18 ноября 1962 года скончался датский физик-теоретик Нильс Бор, один из создателей современной физики. Нильс Бор действительно был философом, который искал ответы на вечные вопросы бытия, изучая явления окружающего нас физического мира. Его соплеменники очень гордились тем, что Нильс Бор сделал такой большой вклад в развитие физики. Нильс Хе́нрик Дави́д Бор — датский физик-теоретик и общественный деятель, один из создателей квантовой механики. Лауреат Нобелевской премии по физике (1922). В Копенгагенском университете, куда Нильс Бор поступил в 1903 году, его считали «тяжёлым студентом».
Последние комментарии
- Кто такой Нильс Бор
- Исследование Нильса Бора: теоретик и создатель современной физики
- Предыстория появления системы химических элементов
- Нильс Бор, рокфеллеровские постдоки и рождение квантовой механики
- Нобелевку дали за ответ на вопрос, «играет ли Бог в кости»
- Нильс Бор, физика, Нобелевская премия | Журнал ПАРТНЕР
Новость детально
Итогом стала концепция дополнительности , которая была представлена на конгрессе памяти Алессандро Вольты в Комо в сентябре 1927 года [40]. Исходным пунктом в эволюции взглядов Бора стало принятие им в 1925 году дуализма волна — частица. До этого Бор отказывался признавать реальность эйнштейновских квантов света фотонов , которые было трудно согласовать с принципом соответствия [41] , что вылилось в совместную с Крамерсом и Джоном Слейтером статью, в которой было сделано неожиданное предположение о несохранении энергии и импульса в индивидуальных микроскопических процессах законы сохранения принимали статистический характер. Однако эти взгляды вскоре были опровергнуты опытами Вальтера Боте и Ханса Гейгера [42]. Именно корпускулярно-волновой дуализм был положен Бором в основу интерпретации теории. Идея дополнительности, развитая в начале 1927 года во время отпуска в Норвегии [43] , отражает логическое соотношение между двумя способами описания или наборами представлений, которые, хотя и исключают друг друга, оба необходимы для исчерпывающего описания положения дел.
Сущность принципа неопределённости состоит в том, что не может возникнуть такой физической ситуации, в которой оба дополнительные аспекта явления проявились бы одновременно и одинаково отчётливо [44]. Иными словами, в микромире нет состояний, в которых объект имел бы одновременно точные динамические характеристики, принадлежащие двум определённым классам, взаимно исключающим друг друга, что находит выражение в соотношении неопределённостей Гейзенберга. Данные измерений объектов микромира, полученные при помощи различных экспериментальных установок, в условиях, когда взаимодействие между измерительным прибором и объектом составляет неотъемлемую часть процесса измерений, находятся в своеобразном дополнительном отношении друг к другу. Согласно этой интерпретации, заимствованные из классической физики динамические характеристики микрочастицы её координата , импульс , энергия и др. Смысл и определённое значение той или иной характеристики электрона, например, его импульса, раскрываются во взаимосвязи с классическими объектами, для которых эти величины имеют определённый смысл и все одновременно могут иметь определённое значение такой классический объект условно называется измерительным прибором.
Роль принципа дополнительности оказалась столь существенной, что Паули даже предлагал назвать квантовую механику «теорией дополнительности» по аналогии с теорией относительности [48]. Через месяц после конгресса в Комо , на пятом Сольвеевском конгрессе в Брюсселе , начались знаменитые дискуссии Бора и Эйнштейна об интерпретации квантовой механики [49] [50]. Спор продолжился в 1930 году на шестом конгрессе, где Бор объяснил с позиций квантовой механики парадокс фотонного ящика Эйнштейна [49] , а затем возобновился с новой силой в 1935 году после появления известной работы [51] Эйнштейна, Подольского и Розена о полноте квантовой механики см. Дискуссии не прекращались до самой смерти Эйнштейна [52] , порой принимая ожесточённый характер. Впрочем, участники никогда не переставали относиться друг к другу с огромным уважением, что нашло отражение в словах Эйнштейна, написанных в 1949 году : Я вижу, что я был … довольно резок, но ведь … ссорятся по-настоящему только братья или близкие друзья [53].
