Новости медицинский робот

Об этом говорилось в ходе круглого стола "Робототехника в медицине", который прошел на портале 13 декабря. В Astribot утверждают, что робот-гуманоид должен поступить в продажу до конца 2024 года. Швейцарские ученые разработали медицинского робота, который позволяет проводить кохлеарную имплантацию в полуавтоматическом режиме. Например, с помощью голосового бота будет удобно заполнять медицинские карты, а роботы-операторы запишут пациентов на прием.

ИИ, роботы-хирурги и бионические протезы. Прорывы в медицине, которые было сложно вообразить

Программа обучения российской разработки проще, менее затратна по времени и более доступна для персонала хирургических отделений. Кроме того, робот может сам обучать специалистов, это предусмотрено в его программном обеспечении. Причем тут «Левша»? И наконец, самое главное преимущество отечественного робота-хирурга — это его высокая точность.

Чтобы продемонстрировать ее, разработчики что называется «подковали блоху», то есть сняли наглядное видео по аналогии с промо-роликом da Vinci, в котором робот-хирург делает операцию на кожице виноградины и благополучно зашивает ее. Только российский робот манипулирует не только с ягодой, но даже с ее косточкой. С помощью лазера на ней появляется надпись, затем виноградина точно так же аккуратно зашивается умелыми «руками» робота-хирурга.

Все, что для него требуется, можно найти в России, включая инструмент, программы и даже печатные платы. Сегодняшние перспективы Несмотря на то, что эта разработка появилась уже давно, реальные шансы выйти в клиническое применение у нее возникли только сейчас, в связи с ростом цен на иностранное оборудование и риском ухода производителей с российского рынка. До этого робот несколько лет оперировал животных в ходе доклинических исследований и, надо сказать, весьма успешно.

По заявлению разработчиков, сейчас разработка инструментов всей линейки завершается и можно переходить к клиническим испытаниям на людях и внедрению в производство. Фото: стоп-кадр презентации разработчиков Как стало известно в конце марта, разработчики уже нашли для этого двух индустриальных партнеров и процесс импортозамещения, наконец, сдвинулся. Ожидается, что уже в ближайшие пять-шесть лет российские роботы-хирурги появятся в больницах страны.

И их будет уже не 30, а две тысячи. А значит, больше людей смогут быстрее отправиться домой после операции, избавившись от боли, и это не будет стоить им ничего — все расходы на высокотехнологичную операцию покроет государство за счет программы ОМС.

Использование материалов, опубликованных на сайте ugra. Гиперссылка должна размещаться непосредственно в тексте, воспроизводящем оригинальный материал ugra. За достоверность информации в материалах, размещенных на коммерческой основе, несет ответственность рекламодатель.

Например, в хирургии позвоночника роботы способны удерживать инструменты и компоненты имплантатов совершенно неподвижно и передвигать их точно в место установки винтов для декомпрессионной операции3. Такое стабильное позиционирование инструментов обеспечивает максимальную точность и ускоряет операцию. Это заметно снижает риск повреждения здоровых тканей и сосудов, развития инфекций и воспалений, уменьшает сроки заживления ран. Период восстановления после такой операции значительно короче3. Роботы, которые берут на себя простые повторяющиеся действия, освобождают сиделкам и медсёстрам время и руки, так что те могут уделить больше внимания индивидуальному уходу за пациентами4. Мобильные автоматизированные лечебно-диагностические комплексы типа робот-медсестра задействованы как в процессе поддержания жизнедеятельности пациентов, так и в обеспечении связи с персоналом лечебного учреждения. Роботы для дезинфекции На роботов можно возложить ответственность за санитарную обработку помещений, избавляя персонал больницы от необходимости контактировать с потенциально опасными патогенами3. Например, существуют роботы для дезинфекции больничных приборов и оборудования: робот компании Xenex способен с помощью импульсного ксенонового света продезинфицировать палату менее чем за 20 минут4. Роботы для диагностики, или лабораторные роботы Роботы активно используются в лабораториях3. Автоматизация, которую они обеспечивают, повышает скорость и точность выполнения анализов, снижая количество ошибок3. Два робота в состоянии обработать около 3000 образцов в день, по 7—8 пробирок в минуту: один берёт образец и помещает его в сканер штрихкода, другой отбирает образцы и кладёт их в устройство подачи для центрифугирования и анализа13. Гибкие роботизированные медицинские помощники на дистанционном управлении задействованы в эндоскопии: управляя ими, врач делает биопсию или прижигание раны. Реабилитационные роботы Это роботы, предназначенные для реабилитации пациентов после операций или активной фазы заболевания3. Первые действительно роботизированные устройства для реабилитации работали по принципу непрерывного пассивного движения: это когда часть тела пациента перемещается, пока он отдыхает3. Действие современных реабилитационных роботов связано с понятием нейропластичности мозга и направлено на её поддержание7. Так, они помогают выполнять упражнения на восстановление подвижности рук и ног, перемещая их, что позволяет создавать неврологические пути для работы мышц. Современные реабилитационные роботизированные конструкции делятся на два вида: терапевтический робот, который помогает пациентам выполнять упражнения например, экзоскелет , и вспомогательный робот-протез, который заменяет потерянные конечности7. Стоит упомянуть и об интеллектуальных инвалидных колясках, способных управлять центром тяжести при спусках и подъемах по лестнице. Экзоскелеты Это механическая конструкция, которую надевают на человека, чтобы частично вернуть ему подвижность или ускорить восстановление после травм и операций. Такой прибор напоминает робокостюм. Экзоскелеты используются в реабилитации после травм спинного мозга и инсультов3. Например, датчики экзоскелета Hybrid Assistive Limb HAL , расположенные на коже, регистрируют небольшие электрические сигналы в теле пациента, и костюм реагирует движением в суставе3. Роботизированные протезы Протезы с роботизированными возможностями разработаны для восстановления функций утраченных конечностей. Они предназначены для постоянного ношения людьми с ограниченной мобильностью, без рук, ног, кистей3. Нейромышечно-скелетные протезы крепятся к кости и управляются с помощью двунаправленных интерфейсов, подключенных к нервно-мышечной системе человека с помощью электродов, имплантированных в нервы и мышцы8. В итоге роботизированная конечность приводится в движение силой мысли.

