Ядерное деление-это реакция, при которой ядро атома распадается на два или более меньших ядра. Ядерное деление-это реакция, при которой ядро атома распадается на два или более меньших ядра. На этой странице вы можете посмотреть видео «Деление атома: перспективы международного рынка атомной энергетики» с RuTube канала «РБК».
Деление ядер: процесс расщепления атомного ядра. Ядерные реакции
В 1939 г физиками О. Фришем и Л. Мейтнером была предложена капельная модель ядра, в рамках которой был описан процесс деления ядра атома урана. В пересчете на один атом деление урана дает в 50–100 миллионов раз больше энергии, чем любая химическая реакция. Внутри Чернобыльской атомной электростанции в массах уранового топлива начались реакции деления. На этой странице вы можете посмотреть видео «Деление атома: перспективы международного рынка атомной энергетики» с RuTube канала «РБК». В отличие от Европы США не собираются отказываться от мирного атома и по мере сил восстанавливают пробелы.
Деление атома может дать миру необыкновенную власть
Деление ядра атома урана – уравнение цепной реакции | Высвобождение дополнительных нейтронов в процессе деления может привести к распаду других соседних атомов U-235. |
Элементарно о частицах: физик Дмитрий Бузунов разложил на атомы вопросы школьников | Как сообщает ToDay News Ufa, в течение 80-ти лет ученые — физики старались выяснить принцип вращения атомных ядер после деления. |
Перспективы ядерной энергетики в современном мире / Хабр | Деление действительно назрело: военная часть тормозит развитие гражданки. |
Деление атома - Coub - The Biggest Video Meme Platform | Международная группа ученых выяснила, как именно вращаются атомные ядра после их деления, сообщает МедиаПоток. |
Сделай Сам: Как Разделить Атомы На Кухне
Это и будет то, что специалисты считают «биением атомного сердца». Приборы впервые зафиксируют деление ядер урана, а реактор из сложной металлической конструкции превратится в полноценную атомную установку, чтобы обеспечить половину энергопотребления Петербурга и Ленинградской области. Итоговая цель проекта — снабжать электроэнергией весь северо-запад России. Реактор водо-водяного типа сейчас самый распространенный. Его конструкция напоминает тепловую станцию со своей турбиной и генератором, только вместо котла — реакторная установка.
Если начальная скорость параллельна магнитному полю, частица движется свободно по инерции вдоль линии магнитного поля, так как в этом случае сила Лоренца равна нулю. В общем случае, когда начальная скорость направлена произвольно, имеет место сложение прямолинейного и кругового движений — частица описывает винтовую траекторию, навивающуюся на линию магнитного поля рис. Такой характер движения сохраняется в неоднородном магнитном поле, если на расстоянии порядка шага «винта» направление магнитной индукции поля изменяется незначительно рис.
Частица оказывается как бы привязанной к линии поля — она удерживается на постоянном расстоянии от нее, равном радиусу спирали. Радиус спирали прямо пропорционален скорости частицы и обратно пропорционален магнитной индукции см. В реальной плазме на движение частиц влияют соударения между ними Ии внутренние электрические и магнитные пол плазмы они всегда имеются, так как плазма состоит из заряженных частиц. Ввиду этого рассмотрение действия внешнего магнитного поля на движение частиц плазмы оказывается очень сложным. Основная особенность, однако, остается— магнитное поле, искривляя траектории частиц, очень сильно затрудняет их движение в направлении, перпендикулярной к линиям внешнего магнитного поля. Эта особенность и используется для удержания изоляции плазмы. Магнитное поле используется также и для нагрева плазмы: при изменении магнитной индукции возникает э.
К настоящему времени физики научились нагревать плазму, правда весьма разреженную, до температуры сто миллионов градусов и удерживать ее в таком состоянии в течение сотых долей секунды. Эти успехи позволяют надеяться, что на описанном пути удастся в конечном счете осуществить управляемую, а не взрывную, как в водородной бомбе, термоядерную реакцию. При взрыве атомной и водородной бомбы в добавление к эффектам, характерным для любого мощного взрыва, испускается еще много нейтронов и -излучение, а также образуется большое количество радиоактивных веществ. Излучения этих веществ делают район взрыва опасным для жизни еще в течение некоторого времени после взрыва.
Почему происходит смена магнитных полюсов? Магнитное поле планеты формируется благодаря циркуляции расплавленного железа во внешнем ядре. Движение электропроводящей жидкости в магнитном поле создает самоподдерживающуюся систему, своего рода геодинамо. Но для образования мощных переменных течений в ядре, приводящих к изменению магнитного поля, необходимы и мощные нестационарные источники тепла.
