Главная» Новости» Олимпиада росатом по физике задания прошлых лет. Заключительный этап олимпиады «Росатом» проходит в очной форме в Москве и регионах по согласованному графику в феврале-марте.
Росатом олимпиада — Отраслевая физико-математическая олимпиада школьников «Росатом»
Росатом Госкорпорация «Росатом» ядерные технологии атомная энергетика АЭС ядерная медицина | Росатом олимпиада — Отраслевая физико-математическая олимпиада школьников «Росатом». |
Росатом задания прошлых | Победители и призеры олимпиады «Росатом» получат льготы при поступлении в вузы в 2016 году (при условии получения оценки не менее 75 баллов на ЕГЭ по соответствующему предмету). |
Физико-математическая олимпиада школьников «Росатом» в 2024 году | Росатом — Росатом Бесплатная открытая база авторских задач по Олимпиадной математике. Решения, ответы и подготовка к Олимпиадной математике от Школково. |
Задания Олимпиады школьников «Росатом»
Кенгуру олимпиада по математике 2021. Кенгуру олимпиада по математике 2022 2 класс задания с ответами. Кенгуру олимпиада 3 класс математика 2021. Кенгуру 2021 задания. Человек и природа конкурс. Конкурс человек и природа задания.
Олимпиада человек и природа 1 класс. Конкурс человек и природа 1 класс. Политоринг 3 класс задания. Всероссийский полиатлон мониторинг. Политоринг 1 класс задания.
Всероссийский экологический диктант 2021 ответы. Экологический диктант 2020 вопросы и ответы. Экологический диктант 2020 ответы. Эко диктант ответы. ГК Росатом.
Слоган Росатома. Плакаты Росатом. Олимпиада младших школьников задания. Олимпиада 2х2 задания прошлых лет. Олимпиадные задания совёнок.
Какие есть олимпиады для младших школьников. Конкурс чип задания. Чип конкурс задания прошлых лет. Астра 2 класс задания. Школа Росатома.
Школа проектов Росатома. Презентации школы Росатома. Школа Росатома цель проекта. Стратегические цели Росатома 2030. Цели госкорпорации Росатом.
Задания олимпиады кит 1 класс математика. Кит олимпиада 2 класс 2020. Олимпиада кит 2 класс задания и ответы. Олимпиада кит 2 класс задания. Система 5 с Бережливое производство.
Бережливое производство система организации рабочих мест 5с. Принципы бережливого производства 5s. Кенгуру олимпиада по математике 2021 3 класс. Олимпиада по математике 1 класс кенгуру задания 2020. Задачи кенгуру 3 класс математика.
Математика олимпиадные задания 2 класс кенгуру. Росатом предприятия. Росатом брошюра. Проекты Росатома. Буклет Росатом.
Госзакупки в цифрах. Закупки в цифрах. Количество предприятий в Росатоме. Закупки Росатом. Проектная деятельность эмблема.
Проектная деятельность логотип. Эмблема Максвелл олимпиада школьников.
Очный отборочный тур, 10 класс. Очный отборочный тур-1, 11 класс. Очный отборочный тур-2, 11 класс. Очный отборочный тур-3, 11 класс. Заключительные туры. Заключительный тур, 7 класс.
Заключительный тур, 8 класс. Заключительный тур, 9 класс. Заключительный тур, 10 класс.
Регистрация участников — на сайте олимпиады. Отборочный этап включает три независимых тура. Очный отборочный тур на площадках в различных регионах.
Физико-математическая олимпиада школьников Официальный сайт. ВСОШ 2023 - 2024 учебный год. Открытый банк заданий.
Школа России. Школа 21 век. Школа 2100.
Разбор заданий олимпиады "Росатом" по математике
Росатом задания прошлых лет | На этой странице размещаются условия и решения заданий олимпиады «Курчатов» прошлых лет. |
Олимпиада «Росатом» по физике | Росатом задания прошлых лет. Задания Гагаринской олимпиады для дошкольников. |
Как пристроить ребёнка в Росатом | Разбор заданий по математике(Гришин С.А.)0:45 - 1 задача23:35 - 2 задача36:52 - 3 задача. |
Отборочные туры олимпиад Росатом и Инженерная. Очно!!!