Хотя Бор так и не сумел убедить Эйнштейна в своей правоте, эти обсуждения и решения многочисленных парадоксов позволили Бору чрезвычайно улучшить ясность своих мыслей и формулировок, углубить понимание квантовой механики : Урок, который мы из этого извлекли, решительно продвинул нас по пути никогда не кончающейся борьбы за гармонию между содержанием и формой; урок этот показал нам ещё раз, что никакое содержание нельзя уловить без привлечения соответствующей формы, и что всякая форма, как бы ни была она полезна в прошлом, может оказаться слишком узкой для того, чтобы охватить новые результаты [54]. Ядерная физика 1930-е годы [ править править код ] Нильс Бор в личном кабинете 1935 В 1932 году Бор с семьёй переехал в так называемый «Дом чести», резиденцию самого уважаемого гражданина Дании, выстроенную основателем пивоваренной компании « Карлсберг ». Здесь его посещали знаменитости не только научного например, Резерфорд , но и политического мира королевская чета Дании, английская королева Елизавета , президенты и премьер-министры различных стран [55]. В 1930-е годы Бор увлёкся ядерной тематикой , переориентировав на неё свой институт: благодаря своей известности и влиянию он сумел добиться выделения финансирования на строительство у себя в Институте новых установок — циклотрона , ускорителя по модели Кокрофта — Уолтона , ускорителя ван де Граафа [56]. Сам он внёс в это время существенный вклад в теорию строения ядра и ядерных реакций.
В 1936 году Бор, исходя из существования недавно наблюдавшихся нейтронных резонансов, сформулировал фундаментальное для ядерной физики представление о характере протекания ядерных реакций : он предположил существование так называемого составного ядра «компаунд-ядра» , то есть возбуждённого состояния ядра с временем жизни порядка времени движения нейтрона через него. Тогда механизм реакций, не ограничивающийся лишь нейтронными реакциями, включает два этапа: 1 образование составного ядра, 2 его распад. При этом две эти стадии протекают независимо друг от друга, что обусловлено равновесным перераспределением энергии между степенями свободы компаунд-ядра. Это позволило применить статистический подход к описанию поведения ядер, что позволило вычислить сечения ряда реакций , а также интерпретировать распад составного ядра в терминах испарения частиц [57] , создав по предложению Якова Френкеля капельную модель ядра. Однако такая простая картина имеет место лишь при больших расстояниях между резонансами уровнями ядра , то есть при малых энергиях возбуждения.
Как было показано в 1939 году в совместной работе Бора с Рудольфом Пайерлсом и Георгом Плачеком , при перекрытии резонансов компаунд-ядра равновесие в системе не успевает установиться и две стадии реакции перестают быть независимыми, то есть характер распада промежуточного ядра определяется процессом его формирования. Развитие теории в этом направлении привело к созданию в 1953 году Виктором Вайскопфом , Германом Фешбахом и К. Портером так называемой «оптической модели ядра», описывающей ядерные реакции в широком диапазоне энергий [58]. Одновременно с представлением о составном ядре Бор совместно с Ф. Калькаром предложил рассматривать коллективные движения частиц в ядрах, противопоставив их картине независимых нуклонов.
Такие колебательные моды жидкокапельного типа находят отражение в спектроскопических данных в частности, в мультипольной структуре ядерного излучения. Идеи о поляризуемости и деформациях ядер были положены в основу обобщённой коллективной модели ядра, развитой в начале 1950-х годов Оге Бором , Беном Моттельсоном и Джеймсом Рейнуотером [59]. Велик вклад Бора в объяснение механизма деления ядер , при котором происходит освобождение огромных количеств энергии. Деление было экспериментально обнаружено в конце 1938 года Отто Ганом и Фрицем Штрассманом и верно истолковано Лизой Мейтнер и Отто Фришем во время рождественских каникул. Бор узнал об их идеях от Фриша, работавшего тогда в Копенгагене , перед самым отъездом в США в январе 1939 года [60].
В Принстоне совместно с Джоном Уилером он развил количественную теорию деления ядер, основываясь на модели составного ядра и представлениях о критической деформации ядра, ведущей к его неустойчивости и распаду. Для некоторых ядер эта критическая величина может быть равна нулю, что выражается в распаде ядра при сколь угодно малых деформациях [61]. Теория позволила получить зависимость сечения деления от энергии, совпадающую с экспериментальной. Кроме того, Бору удалось показать, что деление ядер урана-235 вызывается «медленными» низкоэнергетичными нейтронами , а урана-238 — быстрыми [62]. Противостояние нацизму.