Вполне подходящими кандидатами на эту роль опять-таки являются природные ядерные реакторы Вполне естественно предположить, что при работе реактора из-за тепловыделения возникают конвективные потоки, вызывающие разрыхление активной зоны. В какой-то момент цепная реакция деления останавливается. Когда выделение тепла прекращается и конвективные потоки ослабевают, уран медленно оседает — цепная реакция возобновляется. Таким образом, геореактор может работать и в импульсном режиме. Определяющим показателем хода цепной реакции является коэффициент размножения нейтронов k, который равен отношению числа нейтронов, вновь образовавшихся в реакциях деления, к количеству нейтронов, поглощенных в ходе реакции либо покинувших активную зону. Тогда в каждом новом поколении нейтронов становится все больше, и они, в свою очередь, вызывают все больше делений ядер. Возникает лавинообразный процесс. Согласно проведенным расчетам максимально возможный коэффициент размножения ведет себя следующим образом: вначале он падает в течение 1 млрд лет, однако затем более-менее стабилизируется и остается больше единицы вплоть до настоящего времени.
Представляется, что более вероятен импульсный сценарий работы реактора, когда периоды активности перемежаются периодами «простоя». Так, как это было в маленьком природном реакторе Окло, но только с большей продолжительностью циклов. По мнению авторов, временные характеристики рассчитанного импульсного режима можно соотнести с рядом периодических явлений, наблюдаемых на поверхности Земли, таких как глобальные изменения климата или смена магнитных полюсов. Откуда летят геонейтрино? Сторонники точки зрения, что Земля является ядерным реактором, сегодня связывают особые надежды с электронным антинейтрино. Нейтрино практически не реагируют с веществом и поэтому обладают огромной проникающей способностью, почти без потерь проходя через все тело Земли. Их регистрация — сложная научная и техническая задача. В течение двух лет ученые зафиксировали 152 события, но после отсечения фона осталось всего 25 — по одному в месяц.
Главными источниками фона оказались промышленные реакторы Японии и Южной Кореи. Полное число антинейтрино может быть частично связано с мощностью действующего геореактора и частично — с естественным распадом различных нестабильных ядер в недрах Земли. Из данных KamLAND следует, что полная плотность потока геонейтрино составляет примерно 16 млн частиц в секунду на кв. Это соответствует источнику тепла, порождаемого ядерными реакциями, мощностью от 24 до 60 ТВт. Первое из двух чисел оказалось близким к величине «избыточного» тепла, излучаемого Землей, о котором шла речь выше. И многие специалисты склоняются к мнению, что это объяснение наиболее правдоподобно. Энергетические спектры нейтрино, образующихся при делении разных ядер, отличаются. Русов с коллегами выполнили компьютерное моделирование и определили спектральные составляющие геонейтрино от различных внутренних источников — урана-238, тория-232, плутония-239.
Суммарную мощность геореактора они оценили в 30 ТВт. Результаты этой работы также свидетельствуют в пользу импульсного режима размножения. Этой темой активно занимаются и геологи, и химики, и физики, и математики. Так, в Институте геологии и минералогии СО РАН разработана модель термохимического плюма — канала, заполненного магматическим расплавом, который простирается из земных недр до поверхности Н. Добрецов, А. Кирдяшкин, А. Кирдяшкин, 2001, 2004. Данные по удельным расходам излияния магм мантийных плюмов за последние 150 млн лет, а также их корреляция с инверсиями магнитного поля Земли Larson, Olson, 1991 подтверждают наш тезис, что плюмы зарождаются на ядро-мантийной границе.
Плюм формируется при обязательном наличии теплового потока из жидкого ядра. Изучение тепло- и массообмена на подошве термохимического плюма и взаимодействия канала плюма со свободными конвективными течениями в мантии приводит к заключению, что источник тепла действительно расположен в ядре, как и предполагают авторы гипотезы глубинного геореактора. Что касается изотопного состава гелия, то повышенное содержание гелия-3, обнаруженное в плюмах, указывает на то, что в ядре Земли идут какие-то процессы, связанные с ядерными превращениями. Но, к сожалению, мы очень мало знаем о том, что происходило в начальный момент формирования планеты, и существовал ли, как считают авторы, «океан магмы». Поэтому вопрос о скоплениях актиноидов в ядре еще предстоит разрешить. Причиной же климатических изменений, о которых упоминают авторы статьи, на мой взгляд, не могут быть колебания температуры в ядре Земли. Ведь глубинные температурные флуктуации передаются на поверхность мантийными конвективными течениями примерно через 100 млн лет, а плюмы могут донести эти изменения за 1—5 млн лет. За это время флуктуации с периодом всего 100 тыс.
В любом случае модель природного ядерного реактора на границе внутреннего и внешнего ядра интересна геологам уже тем, что не противоречит имеющимся знаниям в области геодинамики и фактам плюмового магматизма. Безусловно, предложенная гипотеза подлежит дальнейшей разработке, и достоверность ее должны подтвердить новые геологические, геофизические и геохимические данные о планете Земля. Кирдяшкин, д.