Олимпиады «РОСАТОМ-2009» (C peшениями и ответами). Отраслевая физико-математическая олимпиада школьников «Росатом» (РОСАТОМ) проводится с 2012 года. Росатом — Росатом Бесплатная открытая база авторских задач по Олимпиадной математике. Решения, ответы и подготовка к Олимпиадной математике от Школково. Олимпиада «Росатом» по физике – олимпиада первого уровня в Перечне, и потому ее победители и призеры могут получить максимальные льготы. Задачи олимпиады «Росатом» по физике последних лет. Олимпиада «Росатом» Олимпиада «Росатом» Олимпиада входит в Перечень олимпиад школьников 2023-2024 учебного года в в полном объеме — и по математике, и по физике: Физика — олимпиада 1 уровня; Победители и призеры олимпиады «Росатом» получат.
Выложили критерии олимпиады "Росатом"
Олимпиада «Росатом» по физике | Поступающим / Олимпиада «Росатом». |
Росатом задания прошлых лет | Олимпиада «Росатом» входит в перечень олимпиад школьников, и ее победители имеют существенные льготы при поступлении в вузы. |
Задания - Олимпиада «Росатом» | ЕГЭ-2022. Задачи олимпиад по физике. |
Росатом олимпиада — Отраслевая физико-математическая олимпиада школьников «Росатом» | Разбор отборочного этапа олимпиады "РосАтом" 2024. |
Росатом олимпиада
Поступающим / Олимпиада «Росатом». Видео-разбор заданий олимпиады "Росатом" по физика 2020 9 класс. Задания 2023-2024 учебного года, критерии и авторские решения. Росатом задания прошлых. Росатом задание на проектирование.
Олимпиада РОСАТОМ
В циклическом процессе 1 — 2 — p 3 — 4 — 1 газ получал определенное 1 количество теплоты от нагревателя на 2 участках 1 — 2 поскольку газ совер4 шил положительную работу без изме3 V нения внутренней энергии и 4 — 1 его внутренняя энергия увеличилась без совершения работы. В процессах 2 — 3 и 3 — 4, которые идут в обратных направлениях, газ отдавал теплоту холодильнику. Построение хода луча, параллельного главной оптической оси линзы, и луча, проходящего через ее оптический центр, выполнено на рисунке. Этот угол можно найти через проекции вектора скорости. КПД теплового двигателя есть отношение работы, совершенной двигате2 3 2p лем за цикл к количеству теплоты, полученному двигателем от нагревателя в течение цикла.
Найдем эти величины. Это x B положение можно найти из законов Ома для замкнутой цепи и неоднородного участка цепи. Поэтому, если перемычка будет смещаться из положения равновесия влево, по ней начинает течь ток, направленный вверх см. Аналогично доказывается, что если перемычка сместится от положения равновесия вправо, сила Ампера будет направлена налево.
Таким образом, при любых смещениях перемычки в ней будет возникать электрический ток, и сила Ампера будет возвращать перемычку в положение равновесия. Это приведет к тому, что перемычка будет совершать колебания около положения равновесия. Исследуем условия равновесия системы поршней, связанных стержнем. Для этой системы внешними силами являются: силы, G G действующие на поршни со стороны газа между ними Fг,1 и Fг,2 , и G G со стороны внешнего атмосферного воздуха Fa,1 и Fa,2 см.
При нагревании или охлаждении газа между поршнями давление газа должно остаться равным атмосферному иначе нарушаются условия равновесия , и, следовательно, процесс, происходящий с газом между поршнями, является изобарическим. Это значит, что при нагревании газа между поршнями объем газа между ними должен возрасти, поршни сместятся вправо, при охлаждении поршни сместятся влево. Из-за разности коэффициентов трения треугольник будет располагаться несимметрично относительно границы полуплоскостей, и потому массы m1 и m2 заранее нам неизвестны. Однако одно утверждение относительно этих масс довольно очевидно.
Для этого заметим, что поскольку треугольник движется равномерно, то и сумма моментов всех действующих на него сил относительно любой точки равна нулю. В частности, должна быть равна нулю сумма моментов сил трения относительно той вершины, к которой приложена внешняя сила F. Моменты сил трения можно вычислить из следующих соображений. Треугольник движется поступательно, поэтому силы трения, действующие на любые малые элементы треугольника, направлены противоположно силе F и пропорциональны массам этих элементов.
