаются ли из петлевой квантовой гравитации обычная квантовая механика и теория относительности при переходе к некоторому пределу? Специалисты по этой теории считают, что получается и никакой проблемы тут нет. И возможно, они правы, а я нет — все-таки я не разбираюсь в деталях теории так, как они. Но издалека лично мне кажется, что там все не очень корректно.

А есть какие-то предсказания петлевой гравитации, которые отличались бы от предсказаний теории струн? Желательно, чтобы эти предсказания еще и можно было проверить. Я думаю, если бы перед вами сидел специалист по петлевой квантовой гравитации, ответ был бы иным. Я ни в коем случае не утверждаю, что кто-то там нечестен, просто речь идет скорее о том, что у людей есть разные воззрения на то, что считать предсказанием и что считать фальсифицируемостью конкретной теории. Как бы то ни было, но я смею утверждать, что ни у кого из этих специалистов нет утверждения такого уровня: если не выполнено некоторое X, то вся теория не верна. Я никогда не слышал от них такого утверждения и думаю, они не могут его сделать.

Мы, правда, тоже не можем ничего такого заявить на данном уровне развития технологии — в этом смысле мы с ними в равных условиях. Есть ли какие-нибудь еще теории? За годы их было довольно много скажем, причинная динамическая триангуляция , но ни одна из них не была доведена до уровня теории струн или теории петлевой гравитации. В частности, конечно, в вопросах внутренней непротиворечивости последних была проделана огромная работа, намного опередившая остальных конкурентов. Конечно, теории отдельно проверялись в экстремальных теоретических экспериментах — например, насколько хорошо та или иная теория описывает физику в окрестности, скажем, сверхмассивных черных дыр. Это ведь очень полезная работа — посмотреть на теорию в экстремальных условиях.

Даже если мы не можем получить нужные условия экспериментально, такой подход бывает очень плодотворным. Недавно, например, в таком теоретическом эксперименте были получены довольно интересные результаты. Тут снова надо сделать небольшое отступление в прошлое. В 70-х годах прошлого века Стивен Хокинг заинтересовался вот каким вопросом: что происходит с материей, когда она падает в черную дыру? Ученые до него сказали бы, что все понятно — материя падает, пропадает, она в черной дыре, конец. Однако Хокинг обнаружил, что черные дыры могут излучать.

Это означает, что как минимум часть материи, попавшей в черную дыру, попадает наружу в виде излучения. Свое открытие Хокинг сделал, добавив в теорию относительности немного квантовой механики. Он не объединил эти теории полностью, но объединил их в достаточной мере, чтобы делать конкретные космологические предсказания, которые позволяли кое-что в этой самой космологии объяснить. В 1997 году Хокинг уже на пару с Кипом Торном заключил пари на полное издание Британской энциклопедии с Джоном Прескиллом, профессором Калифорнийского технологического института и директором Института квантовой информации. Прескилл утверждал, что информация в черной дыре не исчезает — просто мы не в состоянии расшифровать то, что дыра излучает.

Но, к сожалению, это довольно сложная концепция физиков-теоретиков и математиков, которую они и сами не понимают в полной мере. Одним предложением тут точно не отделаться. Разве что объяснить вам, что многообразные элементарные частицы, из которых состоит наш мир, на самом деле не точки или шарики, а тончайшие струны, колеблющиеся на разных частотах. Но это слишком упрощенно, поэтому будем рассказывать так, как полагается каналу «Наука».

Приготовьте вашу голову! История озарения В 1960-е годы молодой итальянец Габриеле Венециано, работающий физиком-теоретиком в ЦЕРН в Женеве, искал способ объяснить сильное ядерное взаимодействие андронов тогда об андронах знали гораздо меньше, ведь Большой адронный коллайдер еще не изобрели. В какой-то момент случилось озарение: ученый вдруг понял, что для объяснения наблюдаемых процессов подходит так называемая бета-функция — математическая формула, придуманная еще в 1730 году Леонардом Эйлером, швейцарским математиком, который полжизни прожил в России. Вскоре обнаружилось, что эта формула позволяет описать огромное количество данных, накопленных при изучении особенностей сильного взаимодействия. Это был лишь первый кусочек пазла, который еще предстояло сложить другим. Физики Йохиро Намбу, Холгер Нильсен и Леонард Сасскинд размышляли: почему старинная формула так легко подошла и какой физический смысл таится в этой сложной математике? К 1970 году им стало ясно, что сильное взаимодействие элементарных частиц превосходно описывается с помощью бета-функции Эйлера, если представлять их в виде крошечных колеблющихся одномерных струн. Эти невидимые человеческому глазу нити ученые воображали как замкнутые — в виде колец — и как открытые. Было решено, что длина струн настолько мала, что их с натяжкой можно рассматривать как точки, а значит, для фундаментальной физики ничего не изменилось.