По прогнозу главы российского "Атомэнергопрома", в самое ближайшее время из-за высокой стоимости реакторов третьего поколения упор может быть сделан на строительство серийных энергоблоков АЭС предыдущих поколений, пишет "Российская газета". Однако не все эксперты разделяют эту точку зрения.
По его мнению, здесь позиции России по-прежнему сильны. Кроме того, эксперт не считает, что из-за кризиса обстановка в ядерной энергетике революционно преобразуется. Кроме того, по мнению эксперта, они доказали свою высокую надежность и безопасность. Поэтому экспорт российских атомных технологий имеет значительный потенциал к расширению.
§ 228. Применения незатухающей цепной реакции деления. Атомная и водородная бомбы
Было установлено, что все химические свойства веществ определяются строением электронных оболочек атомов. Деление атомного ядра, процесс, при котором из одного атомного ядра возникают несколько (чаще всего два) более лёгких ядер (осколков деления). Судите сами: когда-то советские ученые пришли, условно, к Сталину, и доложили, что из западных научных журналов исчезли статьи по делению ядра атома – реально перспективную. Делением атомных ядер называется процесс раскалывания ядра на две примерно равные части.
Деление ядер урана. Цепная ядерная реакция
Короче говоря, у Хандла, вероятно, не было подходящих материалов, чтобы вызвать реакцию деления. Но что, если он - или ты - сделал? Как вы могли заставить их реагировать? Давайте представим, что у вас есть доступ к чистой U-235. Поскольку на вашей кухне нет ядерного реактора, в котором используется так называемый замедлитель для приведения нейтронов в контакт с ураном, ваш единственный вариант - собрать вместе критическую массу материала.
Так что просто возьми вок, полный U-235. Он будет готовить самостоятельно. Есть одна маленькая проблема: «Если бы у кого-то было так много и попыталось собрать это вместе, они бы убили себя», - сказал Хансен.
Эти нейтроны могут инициировать деление уже нескольких ядер — возникает цепная реакция. Если потери нейтронов в такой разветвленной цепи реакций будут меньше, чем число вновь образовавшихся, то выделение энергии будет нарастать лавинообразно. В одном акте деления урана высвобождается энергии в 4 раза больше, чем при естественном распаде, причем скорость энерговыделения очень велика. Самые известные примеры процессов такого типа — реакции в атомной бомбе и реакторах АЭС Сама идея атомного реактора в земных недрах возникла примерно в это же время — и почти за двадцать лет до открытия феномена Окло!
В 1953 г. Везерилл и М. Ингрэм выдвинули смелую гипотезу, что в древнейшие времена в скоплениях радиоактивных элементов, главным образом урана и тория, могли протекать цепные ядерные реакции. Поиски геореакторов, подобных оклоскому, предпринимались впоследствии и в других древних месторождениях, но они успехом не увенчались. Может быть, африканский реактор — это шутка Бога, результат случайного стечения обстоятельств и он действительно уникален? Даже если это так, идея, что в Земле могут идти — причем и в далеком прошлом, и в настоящее время! Красноречивый гелий Признаки работы природных реакторов ищут не только в земной коре, но и в недрах планеты.
Одна из причин упорства исследователей заключается в том, что Земля излучает тепла примерно в 2,5 раза больше, чем должна отдавать в результате естественного распада радиоактивных элементов в коре радиогенное тепло и первичного нагрева. Тепловая энергия, получаемая от Солнца, в этом балансе не учитывается. Если такую большую разницу пытаться объяснить только радиогенным теплом из внутренних областей планеты, то Земля в целом должна иметь нереально большие запасы радиоактивных элементов. Но вот в цепных ядерных реакциях как раз выделяется тепла в несколько раз больше, чем при естественном радиоактивном распаде. Цепной механизм выделения энергии мог бы объяснить и упомянутый тепловой дисбаланс, и многие другие необычные явления. И если гипотетические реакторы расположены глубоко в недрах, то понятно, почему следы их активности не удалось найти в урановых месторождениях за исключением Окло. Искали где ближе, но, может, стоит «копнуть вглубь»?
Итак, предположим, что где-то в теле Земли действует такой реактор. По каким признакам его можно обнаружить? Один из методов поиска — анализ продуктов деления, мигрирующих из зоны реакции и достигающих земной поверхности. В частности, очень интересен изотопный состав «солнечного элемента» — гелия. Природный гелий состоит из двух стабильных изотопов: 4He и 3He. Гелий-4 попадает в атмосферу в результате естественного распада урана и тория. В воздухе на миллион атомов гелия-4 приходится всего полтора атома гелия-3.