Поэтому моменты сил трения можно вычислять так же, как и момент силы тяжести, действующей на протяженное тело — приложить суммарную силу трения, действующую на части треугольника к их центрам тяжести. Используем теперь то обстоятельство, что центр тяжести плоского треугольника расположен в точке пересечения его медиан, и что эта точка делит каждую медиану в отношении 2:1. Так как тело движется вместе с лифтом, ускорение лифта равно ускорению тела. Найдем последнее.
Для этого воспользуемся 54 вторым законом Ньютона для тела. На тело действуют сила тяжеG G сти mg и сила со стороны пола лифта F , направленная вертикально вверх, модуль которой равен данному в условии значению F см. Изображение источника, находящегося на главной оптической оси линзы, лежит также на главной оптической оси. При перемещении источника по отношению к линзе перемещается и его изображение.
Если при этом источник перемещается перпендикулярно главной оптической оси, его изображение будет также перемещаться перпендикулярно главной оптической оси это следует, например, из формулы линзы, в которую не входят расстояния от источника и предмета до главной оптической оси. Сила трения, действующая между G m телом и доской, зависит от того, есть ли F M между доской и телом проскальзывание. Очевидно, при малых значениях внешней силы F доска будет двигаться с небольшим ускорением, и сила трения, действующая на тело со стороны доски, сможет заставить тело двигаться с тем же ускорением. При увеличении внешней силы сила трения между телом и доской должна возрастать и при некотором значении внешней силы достигнуть максимально возможного значения.
При дальнейшем увеличении внешней силы сила трения уже не сможет увлечь тело за доской и между доской и телом возникнет проскальзывание. Найдем сначала эквивалентное сопротивление представленной электрической V V … V цепи. Для этого используем следующий прием. Поскольку данная цепь бесконечна, то Рис.
Поэтому для эквивалентного сопротивления цепи справедливо соотношение, которое показано графически на рис. Сумму показаний всех вольтметров можно найти из следующих r соображений. Аналогично среди сопротивлений R4, R5 и R6 наибольшая мощность будет выделяться на сопротивлении R6. Сравним мощности тока на сопротивлениях R3 и R6.
Треугольник сложения скоростей, отвечающий рассматриваемой в задаче ситуации, изображен на риG сунке. Второй корень квадратного уравнения 1 является отрицательным и, следовательно, не может определять величину скорости. Поскольку заряды палочки движутся в магнитном поле, на палочку действует сила Лоренца. Для ее вычисления мысленно разобьем палочку на бесконечно малые элементы, вычислим силу Лоренца, действующую на каждый элемент, и просуммируем найденные силы.
На рис. Из закона Клапейрона — Менделеева для начального и конечного состояний газа получим p0V0 p1V1. Найдем величину индуцированных зарядов. Они находятся в поле зарядов пластинки и отталкиваются от них.
Кроме того, существует притяжение этих зарядов к отрицательным зарядам, индуцированным на поверхности диэлектрика, примыкающей к пластинке. Поскольку величина индуцированных зарядов меньше заряда пластинки, то результирующая сила, действующая на заряд q, расположенный на внешней поверхности, направлена вертикально вверх. Величину суммарной силы можно найти из следующих соображений. Для вычисления напряженности электрического поля, создаваемого некоА А торым распределенным зарядом необходимо разделить этот заряд на точечные элементы, найти вектор напряженности поля, создаваемого каждым зарядом, сложить полученные векторы.
Конечно, при проведении этой процедуры не обойтись без высшей математики. Однако поскольку в данной задаче рассматриваются только кубическое распределение или комбинация двух кубических распределений зарядов, и поле одного из них задано, можно попробовать выразить одно поле через другое, используя соображения размерности и подобия. Из соображений размерности заключаем, что напряженность поля куба в точке А должна зависеть от заряда куба Q и некоторого параметра размерности длины. Поле 1 удобно выразить через плотность зарядов куба.
В нашем же случае этот заряд добавляют к заряду оставшейся части. Изображение точечного источника, находящегося на главной оптической оси, лежит на главной оптической оси. Найдем работу поля. Для этого найдем напряженность электрического поля между пластинками и вне пластин.