Борьба против атомной угрозы 1940—1950 [ править править код ] После прихода к власти в Германии нацистов Бор принял активное участие в устройстве судьбы многих учёных-эмигрантов, которые переехали в Копенгаген.
Резерфорд предположил в 1911 г. Эта модель основывалась на представлениях, находивших опытное подтверждение в физике твердого тела, но приводила к одному трудноразрешимому парадоксу. Согласно классической электродинамике, вращающийся по орбите электрон должен постоянно терять энергию, отдавая ее в виде света или другой формы электромагнитного излучения. По мере того как его энергия теряется, электрон должен приближаться по спирали к ядру и в конце концов упасть на него, что привело бы к разрушению атома. На самом же деле атомы весьма стабильны, и, следовательно, здесь образуется брешь в классической теории. Бор испытывал особый интерес к этому очевидному парадоксу классической физики, поскольку все слишком напоминало те трудности, с которыми он столкнулся при работе над диссертацией. Возможное решение этого парадокса, как полагал он, могло лежать в квантовой теории. В 1900 г. Макс Планк выдвинул предположение, что электромагнитное излучение, испускаемое горячим веществом, идет не сплошным потоком, а вполне определенными дискретными порциями энергии.
Назвав в 1905 г. Применяя новую квантовую теорию к проблеме строения атома , Бор предположил, что электроны обладают некоторыми разрешенными устойчивыми орбитами, на которых они не излучают энергию. Только в случае, когда электрон переходит с одной орбиты на другую, он приобретает или теряет энергию, причем величина, на которую изменяется энергия, точно равна энергетической разности между двумя орбитами. Идея, что частицы могут обладать лишь определенными орбитами, была революционной, поскольку, согласно классической теории, их орбиты могли располагаться на любом расстоянии от ядра, подобно тому как планеты могли бы в принципе вращаться по любым орбитам вокруг Солнца. Хотя модель Бора казалась странной и немного мистической, она позволяла решить проблемы, давно озадачивавшие физиков. В частности, она давала ключ к разделению спектров элементов. Когда свет от светящегося элемента например, нагретого газа, состоящего из атомов водорода проходит через призму, он дает не непрерывный включающий все цвета спектр, а последовательность дискретных ярких линий, разделенных более широкими темными областями. Согласно теории Бора, каждая яркая цветная линия то есть каждая отдельная длина волны соответствует свету, излучаемому электронами, когда они переходят с одной разрешенной орбиты на другую орбиту с более низкой энергией. Бор вывел формулу для частот линий в спектре водорода, в которой содержалась постоянная Планка. Частота, умноженная на постоянную Планка, равна разности энергий между начальной и конечной орбитами, между которыми совершают переход электроны.
Теория Бора, опубликованная в 1913 г. Немедленно оценив важность работы Бора, Резерфорд предложил ему ставку лектора в Манчестерском университете — пост, который Бор занимал с 1914 по 1916 г. В 1916 г. В 1920 г. Под его руководством институт сыграл ведущую роль в развитии квантовой механики математическое описание волновых и корпускулярных аспектов материи и энергии. В течение 20-х гг.
Я не собираюсь рассказывать сегодня о новейших достижениях современной науки. В этой аудитории есть немало людей, которые могли бы это сделать лучше, чем я. Мне просто хочется поделиться с вами некоторыми воспоминаниями. Вчера мы с сыном были в Дубне.
Я встретился там со многими замечательными физиками и видел те великолепные, могучие аппараты, с которыми они работают. А ведь пятьдесят лет назад, когда я начинал работать у Резерфорда, самый большой прибор не превышал размеров коробки от туфель. И аргументация теоретиков в то время была проста, даже, пожалуй, примитивна, и не имела ничего общего с теми сложными логическими построениями, которые обычны в сегодняшней физике. И тем, кто слушает Бора, вероятно, вспоминаются слова, сказанные академиком Капицей 25 лет назад на открытии Института физических проблем "... Колумб отправился в экспедицию, результатом которой было открытие Америки, на простой маленькой каравелле, на лодчонке с современной точки зрения. Но чтобы освоить Америку, потребовалось построить большие корабли, и это полностью себя оправдало. Мне кажется, что нужно идти по этому пути, по пути создания совершенных институтов". По этому пути и шла все эти годы наша наука. Бор говорит дальше: - Полвека в человеческой жизни - срок немалый. Много прошло событий, и очень волнительно было все время находиться в центре современной физики.