Но в базальтах срединно-океанических хребтов изотопа 3He больше уже в 8 раз, а в некоторых изверженных магматических горных породах — в 40! Как объяснить происхождение гелия с высоким содержанием изотопа 3He? Какие физические процессы могут быть ответственны за это? Обычный радиоактивный распад явно не годится, так как он продуцирует исключительно гелий-4. Попробуем привлечь на помощь ядерные реакции деления. Известно, что при работе реактора тяжелые ядра, поглощая нейтрон, становятся неустойчивыми и могут делиться на два крупных осколка с испусканием легких заряженных частиц и 2—3 нейтронов. В конечном продукте совокупности таких реакций доли обоих изотопов гелия хотя и отличаются, но представляют собой величины одного порядка.
Напомним, что в «стандартном» атмосферном гелии их концентрации различаются на шесть порядков! Таким образом, относительно высокое содержание гелия-3, наблюдаемое в магматических породах, поднявшихся на поверхность из земных недр, может служить косвенным свидетельством работы глубинного геореактора. Уран выпал в осадок? Прежде чем продолжить разговор, хочется еще раз подчеркнуть принципиальное различие между естественным радиоактивным распадом и ядерной реакцией деления, ибо разница эта не всегда очевидна на неискушенный взгляд. Обычная радиоактивность — это самопроизвольный распад атомных ядер; для реакции деления обязательно требуется взаимодействие с внешней частицей нейтроном. По этой причине для осуществления ядерной реакции нужна достаточная концентрация активного вещества; для спонтанного распада концентрация не имеет никакого значения. Если в недрах Земли действительно идут цепные реакции, значит, там должны присутствовать скопления радиоактивных элементов актиноидов.
Как и где именно они образовались? На этот счет существует множество разных точек зрения: от мантии до геометрического центра Земли. Анисичкин с соавторами предложили обоснованную гипотезу, согласно которой местом критической концентрации урана и тория могла быть поверхность твердого внутреннего ядра Земли. Эта концепция во многом базируется на работах по растворимости диоксида урана UO2 , проведенных в конце 1990-х гг. В экспериментах на аппарате высокого давления типа «разрезная сфера» А. Туркиным было показано, что растворимость UO2 в расплавах на основе железа с ростом давления уменьшается. Исследуемый диапазон давлений составлял 5—10 ГПа для сравнения: в центре Земли давление около 360 ГПа.
Поскольку в природе уран встречается преимущественно в виде оксидов, то логично сделать вывод: чем глубже, тем хуже будет растворяться уран!
Цепные реакции: Когда освобождающиеся нейтроны от одного деления вызывают деление других ядер, это может привести к цепной реакции, что является основой работы ядерных реакторов и атомных бомб. Ядерный синтез Ядерный синтез, с другой стороны, представляет собой процесс, при котором два или более легких ядра объединяются в одно более тяжелое ядро. Этот процесс происходит при очень высоких температурах и давлениях, которые обычно встречаются в звездах, включая Солнце, и водородных бомбах. Основные характеристики ядерного синтеза: Слияние: При ядерном синтезе легкие ядра, как правило, водородные изотопы, сливаются в одно более тяжелое ядро. Например, в Солнце происходит синтез водорода в гелий.
Энергия: Ядерный синтез также сопровождается высвобождением энергии, и это является источником основной части энергии, излучаемой Солнцем и другими звездами.
В новом исследовании ученые из Мюнхенского университета Людвига-Максимилиана LMU и Саарского университета побили рекорд расстояния квантовой запутанности между двумя атомами, соединенных оптоволоконным кабелем. Каждый атом возбуждался лазерным импульсом, который заставлял его испускать фотон, квантово запутанный с атомом. Затем фотоны отправлялись по оптоволоконным кабелям, чтобы встретиться на приемной станции в центре, где фотоны подвергались совместному измерению.
Части атома
- «Неделимый» атом
- Видео-стенд "Магия Деления ядра урана" в парке "Патриот"
- Оглавление
- Сделай Сам: Как Разделить Атомы На Кухне
Сделай Сам: Как Разделить Атомы На Кухне
Стоимость Для сравнения затрат на производство электроэнергии исследователи используют так называемую выровненную стоимость энергии, или LCOE. Это показатель средней себестоимости выработки электроэнергии, рассчитанный на весь срок службы объекта. Этот показатель зависит от множества факторов, связанных с местоположением и колебаниями ресурсов. Тем не менее, можно получить общее представление о LCOE в мире для сравнения технологий.
Могут ли атомные электростанции спасти мир? Конечно, новые технологии всегда могут изменить ситуацию. Поиск лучших способов улавливания ядерных отходов может сделать их более безопасными или, по крайней мере, дать общественности уверенность в том, что в будущем они будут представлять меньшую угрозу.