При увеличении внешней силы будут расти силы трения между всеми листами, но пока сила трения между какими-то из них не достигнет максимального значения, пачка будет покоиться. При этом нужно рассмотреть трение между листами бумаги, расположенными выше того листа, за который тянут, ниже этого листа и между пачкой и поверхностью. Итак, рассмотрим такие значения внешней силы F, при которых пачка покоится. Очевидно, что в этом случае сила трения между листами, лежащими выше листа, за который тянут, равна нулю.
Действительно, на эти листы бумаги в горизонтальном направлении может действовать только сила трения, но поскольку они покоятся, то сила трения равна нулю. Поэтому проскальзывание может начаться либо между листами, расположенными ниже того листа, за который тянут, либо между пачкой и поверхностью. Чтобы найти силу трения между пачкой и поверхностью в случае покоящейся пачки , рассмотрим условие равновесия всей пачки. Внешними по отношению к ней силами являются сила F и сила трения между пачкой и поверхностью Fтр.
Получим теперь условие проскальзывания между листами бумаги, расположенными на некоторой высоте x от поверхности ниже того листа, за который тянут. При дальнейшем увеличении внешней силы сначала начнется проскальзывание ниже того листа, за который тянут, а затем и выше. Таким образом, пачка может двигаться как целое при выполнении условия 7 для коэффициентов трения и для значений внешней силы, лежащих в указанном выше интервале. Установим зависимость угла поворота нити от времени.
Поэтому сила натяжения не совершает над телом работу, и, следовательно, тело движется с постоянной скоростью. А поскольку движение тела в течение каждого малого интервала времени можно считать вращением вокруг той точки, где нить отходит от цилиндра, то угловая скорость вращения тела зависит от времени. Поэтому эту величину нужно положить равной нулю. По принципу суперпозиции полей потенциал поля, создаваемого системой зарядов, равен сумме потенциалов полей, создаваемых каждым зарядом в отдельности.
Рассмотрим условие равновесия k -го стакана. Как известно, если в воде плавают, не касаясь дна, какие-то предметы, то если мыс2 1 ленно убрать эти предметы и добавить такое количество воды, чтобы ее уровень не изменился, силы, действующие со стороны воды на дно и стенки сосуда, не изменятся. Поэтому для исследования условия равновесия стакана мысленно удалим из него все внутренние стаканы и дольем воду до прежнего уровня. Тогда силы, действующие на этот стакан, не изN 74 меняются.
Здесь Vп. Используем это обстоятельство, чтобы найти высоту уровня воды в самом большом стакане. Пусть высота уровня воды в этом стакане относительно стола — H. Высота уровня воды в большом стакане как и во всех других стаканах определяется только полной массой воды во всех стаканах и не зависит от того, как вода распределена между стаканами.
Это удивительное, на первый взгляд, обстоятельство связано с тем, что разность уровней воды в любых двух соседних стаканах одинакова. Поэтому если, например, долить какое-то количество воды в самый маленький стакан, то он сильнее погрузится в воду, что приведет к подъему уровня воды в следующем стакане, а затем и во всех последующих. Причем величина подъема уровня воды в самом большом стакане будет такой же, как если бы долили дополнительную воду только в этот стакан. Поскольку расстояние от источника до линзы меньше фокусного расстояния линзы, линза создает мнимое изображение источника.
Благодаря кулоновскому отталq1 киванию бусинки натянут нить и расположатся в вершинах некоторого l13 l12 треугольника см. Поq2 q3 скольку заряды бусинок разные по l23 величине, положение равновесия бусинок будет достигаться при различных расстояниях между ними. Поэтому треугольник, в который растянется нить, не будет правильным см. G Рассмотрим условия равновесия бусинG F 12 F13 ки с зарядом q1.
Эти силы, действующие на бусинку с зарядом q1 , показаны на рисунке. Таким образом, в равновесии бусинки занимают такое положение на нити, что силы их взаимодействия 77 одинаковы и равны силе натяжения нити. Для этих вычислений необходимо разбить треугольник на малые элементы и просуммировать моменты сил трения, которые действуют на каждый элемент. Таким образом, вычисление моментов силы трения представляет собой достаточно сложную математическую задачу и невозможно без уверенного владения высшей математикой.
Поэтому попробуем связать моменты силы трения относительно разных осей, используя соображения размерности и подобия. Поскольку момент силы трения пропорционален величине силы трения и ее плечу, а сила трения пропорциональна массе и, следовательно, площади треугольника, то момент силы трения пропорционален кубу линейного размера треугольника например, кубу длины гипотенузы. Найдем теперь момент B D силы трения относительно вершины C. Макарова Оригинал-макет изготовлен М.