Пятьдесят лет назад мне посчастливилось присоединиться к многочисленной группе ученых из всех стран мира, работавших под вдохновляющим руководством Резерфорда. Не было ничего удивительного в том, что сразу же после окончания университета я пришел к нему в то время трудно было бы отыскать физика, незнакомого с достижениями Резерфорда и не восхищавшегося ими. Впервые я увидел Резерфорда на традиционном обеде Кавендишевской лаборатории. Он только незадолго перед этим вернулся с первого Сольвейского конгресса, где встретился с Эйнштейном и Планком, был полон самыми радостными впечатлениями, весел, и речь его, несмотря на всю торжественность момента, искрилась неподдельным юмором. Впрочем, я должен заметить, что любовь к острому слову, к шутке, даже к розыгрышу свойственна, по-моему, всем крупным физикам нашего времени - Капица и Ландау тому хороший пример. Речь свою Резерфорд посвятил новому, тогда только что построенному прибору - камере Вильсона. Выбор темы не был случайным. Он обожал свои приборы, мог часами говорить о них, берег их. Его лаборант сказал мне как-то, что никто из физиков "так сильно не ругается из-за приборов", как Резерфорд. В камере Вильсона, как известно, фотографируются пути заряженных частиц.
Было замечено, что некоторые пути заканчиваются изгибом-то явление, которое мы называем рассеянием частиц на большие углы. Резерфорд знал об этом явлении и раньше, ведь именно на знании этого факта и была построена его знаменитая модель атома. И тем не менее, с каким воодушевлением, с каким детским восторгом говорил он о возможности созерцать то, что было еще совсем недавно невидимым, неосязаемым!.. Вильсон как-то в разговоре со мной рассказал, как воспоминания юности - о путешествии по Шотландии, туманах, висящих в долинах между холмами,- навели его на мысль о создании камеры, где капельки будут конденсироваться вокруг заряженных частиц и отмечать их путь. Этой смелой, простой идее и отдавал дань Резерфорд, один из самых увлекающихся людей, которых я когда-либо знал, всегда готовый поддержать всякую новую и свежую мысль, человек, буквально очаровавший всех современных ему физиков, ученый, чья личность, чья индивидуальность производила неотразимое впечатление на каждого, кто хоть однажды встречался с ним... Бор говорит о своих встречах с Эйнштейном. Хевеши, интересовавшийся не только изотопами, с которыми он тогда работал, но и многими другими вопросами и знавший буквально всех физиков, пересказал Эйнштейну содержание первой моей работы об излучении при переходах из одного состояния атома в другое. Эйнштейн задумался, а потом ответил ему "Что ж, все это не так далеко от того, к чему мог бы прийти и я. Но если все это правильно, то здесь - конец физики". Такая реакция Эйнштейна характерна - он никогда не любил отходить от наглядных, ясных и стройных картин.
Наша первая личная встреча состоялась через несколько лет, в 1920 году, в Берлине. Можно понять, каким сильным переживанием для меня, совсем молодого физика, было знакомство с этим великим человеком. По молодости лет я был резок и нетерпим, и в беседе нашей отстаивал самые крайние позиции... Эйнштейн выглядел очень усталым, в разговоре машинально переходил с немецкого то на французский, то на английский. Незадолго до этого он выдвинул свою знаменитую идею о фотонах и опубликовал работу, в которой показал, как можно вывести формулу Планка, исходя из представлений о квантовых переходах в атоме. И вот все это время его, человека, всегда стремившегося к стройности и завершенности, не покидало беспокойство - так что же такое свет частицы или волны? Со всей непримиримостью молодости я заявил: - Чего вы, собственно, хотите достичь?