Так возникло понятие «квантовая струна» — под ним подразумевается бесконечно тонкие одномерные объекты длиной в 10—35 м, колебания которых воспроизводят все многообразие элементарных частиц.

Формулировка теории на ее вселенском листе содержит только бозоны , отсюда и ее название. Он содержит тахион тип гипотетической частицы, энергия которой является реальной величиной, а масса в состоянии покоя чисто воображаемой , который указывает на то, что теория нестабильна и поэтому не подходит для описания реальности. Однако с педагогической точки зрения полезно ознакомиться с фундаментальными концепциями более реалистичных моделей. В частности, на уровне нулевой массы он обнаруживает гравитон. Допускает открытые или закрытые веревки. Теория суперструн На самом деле существует пять теорий суперструн. Теории суперструн отличаются от первой наличием дополнительной симметрии, суперсимметрии , которая оказалась необходимой, когда желательно включить фермионы материю в теорию бозонных струн. Другие расширенные объекты появляются в теориях струн, Dp-браны , где p — целое число, которое указывает количество пространственных измерений рассматриваемого объекта. Они описываются как подпространства, в которых живут концы открытых струн.

D0, D2 , D4, D6 и D8. D1 имеют такое же количество измерений, что и основная хорда обычно обозначаемая F1. Несмотря на то, что это два разных объекта, непертурбативная симметрия теории II B, называемая S-дуальностью , которая подверглась большому количеству косвенных проверок, обладает свойством обмена D1- браной с F1. Эдвард Виттен синтезирует большое количество ключей, указывающих на существование 11-мерной теории, лежащей в основе пяти версий теории суперструн, а также 11-мерной супергравитации , которую можно понимать как пограничные случаи, называемые теорией М. Это Единое видение пяти струнных теорий по существу основано на их взаимосвязи через многочисленные струнные дуальности. Супергравитация максимум может сам по себе быть поняты как эффективная теория низкой энергии. Что касается выбора имени, Эдвард Виттен позже сказал: «M означает« магический »,« загадочный »или« матричный », в зависимости от вкуса. Чёрные дыры и теория струн Стромиджер и Вафа, струнные теоретики, с помощью теории струн смогли отыскать микроскопические компоненты чёрных дыр экстремального типа. Учёные предложили конструкцию чёрной дыры в виде механизма, состоящего из конкретного набора бран. Были вычислены количества перестановок микрокомпонентов дыры, оставляющие неизменными основные параметры — заряд и массу.

Теория струн смогла проанализировать микрокомпоненты и точно рассчитать энтропию чёрных дыр этого класса. Обычные масштабы должны сводить 10-мерную теорию струн к достаточно надёжной физике элементарных частиц. Но, как известно, таких способов практически бесконечное количество, причём, каждая полученная четырёхмерная теория подразумевает свой собственный мир. Варианты струнных колебаний определяют свойства частиц, а сами колебания зависимы от геометрии дополнительных измерений. Приближенные уравнения, что существуют сейчас, удовлетворяют и многим другим гипотетически возможным Вселенным со своей геометрией и законами физики. Некоторые понятия струны и их колебания, множественность измерений просто невозможно представить без глубоких познании в точных науках. От пяти теорий к одной Теория струн оказалась крепким орешком даже для самых высоколобых ученых. В 1970-е и 1980-е теория струн была очень популярна. За нее брались разные ученые, и в результате родилось несколько разновидностей. Одни авторы придумали гипотетическую частицу — тахион, которая якобы двигается в вакууме быстрее скорости света.

Другие изобрели суперсимметрию, предположив, что у всех известных элементарных частиц есть суперпартнеры, что фермионы и бозоны в природе связаны. Третьи попытались гипотетически подсчитать, сколько измерений может быть у Вселенной и как они могут быть свернуты.

Теория струн воплощает мечту всех физиков по объединению двух, в корне противоречащих друг другу ото и квантовой механики, мечту, которая до конца дней не давала покоя величайшему "Цыгану и Бродяге" Альберту Эйнштейну. Многие ученые уверены, что всё, от изысканного танца галактик до безумной пляски субатомных частиц, может в итоге объясняться всего одним фундаментальным физическим принципом. Может быть - даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле. Ото описывает одну из самых известных сил вселенной - гравитацию. Квантовая механика описывает три других силы: сильное ядерное взаимодействие, которое склеивает протоны и нейтроны в атомах, электромагнетизм и слабое взаимодействие, которое участвует в радиоактивном распаде.