Макаровой Подписано в печать 15. Тираж 2000 экз. НИЯУ МИФИ готовит инженеров исследователей для перспективных направлений: физики и математики; информатики и информатики и информационной безопасности; микро- и наноэлектроники; материаловедения и биологии; управления и экономики; международного и научно-технологического сотрудничества и др. Адрес г.
Москва: 115409, г. Москва, Каширское ш. Москва: 495 324 05 08 Экспериментальная и теоретическая физика 495 324 84 40 Физико-технический факультет 495 324 84 41 Автоматика и электроника 495 324 84 42 Кибернетика 495 324 84 46 Информационная безопасность 495 324 84 00 Управление и экономика высоких технологий 495 323 90 62 Региональные подразделения НИЯУ МИФИ вузы : г.
Задания 2022-2023 учебного года, критерии и авторские решения Отборочный этап Тур по компьютерному моделированию и инженерной графике: 8-11 классы Заключительный этап Тур по компьютерному моделированию: 8-11 классы Задания 2021-2022 учебного года, критерии и авторские решения Отборочный этап Тур по компьютерному моделированию и инженерной графике: 8-11 классы Заключительный этап Тур по компьютерному моделированию: 8-11 классы Задания 2020-2021 учебного года, критерии и авторские решения Отборочный этап Тур по компьютерному моделированию и инженерной графике: 8-11 классы Заключительный этап.
Не секрет, что для многих Олимпиада является уникальным шансом получить работу мечты, развить интеллектуальный и творческий потенциал, спланировать карьеру. Томск время местное Участники должны иметь при себе: документ, удостоверяющий личность; заполненную в части «Информация об участнике» регистрационную карточку участника, распечатанную из своего личного кабинета на Сайте Олимпиады. Карточка участника содержит также форму согласия родителей законный представителей участника на обработку его персональных данных и должна быть ими подписана. Совершеннолетние участники олимпиады самостоятельно подписывают форму согласия на обработку персональных данных.
Участники, не предоставившие организаторам подписанное согласие на обработку данных, к участию в Олимпиаде не допускаются; справку из образовательного учреждения; ручку с чернилами черного или синего цвета. Если паспорта, ни другого документа, удостоверяющего личность нет, участник должен обеспечить наличие документа к концу состязания. В противном случае работа не будет принята к проверке. День проведения.
Олимпиады по математике и физике независимы — допускается участие в олимпиаде только по одному или по обоим предметам. Олимпиада проводится в два этапа — отборочный и заключительный. Победители и призеры определяются по итогам заключительного этапа. Отборочный интернет-тур олимпиады «Росатом» проходит до 23:59 15 января 2022 г.
Как стать призёром «Физтеха» и «Росатома» по физике
Росатом задания прошлых лет. Росатом олимпиада физика. Отборочный интернет-тур Олимпиады «Росатом» проходит до 23:59 15 января 2022 года. Вариант задания Заключительного тура Отраслевой физико-математической олимпиады школьников «Росатом» по физике с ответами и решениями.
Олимпиада РОСАТОМ
Всероссийский полиатлон мониторинг. Политоринг 1 класс задания. Всероссийский экологический диктант 2021 ответы. Экологический диктант 2020 вопросы и ответы. Экологический диктант 2020 ответы. Эко диктант ответы. ГК Росатом. Слоган Росатома. Плакаты Росатом. Олимпиада младших школьников задания.
Олимпиада 2х2 задания прошлых лет. Олимпиадные задания совёнок. Какие есть олимпиады для младших школьников. Конкурс чип задания. Чип конкурс задания прошлых лет. Астра 2 класс задания. Школа Росатома. Школа проектов Росатома. Презентации школы Росатома.
Школа Росатома цель проекта. Стратегические цели Росатома 2030. Цели госкорпорации Росатом. Задания олимпиады кит 1 класс математика. Кит олимпиада 2 класс 2020. Олимпиада кит 2 класс задания и ответы. Олимпиада кит 2 класс задания. Система 5 с Бережливое производство. Бережливое производство система организации рабочих мест 5с.