Альтернативы изотопам урана могут снять тревогу по поводу расплавов и возможности создания оружия в ядерных программах. Изменение технологий может повлиять на масштабы реакторов или даже полностью повысить их LCOE. Но, скорее всего, это будет слишком поздно.
Анализ внедрения атомной и возобновляемой энергетики в более чем ста странах за последние 25 лет показал, что атомная энергетика не достигла таких же результатов по снижению выбросов углерода, как возобновляемые источники энергии. Более того, инвестиции в атомную энергетику - это невозвратные затраты, затрудняющие последующий переход на возобновляемые источники энергии. Все это не означает, что ядерной энергетике нет места в будущем производстве энергии.
Например, освоение космоса может выиграть от развития технологий ядерного деления. Помимо производства энергии, бесценной отраслью является производство особых изотопов для медицины и научных исследований с использованием деления. Возможно, она не спасет нас от климатического кризиса, но ядерная эра дает другие технологические преимущества, которые останутся с нами надолго.
Энергия деления широко используется в реакторах атомных электростанций, ядерных силовых установках надводных кораблей и субмарин, а также ядерных и термоядерных боеприпасах. Посмотрите стенд "Магия деления ядра урана" на нашем видео на канале в Youtube. Техническое решение, оборудование Основной задачей при оснащении экспоната «Магия деления ядра урана» было построение особой мультимедийной зеркальной комнаты с применением новейшего оборудования и технологий в соответствии с требованиями и пожеланиями, изложенными заказчиком в предоставленном общем техническом задании.
В качестве технической основы обустройства стенда были использованы высокотехнологичные светодиодные панели. Каждая из стен имеет в длину 3,072 м при высоте 2,56 м. Зеркальное напольное покрытие из «золотого алюминия», создавая идеальное отражение видеоконтента, обеспечивает получение трехмерного эффекта присутствия наблюдателя в центре демонстрируемых событий, иллюстрирующих этапы деления ядра урана. При оснащении экспоната, помимо вышеназванного, было задействовано также следующее оборудование: LED лампа Модель чипа epistar; модуль Управления SD16739;.
Институт ядерной физики, располагающий ядерным реактором 1967 года рождения и другими мудреными штуками типа изохронного циклотрона, еще на два года старше и омоложенного аж в 1972-м. В свое время это была компания почти полного, хотя и с разрывами, топливно-энергетического цикла. Благо наши месторождения позволяют применять метод скважинного выщелачивания, замечательно отработанный и самый низкий по стоимости. Что же осталось от этого сейчас? Остались урановые месторождения, потихоньку превращенные в совместные с канадцами, французами, японцами, а теперь и китайцами предприятия. И еще с российскими добытчиками, у которых, кстати, самая большая среди иностранцев доля и одни из лучших месторождений. И остался простаивающий УМЗ, лишенный поставок исходного материала из России. Но это мало помогало, поскольку для производства таблеток нужен заказчик, для которого их делать. Но именно в этом году совершается принципиальный перелом: на УМЗ запускается крупное производство не просто таблеток, а готовых топливных сборок со стопроцентной отгрузкой их в Китай.
Однако, внимание, исходный гексафторид для загрузки китайских АЭС...
Цепной ядерной реакцией называется реакция, в которой нейтроны образуются как продукты этой реакции, способные вызывать деление других ядер. Следовательно, число нейтронов, рождающихся в каждом поколении, нарастает в геометрической прогрессии. В целом процесс носит лавинообразный характер, протекает весьма быстро и сопровождается выделением огромного количества энергии. Скорость цепной реакции деления ядер характеризуют коэффициентом размножения нейтронов.
Коэффициент размножения нейтронов k — отношение числа нейтронов в данном этапе цепной реакции к их числу в предыдущем этапе. Если k 1, то число нейтронов увеличивается с течением времени или остаётся постоянным и цепная реакция идет. Коэффициент размножения k может стать равным единице лишь при условии, что размеры реактора и соответственно масса урана превышают некоторые критические значения. Критической массой называют наименьшую массу делящегося вещества, при которой может протекать цепная реакция. Число нейтронов, образующихся при делении ядер, зависит от объема урановой среды.
Чем больше этот объем, тем большее число нейтронов выделяется при делении ядер. Начиная с некоторого минимально-критического объема урана, имеющего определенную критическую массу, реакция деления ядер становится самоподдерживающейся. Очень важным фактором, влияющим на ход ядерной реакции, является наличие замедлителя нейтронов. Дело в том, что ядра урана-235 делятся под действием медленных нейтронов. А при делении ядер образуются быстрые нейтроны.
Если быстрые нейтроны замедлить, то большая их часть захватится ядрами урана-235 с последующим делением ядер. В качестве замедлителей используются такие вещества, как графит, вода, тяжелая вода и некоторые другие.