Любое событие в мироздании, от ионизации атома до рождения звезды, описывается взаимодействиями материи посредством этих четырех сил. С помощью сложнейшей математики удалось показать, что электромагнитное и слабое взаимодействия имеют общую природу, объединив их в единое электрослабое. Впоследствии к ним добавилось и сильное ядерное взаимодействие - но вот гравитация к ним не присоединяется никак. Теория струн - одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во вселенной - недаром ее еще называют "Теорией Всего". Вначале был миф. До сих пор далеко не все физики пребывают в восторге от теории струн. А на заре ее появления она и вовсе казалась бесконечно далекой от реальности.

Само ее рождение - легенда. В конце 1960-х годов молодой итальянский физик - теоретик Габриэле венециано искал уравнения, которые смогли бы объяснить сильные ядерные взаимодействия - чрезвычайно мощный "Клей", который скрепляет ядра атомов, связывая воедино протоны и нейтроны. Согласно легенде, как-то он случайно наткнулся на пыльную книгу по истории математики, в которой нашел уравнение двухсотлетней давности, впервые записанное швейцарским математиком Леонардом Эйлером. Каково же было удивление венециано, когда он обнаружил, что уравнение Эйлера, которое долгое время считали ничем иным, как математической диковинкой, описывает это сильное взаимодействие. Как же было на самом деле? Уравнение, вероятно, стало результатом долгих лет работы венециано, а случай лишь помог сделать первый шаг к открытию теории струн. Уравнение Эйлера, чудесным образом объяснившее сильное взаимодействие, обрело новую жизнь.

В конце концов, оно попалось на глаза молодому американскому физику - теоретику Леонарду сасскинду, который увидел, что в первую очередь формула описывала частицы, которые не имели внутренней структуры и могли вибрировать. Эти частицы вели себя так, что не могли быть просто точечными частицами. Сасскинд понял - формула описывает нить, которая подобна упругой резинке. Она могла не только растягиваться и сжиматься, но и колебаться, извиваться. Описав свое открытие, сасскинд представил революционную идею струн. К сожалению, подавляющее большинство его коллег встретили теорию весьма прохладно. Стандартная модель.

В то время общепринятая наука представляла частицы точками, а не струнами. В течение многих лет физики исследовали поведение субатомных частиц, сталкивая их на высоких скоростях и изучая последствия этих столкновений. Выяснилось, что вселенная намного богаче, чем это можно было себе представить. Это был настоящий "Демографический Взрыв" элементарных частиц. Аспиранты физических вузов бегали по коридорам с криками, что открыли новую частицу, - не хватало даже букв для их обозначения. Но, увы, в "Родильном Доме" новых частиц ученые так и не смогли отыскать ответ на вопрос - зачем их так много и откуда они берутся? Это подтолкнуло физиков к необычному и потрясающему предсказанию - они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц.

То есть существуют частицы материи, а есть частицы - переносчики взаимодействий. Таковым, например, является фотон - частица света. Чем больше этих частиц - переносчиков - тех же фотонов, которыми обмениваются частицы материи, тем ярче свет. Ученые предсказывали, что именно этот обмен частицами - переносчиками - есть не что иное, как то, что мы воспринимаем как силу. Это подтвердилось экспериментами. Так физикам удалось приблизиться к мечте Эйнштейна по объединению сил. Ученые считают, что если мы перенесемся к моменту сразу после большого взрыва, когда вселенная была на триллионы градусов горячее, частицы - переносчики электромагнетизма и слабого взаимодействия станут неразличимы и объединятся в одну - един ственную силу, называемую электрослабой.

А если вернуться во времени еще дальше, то электрослабое взаимодействие соединилось бы с сильным в одну суммарную "Суперсилу". Несмотря на то, что все это еще ждет своих доказательств, квантовая механика вдруг объяснила, как три из четырех сил взаимодействуют на субатомном уровне. Причем объяснила красиво и непротиворечиво. Эта стройная картина взаимодействий, в конечном счете, получила название стандартной модели. Но, увы, и в этой совершенной теории была одна большая проблема - она не включала в себя самую известную силу макроуровня - гравитацию. Для не успевшей "Расцвести" теории струн наступила "осень", уж слишком много проблем она содержала с самого рождения. Например, выкладки теории предсказали существование частиц, которых, как точно установили вскоре, не существует.