Существующие методы обработки медицинских изделий требуют больших затрат на материалы и могут ухудшать одни свойства при улучшении других. Разработка ИТМО позволяет получать медицинские изделия сразу с необходимыми свойствами. Эта роботизированная система включает в себя лазерную установку, робота-манипулятора с шестью осями и программное обеспечение. Она использует компьютерное зрение для адаптации к точной геометрии изделия и может выполнять четыре основные задачи: придавать антибактериальные свойства, управлять шероховатостью поверхности, наносить цветную маркировку и удаление остаточных частиц.

Робототехника

  • Новости роботической хирургии
  • Роботы и искусственный интеллект помогают в модернизации системы здравоохранения Петербурга
  • В России создали робота-хирурга с технологией передачи тактильных ощущений / Хабр
  • Илон Маск рассказал, когда человекоподобный робот Optimus поступит в продажу

ИИ, роботы-хирурги и бионические протезы. Прорывы в медицине, которые было сложно вообразить

«Это один из успешных примеров — медицинский робот-экзоскелет, который помогает людям восстанавливаться после различных травм. В целом медицинские роботы сегодня используются в нескольких направлениях. Медицинские роботы могут коммуницировать: они рассказывают, что их беспокоит, полностью воспроизводят физиологию. Роботы освобождают медицинский персонал от рутинных задач, которые занимают очень много времени, а так же делают медицинские процедуры более безопасными и менее. Первый в России производитель серийных коллаборативных роботов под брендами Робопро и Rozum Robotics.

Хирургам АОКБ впервые ассистировал робот

Министр обороны России Сергей Шойгу поручил как можно скорее начать серийное производство перспективных медицинских роботов для армии страны, сообщили в пресс-службе ведомства. «Это один из успешных примеров — медицинский робот-экзоскелет, который помогает людям восстанавливаться после различных травм. «Благодаря появлению роботов новый импульс развития сегодня получает медицинский сервис. В трех больницах Москвы в тестовом режиме начали работать роботы-помощники «робокошки».

Полная роботизация: как искусственный интеллект помогает врачам

Этот роботный комплекс значительно более эффективен, чем существующие аналоги. Он может придавать имплантатам антибактериальные и биосовместимые свойства, а также добавлять маркировку. Использование этой технологии просто: достаточно загрузить 3D-модель имплантата в специальную программу, задать путь обработки и выбрать режим. Существующие методы обработки медицинских изделий требуют больших затрат на материалы и могут ухудшать одни свойства при улучшении других.

Между тем, чтобы умные медицинские технологии развивались, отдельные государства и всё мировое сообщество в целом должны проработать регулирование рынка.

При этом есть условия, которые необходимо соблюсти. Были выделены группы заболеваний, чаще всего хронические или распространенные, а также разработаны требования к квалификации и стажу врачей, которые могут иметь больше полномочий в онлайн-формате». В качестве другого примера Игорь Джекиев приводит попытки американского регулятора в лице управления контроля качества продуктов и лекарств Food and Drug Administration, FDA формализовать связанный с цифровыми биомаркерами тренд. С этой целью ведомство даже выпустило ряд рекомендаций, однако в них, по замечанию экспертов, имеется большое количество белых пятен.

Говоря о России, с одной стороны, в стране действует специальный закон, подробно описывающий все стандарты и правила оказания телемедицинской помощи. Однако на сегодня перечень медицинских дистанционных услуг пока ограничен. Более того, при онлайн-обращении врач может лишь скорректировать схему лечения и выдать направление на дополнительные исследования. Поставить же диагноз пациенту действующее законодательство не позволяет.