Деление атома
В нем различными средствами визуализации отображены события из истории отечественной ядерной энергетики и атомного оружия от первых успехов до наших дней. Церемония торжественного открытия экспозиции павильона состоялась 6 сентября 2016 года. Она помогает молодежи ознакомиться с теми или иными разделами ядерной физики, почерпнуть широкий объем информации в данной сфере человеческой жизнедеятельности Основной, просветительский потенциал выставки, направлен на ознакомление с достижениями в сегменте ядерных исследований, осознание роли ядерного оружия и атомной промышленности в становлении экономического и оборонного потенциала России. С этой целью в экспозиции представлено множество вызывающих живой интерес экспонатов, архивных материалов и документальных фильмов. Павильон предназначен для использования в различных сценарно-постановочных вариациях. Здесь можно с успехом проводить обзорные и целевые экскурсии, лекции, семинары, тематические встречи с участием действующих специалистов и заслуженных ветеранов-ядерщиков, другие познавательные мероприятия. Объект обустроен таким образом, что во время демонстрационного сеанса посетители благодаря достигнутым визуальным эффектам словно оказываются в самом центре процесса цепной реакции деления ядра урана. На стенде наглядно и красочно проиллюстрированы все этапы процесса деления атомного ядра.
Обычно величину YА выражают в процентах.
Отметим, что именно ядра примерно этих масс чаще всего встречаются в следах —выпадениях осадков после ядерных испытаний или ядерных аварий. Достаточно вспомнить следы таких нуклидов как 131I, 133I, 90Sr, 137Сs. Но у стабильных ядер со средними значениями масс, к которым относятся осколки, это отношение значительно ближе к единице: например, у стабильного ядра 118Sn это отношение равно 1,36. Это означает, что ядра осколков сильно перегружены нейтронами, и они будут стремиться избавиться от этой перегрузки путем бета-распадов, при которых нейтроны превращаются в протоны. При этом, для того, чтобы первичный осколок превратился в стабильный нуклид, может потребоваться несколько последовательных бета-распадов, образующих целую цепочку, например: стабилен. Здесь под стрелочками приведены периоды полураспада нуклидов: s-секунды, h-часы, y-годы. Заметим, что осколком деления принято называть только самое первое ядро, непосредственно возникающее при делении ядра урана в данном случае — 135Sb. Все остальные нуклиды, возникающие в результате бета-распадов, вместе с осколками и стабильными конечными нуклидами, называют продуктами деления.
Поскольку вдоль цепочки массовое число не изменяется, то всего таких цепочек при делении ядер урана может образоваться столько, сколько может возникнуть массовых чисел, то есть примерно 90. А так как в каждой цепочке содержится в среднем 5 радиоактивных нуклидов, то всего среди продуктов деления можно насчитать около 450 радионуклидов с самыми различными периодами полураспада от долей секунды до миллионов лет.
По прогнозу главы российского "Атомэнергопрома", в самое ближайшее время из-за высокой стоимости реакторов третьего поколения упор может быть сделан на строительство серийных энергоблоков АЭС предыдущих поколений, пишет "Российская газета".
Однако не все эксперты разделяют эту точку зрения. По его мнению, здесь позиции России по-прежнему сильны. Кроме того, эксперт не считает, что из-за кризиса обстановка в ядерной энергетике революционно преобразуется.
Кроме того, по мнению эксперта, они доказали свою высокую надежность и безопасность. Поэтому экспорт российских атомных технологий имеет значительный потенциал к расширению.
В отличие от Европы США не собираются отказываться от мирного атома и по мере сил восстанавливают пробелы, сделанные предыдущими властями в отношении поддержки атомной индустрии.
Достижение реактором Vogtle 3 стадии первой критичности подтверждает, что многое сохранено. И, кстати, если верить слухам, специалисты Westinghouse сейчас помогают французам достроить атомные реакторы во Франции. Местная компания EDF, как выясняется на практике, тоже растеряла компетенции, но это уже другая история.
Вечерний 3DNews Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.
§ 228. Применения незатухающей цепной реакции деления. Атомная и водородная бомбы
Новости Новости. Ядерным (или атомным) реактором называется устройство, в котором осуществляется управляемая реакция деления ядер. Эти избыточные нейтроны, ударяясь о ядра других атомов урана-235, могут запустить цепную реакцию деления, что приводит к атомному взрыву.