Это так называемый тахион - частица, которая движется в вакууме быстрее света. Помимо прочего выяснилось, что теория требует целых 10 измерений. Неудивительно, что это очень смущало физиков, ведь это очевидно больше, чем то, что мы видим. К 1973 году только несколько молодых физиков все еще боролись с загадочными выкладками теории струн. Одним из них был американский физик - теоретик Джон Шварц. В течение четырех лет Шварц пытался приручить непослушные уравнения, но без толку. Помимо других проблем, одно из этих уравнений упорно описывало таинственную частицу, которая не имела массы и не наблюдалась в природе.

Ученый уже решил забросить свое гиблое дело, и тут его осенило - может быть, уравнения теории струн описывают, в том числе, и гравитацию? Впрочем, это подразумевало пересмотр размеров главных "Героев" теории - струн. Предположив, что струны в миллиарды и миллиарды раз меньше атома, "Струнщики" превратили недостаток теории в ее достоинство.

Теория струн простым языком

Ученые в качестве объяснения краткой сути теории струн пытались ввести понятие нулевого измерения. Сравнительно недавно появился подход, дающий возможность разрешить это противоречие — теория струн. Вместо теории струн со всеми десятью пространственно-временными измерениями или знакомой нам Вселенной с четырьмя протяжёнными измерениями снова рассмотрим вселенную Садового шланга. Вместо теории струн со всеми десятью пространственно-временными измерениями или знакомой нам Вселенной с четырьмя протяжёнными измерениями снова рассмотрим вселенную Садового шланга. Теория струн. Кратко и понятно. В связи с этим видео возникла ассоциация с фразой из Библии о том, что во время Апокалипсиса "небеса свернутся, как свиток".

Теория струн, Мультивселенная

Субатомный уровень 6. Ramos Особенности Теории струн 10-ое измерение Однако проблема заключается в том, что эти струны не могут существовать в четырех измерениях. Согласно теории струн в нашей Вселенной существует больше измерений, чем четыре. Мы знаем о трех пространственных и времени. Теория струн предполагает, что таких измерений минимум десять. Суперсимметрия Существует два класса элементарных частиц: бозоны и фермионы.

Согласно Теории струн, между этими частицами существует суперсимметрия: напротив каждого фермиона есть свой бозон. Это правило исключает существование воображаемого уровня энергии и придает смысл самой теории. Объединение сил Теория относительности изучает большие объекты всей вселенной, квантовая механика фокусируется на крошечных объектах, субатомных частицах.

Основные свойства струн согласно современным представлениям: Длина их чрезвычайно мала — около 10-35 метров. В подобном масштабе становятся различимы квантовые взаимодействия; Однако в обыкновенных лабораторных условиях, которые не имеют дела с такими мелкими объектами, струна абсолютно неотличима от безразмерного точечного объекта; Важной характеристикой струнного объекта является ориентация. Струны, обладающие ей, имеют пару с противоположным направлением. Существуют также неориентированные экземпляры. Струны могут существовать как в виде отрезка, ограниченного с обоих концов, так и в виде замкнутой петли.

Причем возможны такие превращения: Отрезок или петля могут «размножиться», дав начало паре соответствующих объектов; Отрезок дает начало петле, если часть его «закольцуется»; Петля разрывается и становится открытой струной; Два отрезка обмениваются сегментами. Прочие фундаментальные объекты В 1995 году оказалось, что не одни только одномерные объекты являются кирпичиками нашего мироздания. Было предсказано существование необычных формаций — бранов — в виде цилиндра или объемного кольца, которые имеют такие особенности: Они в несколько миллиардов раз меньше атомов; Могут распространяться через пространство и время, имеют массу и заряд; В нашей Вселенной они представляют собой трехмерные объекты. Однако предполагают, что их форма гораздо более загадочна, поскольку значительная их часть может простираться в другие измерения; Многомерное пространство, которое скрывается под бранами, является гиперпространством; С этими структурами связывают существование частиц, являющихся переносчиками силы тяжести — гравитонов. Они свободно отделяются от бранов и плавно перетекают в другие измерения; На бранах локализованных также электромагнитные, ядерные и слабые взаимодействия; Наиболее важной разновидностью являются D-браны.

Так было до 1984 г. В своей статье, сыгравшей поворотную роль и подытожившей более чем десятилетние интенсивные исследования, которые по большей части были проигнорированы или отвергнуты большинством физиков, Грин и Шварц установили, что незначительное противоречие с квантовой теорией, которым страдала теория струн, может быть разрешено. Более того, они показали, что полученная в результате теория обладает достаточной широтой, чтобы охватить все четыре вида взаимодействий и все виды материи. Весть об этом результате распространилась по всему физическому сообществу: сотни специалистов по физике элементарных частиц прекращали работу над своими проектами, чтобы принять участие в штурме, который казался последней теоретической битвой в многовековом наступлении на глубочайшие основы мироздания. Я начал работу в аспирантуре Оксфордского университета в октябре 1984 г.