Впрочем, даже в таком формате телемедицинские консультации существенно снижают нагрузку и траты государства на здравоохранение, повышая доступность медпомощи для жителей отдаленных районов, которые при наличии интернета могут обратиться за консультациями ведущих специалистов.

Еще один вариант — реабилитационные роботы, помогающие быстрее восстанавливаться после травм. Например, пассивным движением пораженных частей тела пациента.

Лазеры помогут в борьбе с онкологией? Про перспективы лазерных технологий как в глобальном, так и в прикладном смыслах говорим с Ириной Нечипоренко, руководителем отдела продаж Mediola. На сегодняшний день применение подобного оборудования достаточно обширно.

Оно имеет как хирургическое, так и диагностическое, терапевтическое и косметологическое назначение. Амбулаторная хирургия с применением лазерных технологий в Беларуси ускоренно развивается последние 15 лет, мы сейчас говорим о стационарозамещающих вмешательствах. При консервативном лечении человек должен как минимум несколько дней находиться в хирургическом стационаре.

Лазеры же сроки госпитализации уменьшают или же и вовсе дают возможность госпитализации избежать. Такую хирургию еще называют хирургией «одного дня», когда пациент буквально за несколько часов избавляется от многих видов недугов. Еще один важный плюс — уменьшение количества послеоперационных осложнений.

Как правило, лазерные технологии малотравматичны и малоинвазивны, восстановление идет быстрее — качество жизни в послеоперационном периоде ощутимо выше. Справившем Ирину о перспективах развития технологии. Пока — краткосрочных.

Существует много направлений хирургии, где есть возможность более плотно взаимодействовать с докторами, получать от них обратную связь как в отношении эффектов, которые они хотели бы видеть при применении лазеров, так и в совершенствовании средств доставки излучения. Популярным направлением также выступает создание компьютерных моделей лазерного воздействия на ткани. Современное ПО позволяет конструировать интерактивные модели, предсказывающие влияние лазерного излучения на конкретный участок тела человека.

Фото использовано в качестве иллюстрации А теперь задаемся вопросом про более отдаленное будущее и глобальные вариации улучшений: — Перспективная ветвь, где использование технологии может быть еще глубже, — онкология. Несмотря на повсеместное применение лазерного оборудования уже сегодня — например, в Беларуси востребована технология фотодинамической терапии, метод лечения предопухолевых заболеваний и даже злокачественных новообразований, — сфера будет изучаться глубже. Сейчас существуют методики, которые важны особенно с паллиативной точки зрения: если от болезни не избавиться полностью, то возможно улучшить качество жизни пациента.

Лазеры помогут и тут. Если говорить глобально, то перспектива лазеров как хирургического инструмента при борьбе с опухолями онкологического характера весьма высокая. На сегодняшний день лазер в онкологии — инструмент «выбора».

Важным свойством лазерного излучения является возможность его таргетированной доставки и воздействия ровно на те ткани, которые запланировали специалисты. Не исключено, что тщательный подбор необходимой длины волны и типа излучателя позволит работать более эффективно в данном направлении. И все это возможно в обозримом будущем.

Партнер проекта — Mediola Mediola — производитель лазерного хирургического оборудования с многолетней историей. Наши аппараты используются по всей территории СНГ и с успехом соперничают с европейскими моделями при более доступной цене. Используемые технологии производства стабильно обновляются и совершенствуются, чтобы предоставлять вам и вашим пациентам наилучшее качество.

Робот может снабжать медицинские изделия антибактериальными свойствами с помощью оксидного слоя титана, который активируется ультрафиолетовым излучением. Это помогает предотвратить инфекции. Биосовместимость достигается за счёт особой геометрии поверхности. Робот также может улучшать шероховатость поверхности, чтобы избежать миграции мельчайших фрагментов имплантата.

Медицинские роботы идут. Вы готовы?

Правда ли, что российский робот-хирург лучше и безопаснее американского аналога, выяснил ФармМедПром. Роботы-курьеры начали помогать врачам и пациентам в пилотном режиме в трех столичных больницах. Швейцарские ученые разработали медицинского робота, который позволяет проводить кохлеарную имплантацию в полуавтоматическом режиме.

В медицинском центре Кувейта появился российский робот-администратор

Мировой рынок медицинских роботов, по данным компании Grand View Research, оценивается приблизительно в два миллиарда долларов. Сегодня сложные операции, восстановление после которых занимало много времени, выполняются с помощью робота Da Vinci. Роботы в здравоохранении могут выполнять медицинские операции: они помогают в диагностике, реабилитации, хирургии и не только. Правда ли, что российский робот-хирург лучше и безопаснее американского аналога, выяснил ФармМедПром.

Похожие новости:

Оцените статью
Добавить комментарий