Открытие ядерного деления - Discovery of nuclear fission
Специалисты из МФТИ под руководством заведующего Лабораторией суперкомпьютерных методов в физике конденсированного состояния профессора Владимира Владимировича Стегайлова обнаружили принципиально новый физический механизм сверхбыстрой диффузии газа в ядерном топливе. Они смогли смоделировать перемещение нанопузырей ксенона различной концентрации в диоксиде урана на протяжении огромного по атомным масштабам времени — до трех микросекунд три миллиарда шагов интегрирования. Это стало возможно благодаря оптимальному использованию суперкомпьютерных мощностей и современных программных кодов. В результате подобных рекордных молекулярно-динамических расчетов удалось непосредственно пронаблюдать броуновское движение пузыря и обнаружить принципиально новый механизм диффузии. Ранее физики полагали, что чем выше концентрация газа, тем медленнее диффузия, так как газ мешает движению диоксида на поверхности пузыря.
Исследователи из МФТИ показали, что при достижении некоторой концентрации газ, благодаря высокому давлению, выталкивает атомы кристаллической решетки в междоузельные положения. Скапливаясь там, эти атомы образуют кластеры, быстро перемещающиеся вокруг пузыря.
Основным элементом таких устройств является диспергирующая среда в виде трехгранных призм или дифракционных решеток.
Спектр атома водорода. В видимой области спектральные линии атомного водорода в своей последовательности обнаруживает простые закономерности. Первая линия серии называется головной.
Поскольку в конце серии происходит наложение линий друг на друга, нельзя определить последнюю линию серии. Ее определяют как границу серии - линию с номером, равной бесконечности. Можно формулу 4 переписать следующим образом 6 Обычно квантовое число m называют номером серии, а число n - номер линий в данной серии с номером m.
В еще более универсальном виде формула примет вид 7 Здесь T m или T n называются спектральными термами. Это и есть основной закон излучения атома, называется комбинационным принципом Ридберга-Ритца. Согласно Бору комбинационный принцип является своеобразным выражением квантовых законов, управляющих внутриатомными процессами.
По мнению авторов, временные характеристики рассчитанного импульсного режима можно соотнести с рядом периодических явлений, наблюдаемых на поверхности Земли, таких как глобальные изменения климата или смена магнитных полюсов. Откуда летят геонейтрино? Сторонники точки зрения, что Земля является ядерным реактором, сегодня связывают особые надежды с электронным антинейтрино. Нейтрино практически не реагируют с веществом и поэтому обладают огромной проникающей способностью, почти без потерь проходя через все тело Земли. Их регистрация — сложная научная и техническая задача. В течение двух лет ученые зафиксировали 152 события, но после отсечения фона осталось всего 25 — по одному в месяц. Главными источниками фона оказались промышленные реакторы Японии и Южной Кореи. Полное число антинейтрино может быть частично связано с мощностью действующего геореактора и частично — с естественным распадом различных нестабильных ядер в недрах Земли.
Из данных KamLAND следует, что полная плотность потока геонейтрино составляет примерно 16 млн частиц в секунду на кв. Это соответствует источнику тепла, порождаемого ядерными реакциями, мощностью от 24 до 60 ТВт. Первое из двух чисел оказалось близким к величине «избыточного» тепла, излучаемого Землей, о котором шла речь выше. И многие специалисты склоняются к мнению, что это объяснение наиболее правдоподобно. Энергетические спектры нейтрино, образующихся при делении разных ядер, отличаются. Русов с коллегами выполнили компьютерное моделирование и определили спектральные составляющие геонейтрино от различных внутренних источников — урана-238, тория-232, плутония-239. Суммарную мощность геореактора они оценили в 30 ТВт. Результаты этой работы также свидетельствуют в пользу импульсного режима размножения.
Этой темой активно занимаются и геологи, и химики, и физики, и математики. Так, в Институте геологии и минералогии СО РАН разработана модель термохимического плюма — канала, заполненного магматическим расплавом, который простирается из земных недр до поверхности Н. Добрецов, А. Кирдяшкин, А. Кирдяшкин, 2001, 2004. Данные по удельным расходам излияния магм мантийных плюмов за последние 150 млн лет, а также их корреляция с инверсиями магнитного поля Земли Larson, Olson, 1991 подтверждают наш тезис, что плюмы зарождаются на ядро-мантийной границе. Плюм формируется при обязательном наличии теплового потока из жидкого ядра. Изучение тепло- и массообмена на подошве термохимического плюма и взаимодействия канала плюма со свободными конвективными течениями в мантии приводит к заключению, что источник тепла действительно расположен в ядре, как и предполагают авторы гипотезы глубинного геореактора.