Хотя я был восхищён раскрывавшимися передо мной достижениями квантовой теории поля, калибровочной теории и общей теории относительности, среди моих старших коллег-аспирантов было распространено скептическое убеждение, что бо? Была разработана стандартная модель, и замечательный успех, с которым она предсказывала результаты экспериментов, оставлял мало сомнений в том, что её полное подтверждение является делом не слишком отдалённого будущего. Выход за её пределы для включения гравитации и возможного объяснения экспериментальных данных, на которых базируется эта модель т. Однако спустя всего шесть месяцев настроения радикально изменились. Весть об успехе Грина и Шварца, в конце концов, дошла даже до аспирантов первого года обучения, и на смену прежнему унынию пришло возбуждающее ощущение причастности к поворотному моменту в истории физики. Многие из нас засиживались глубоко за полночь, штудируя увесистые фолианты по теоретической физике и абстрактной математике, знание которых необходимо для понимания теории струн. Период с 1984 по 1986 гг. В течение этого периода физиками всего мира было написано более тысячи статей по теории струн. Эти работы окончательно продемонстрировали, что многочисленные свойства стандартной модели, открытые в течение десятилетий кропотливых исследований, естественным образом вытекают из величественной системы теории струн. Как заметил Майкл Грин, «момент, когда вы знакомитесь с теорией струн и осознаёте, что почти все основные достижения физики последнего столетия следуют — и следуют с такой элегантностью — из столь простой отправной точки, ясно демонстрирует вам всю невероятную мощь этой теории».

Эти достижения убедили многих физиков, что теория струн способна выполнить свои обещания и стать окончательной объединяющей теорией. Однако на этом пути занимавшиеся теорией струн физики снова и снова натыкались на серьёзные препятствия.

Струны могут существовать как в виде отрезка, ограниченного с обоих концов, так и в виде замкнутой петли. Причем возможны такие превращения: Отрезок или петля могут «размножиться», дав начало паре соответствующих объектов; Отрезок дает начало петле, если часть его «закольцуется»; Петля разрывается и становится открытой струной; Два отрезка обмениваются сегментами. Прочие фундаментальные объекты В 1995 году оказалось, что не одни только одномерные объекты являются кирпичиками нашего мироздания. Было предсказано существование необычных формаций — бранов — в виде цилиндра или объемного кольца, которые имеют такие особенности: Они в несколько миллиардов раз меньше атомов; Могут распространяться через пространство и время, имеют массу и заряд; В нашей Вселенной они представляют собой трехмерные объекты. Однако предполагают, что их форма гораздо более загадочна, поскольку значительная их часть может простираться в другие измерения; Многомерное пространство, которое скрывается под бранами, является гиперпространством; С этими структурами связывают существование частиц, являющихся переносчиками силы тяжести — гравитонов. Они свободно отделяются от бранов и плавно перетекают в другие измерения; На бранах локализованных также электромагнитные, ядерные и слабые взаимодействия; Наиболее важной разновидностью являются D-браны. На их поверхности крепятся конечные точки открытой струны в тот момент, когда она проходит сквозь пространство. Критические замечания Как и всякая научная революция, эта пробивается сквозь тернии непонимания и критики со стороны адептов традиционных взглядов.

Среди наиболее часто высказываемых замечаний: Введение дополнительных измерений пространства-времени создает гипотетическую возможность существования огромного количества вселенных. По словам математика Питера Вольта, это приводит к невозможности предсказания любых процессов или явлений.

Теория струн простыми словами

Теория струн пытается объединить четыре силы – электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию – в одну. Заметьте, что теория струн совсем не противоречит, а скорее дополняет Стандартную модель, в основу которой заложена теория строения атома Бора, критикуемая в начале этой статьи. Тегичто такое теория струн для чайников, о чем теория струн кратко, m теория струн, теория струн и м теория современное введение, теория струн сумма всех натуральных чисел. Если традиционно физики пытались обосновать теорию струн с помощью квантовой мезаники, Барс и Рычков исходили из того, что теория струн верна, и, исходя из постулатов этой теории, вывели принцип неопределенности. Причина, по которой теория струн является потенциальной теорией всего, заключается в том, что она предсказывает, что все формы материи состоят из струн, и, следовательно, все на самом деле состоит из одного и того же «вещества».

Похожие новости:

Оцените статью
Добавить комментарий