Принципы бережливого производства 5s. Кенгуру олимпиада по математике 2021 3 класс. Олимпиада по математике 1 класс кенгуру задания 2020. Задачи кенгуру 3 класс математика. Математика олимпиадные задания 2 класс кенгуру. Росатом предприятия. Росатом брошюра. Проекты Росатома. Буклет Росатом.
Госзакупки в цифрах. Закупки в цифрах. Количество предприятий в Росатоме. Закупки Росатом. Проектная деятельность эмблема. Проектная деятельность логотип. Эмблема Максвелл олимпиада школьников. Кенгуру математика 3 класс задания. Ответы на олимпиадные задания кенгуру 3 класс.
Олимпиадные задания кенгуру 3 класс. Кенгуру олимпиада по математике 1 класс задания. Интеллектуальные витаминки Шпагина и Пинженина. Интеллектуальные витаминки Шпагина Пинженина рабочая тетрадь 1 класс. Шпагина с. Интеллектуальные витаминки. Интеллектуальные витаминки рабочая тетрадь 3 класс Шпагина Пинженина.
Шухова, Поволжский государственный технологический университет Волгатех и Владимирский государственный университет.
Партнером проведения олимпиады выступает АО «Концерн "Росэнергоатом». Олимпиада проводится в соответствии с «Порядком проведения олимпиад школьников», утвержденным Минобрнауки России. Заключительные туры олимпиады проводятся во всех городах расположения АЭС. Результаты Инженерной олимпиады школьников учитываются при формировании целевого набора в вузы РФ, осуществляющие подготовку в интересах «Росэнергоатома». Олимпиада проводится для школьников 9-11. Задания олимпиады включают в себя элементы прикладной механики и машиностроения, технической термодинамики, электротехники, электроники, ядерных технологий. Задания не выходят за рамки школьного курса физики, но имеют ярко выраженный инженерный характер. В задание включены задачи-оценки, а также задачи, в которых рассматриваются принципы работы тех или иных инженерных систем по типу «как это работает?
Олимпиада включает два этапа: отборочный и заключительный. Отборочный этап олимпиады проводится в двух формах: в очной форме - одновременно на площадках всех вузов-организаторов по единым заданиям; а также в дистанционной форме, с использованием сети Интернет - на сайте org. Пройти на заключительный тур олимпиады можно по результатам любого отборочного тура. Количество участий в отборочных турах не ограничено. Заключительный этап олимпиады проводится в очной форме одновременно на площадках всех вузов-организаторов и региональных площадках по единым заданиям.
Заключительный этап олимпиады «Росатом» проходит в очной форме в Москве и регионах по согласованному графику в феврале-марте. Подготовка к олимпиаде. На настоящем сайте в разделе «Подготовка к олимпиаде» размещены задания прошлых лет, учебные пособия, видеоуроки с разбором заданий по математике и физике прошлых лет Все участники олимпиады «Росатом» должны предварительно зарегистрироваться в информационной системе олимпиады и принести с собой на олимпиаду распечатанную из своего личного кабинета регистрационную карточку! Тем, кто участвовал в олимпиаде прошлых лет, регистрироваться не нужно — сохраняется старая регистрация.
Вопросы ориентированы прежде всего на углубленное изучение конкретного перечня предметов или специальностей. Другими словами, легких заданий не предусмотрено, а для прохождения теста необходимо проявить не только доскональные знания, но и логическое мышление, смекалку, творческих подход. Заключительный этап, как правило, проводится в конце апреля, а точные даты можно узнать на официальном сайте мероприятия. Профили Олимпиады Организаторы рассматриваемого интеллектуального события определили несколько основных профилей, по которым будут выявлены лучшие ученики и студенты страны. В этом перечень вошли: системы управления качеством продукции; системы радио и телевизионных коммуникаций; экономическая безопасность и управление компанией; технический контроль процессов в нефтегазовой отрасли. На школьном уровне предпочтение отдается точным наукам, например, физике, математике, химии, биологии. Олимпиада «Газпром-2019» для подразумевает более детальное разделение по дисциплинам. В тесте нередко перемешаны вопросы из смежных дисциплин, в частности экономики и логистики, нефтепереработки и технологического обслуживания соответствующего оборудования, управления и финансирования. Таким образом, Олимпиада «Газпром-2019» станет отличной площадкой, где каждый одаренный ученик или студент сможет применить свои знания, а также проявить положительные качества.