Что касается изотопного состава гелия, то повышенное содержание гелия-3, обнаруженное в плюмах, указывает на то, что в ядре Земли идут какие-то процессы, связанные с ядерными превращениями. Но, к сожалению, мы очень мало знаем о том, что происходило в начальный момент формирования планеты, и существовал ли, как считают авторы, «океан магмы». Поэтому вопрос о скоплениях актиноидов в ядре еще предстоит разрешить. Причиной же климатических изменений, о которых упоминают авторы статьи, на мой взгляд, не могут быть колебания температуры в ядре Земли. Ведь глубинные температурные флуктуации передаются на поверхность мантийными конвективными течениями примерно через 100 млн лет, а плюмы могут донести эти изменения за 1—5 млн лет. За это время флуктуации с периодом всего 100 тыс. В любом случае модель природного ядерного реактора на границе внутреннего и внешнего ядра интересна геологам уже тем, что не противоречит имеющимся знаниям в области геодинамики и фактам плюмового магматизма. Безусловно, предложенная гипотеза подлежит дальнейшей разработке, и достоверность ее должны подтвердить новые геологические, геофизические и геохимические данные о планете Земля.
Кирдяшкин, д. Для решения этой и других задач предполагается создать глобальную сеть детекторов. Подобный опыт у международного научного сообщества уже есть: в 2005 г. Таким образом, в ближайшее десятилетие планируется зарегистрировать геонейтрино в нескольких точках земного шара. Объединение данных разных детекторов позволит наконец установить точное месторасположение источников этих частиц внутри нашей планеты и даст еще один довод «за» или «против» гипотезы «ядерной топки» Земли. Вместо послесловия Известно, что на атомной электростанции может произойти взрыв, если не регулировать ход цепной реакции в реакторе. Есть веские основания полагать, что в далеком прошлом по разным причинам — внутренним или внешним, например при столкновении с астероидом, — медленные ядерные реакции в недрах Земли могли трансформироваться во взрывные. Если бы взорвался весь уран Земли, событие было бы эквивалентно взрыву тротила в количестве, сравнимом с массой планеты!
И Земля перестала бы существовать. Однако даже теоретически трудно представить механизм, по которому бы земной уран мог сконцентрироваться и одновременно прореагировать. Но взрыва даже нескольких процентов актиноидов вполне достаточно, чтобы отделить от Земли фрагмент размером с Луну. Ведь большие тела Солнечной системы образовались из одного протопланетного облака, поэтому и содержание радиоактивных элементов в них может быть схожим. Все планеты, вероятно, прошли стадию гравитационного разделения вещества по плотности, в результате которого тяжелые актиноиды могли сконцентрироваться в их недрах. Катастрофические ядерные события хорошо объясняют ряд так называемых нерегулярностей в Солнечной системе, казалось бы, ничем между собой не связанных. Среди них аномально большая масса спутника Земли — Луны, малая масса Марса, обратное суточное вращение Венеры, множество хаотично движущихся астероидов и комет...
По некоторым оценкам , этот показатель значительно выше - от 10 до 130 граммов CO2 в отдельных случаях. Таким образом, замена угольных электростанций на атомные позволит ежегодно сберегать в атмосфере несколько миллионов тонн CO2, не говоря уже о твёрдых частицах и других загрязняющих веществах. Углеродный след солнечных и ветряных электростанций более или менее сопоставим с нижним пределом для атомной энергетики. В целом, атомная энергия в лучшем случае не содержит столько же углерода, сколько солнечная и ветровая, хотя и связана с непопулярной проблемой отходов, которую мало кто хочет иметь у себя под боком. Риски Прошло более трёх десятилетий с тех пор, как советская Украина дала миру представление о том, как может выглядеть наихудший сценарий ядерной аварии. Чернобыльская АЭС, расплавившаяся во время технических испытаний в 1986 году, превратилась в радиоактивные руины на фоне отравленного радиоактивными осадками ландшафта. Саркофаг над остатками четвёртого блока Чернобыльской АЭС В 2011 году после землетрясения в Японии произошла авария на атомной станции "Фукусима". Подобные разрушительные события достаточно редки, чтобы о них можно было писать в шокирующих заголовках. Однако, по некоторым оценкам , такие аварии могут происходить раз в 10-20 лет, что в каждом случае чревато распространением радиоактивных веществ на сотни и даже тысячи километров. Насколько это может быть опасно? Трудно сказать, это зависит от множества факторов, связанных с плотностью населения, степенью облучения и концентрацией изотопов. По данным Всемирной организации здравоохранения, «перемещённое население Фукусимы страдает от психосоциальных и психических последствий переезда, разрыва социальных связей людей, потерявших жильё и работу, разрыва семейных связей и стигматизации». Иными словами, речь идёт не только о риске радиоактивности, о котором нам следует беспокоиться. Тем не менее, привыкнув к воздействию сжигания ископаемого топлива на здоровье человека, мы мало задумываемся о влиянии на него твёрдых частиц, образующихся при сжигании угля. Который сам по себе тоже не совсем свободен от радиоактивных веществ. Стоимость Для сравнения затрат на производство электроэнергии исследователи используют так называемую нормированную стоимость энергии , или LCOE [levelized cost of energy].