Чем ещё интересен датский физик? Немного истории Родителями Нильса Бора были еврейка Эллен Адлер, родившаяся в семье знаменитых банкиров, и датчанин Христиан Бор, профессор медицины, который дважды номинировался на Нобелевскую премию в области медицины и физиологии. Будучи подростком, Бор никогда не сомневался в том, кем он станет, когда вырастет. Мальчик с детства увлекался физикой и астрономией и после школы, в 1903 году, поступил на физико-математический факультет. Альма-матер Нильса Бора стал Копенгагенский университет. Самые громкие успехи в научной карьере датского физика начались в 1918 году, когда Бор создал так называемый принцип соответствия, который связал квантовую и классическую физику. Этот принцип стал одним из главных методологических законов современной науки, послужил базой для построения последовательной квантовой механики и именно поэтому считался одним из самых важных достижений Бора. Такое научное продвижение и привело физика к Нобелевской премии. У знаменитого физика, который до старости прожил со своей женой Маргарет в счастливом браке, было шестеро детей. Один из них, Оге Бор, пошёл по стопам отца и тоже занялся физикой. В 1975 году он, как и отец, получил за свой вклад в науку Нобелевскую премию. Поводом для этого послужили его исследования в области ядерной физики. В годы Второй мировой войны Бор вместе со своим сыном бежал из Дании в Англию. Физик знал, что его готовятся арестовать, поскольку он был наполовину евреем. Из Англии он перелетел в США и там принял участие в создании атомной бомбы, внеся в этот проект огромный вклад.
Нильс Бор: гений, который не боялся называть себя дураком
Нильс Хе́нрик Дави́д Бор — датский физик-теоретик и общественный деятель, один из создателей квантовой механики. Лауреат Нобелевской премии по физике (1922). директора института академика Петра Леонидовича Капицы - проходит в конференц-зал и поднимается на сцену. К концу 1930-х ученые из многих стран мира, включая Нильса Бора, Энрико Ферми, Ирен Кюри и ее мужа Фредерика Жолио, находились на пороге эпохального достижения, но первыми все равно стали немцы.
Исследования
- Нейтрино доносят до нас сообщения о том, что происходит в глубинах космоса
- Нильс Бор - биография
- 1. Система Коперникум
- Нильс Бор - биография и открытия ученого физика
7 интересных фактов из биографии Нильса Бора
В 1943 году Нильс Бор с семьей эвакуировался сперва в Великобританию, а затем в США, где работал над созданием ядерной бомбы. Нильс Бор начал с открытий, сделанных Резерфордом, и продолжал развивать их, пока не смог наложить на них свой отпечаток. Они помогают клетке двигаться к бактериям и в то же время действуют как сенсорные щупальца, которые определяют бактерию как добычу”, — говорит Мартин Бендикс, руководитель лаборатории экспериментальной биофизики Института Нильса Бора.
Краткая информация
- Откройте свой Мир!
- Курсы валюты:
- Нильс Бор (7 октября 1885 - 18 ноября 1962) , датский ученый, физик, Нобелевский лауреат
- Нильс Бор: деятельность физика – лауреата нобелевской премии
100 лет атому Бора, отмеченные на родине знаменитой теории
Нильс Хе́нрик Дави́д Бор — датский физик-теоретик и общественный деятель, один из создателей квантовой механики. Лауреат Нобелевской премии по физике (1922). Его главное физическое открытие — догадка о квантовании действия в атомах, модель атома Бора (1912). Нильс Бор прожил 77 лет и умер от сердечного приступа в 1962 году. Нильс Хенрик Давид Бор был датским физиком, который внес основополагающий вклад в понимание атомной структуры и квантовой теории, за что получил Нобелевскую премию по физике в 1922 году.
100 лет атому Бора, отмеченные на родине знаменитой теории
А далее Бор затронул и этический аспект: «Необходимо осознать, что существует отношение дополнительности между критическим анализом вероучительного содержания той или иной религии и поведением, предпосылкой которого является решительное принятие духовной структуры данной религии. Такое сознательно принятое решение придает индивиду силу, которая руководит его поступками, помогает преодолеть моменты неуверенности, а когда ему приходится страдать, дарит ему утешение, порождаемое чувством укрытости внутри великого миропорядка. Таким путем религия помогает гармонизации жизни в обществе, и в число ее важнейших задач входит напоминание о великом миропорядке на языке образов и символов. Но в отличие от Канта, Бор предпочитал о Боге молчать. В том же самом разговоре с Гейзенбергом, Бор упоминает Витгенштейна, с его знаменитой заповедью молчать, если нельзя сказать ясно: «представляется замечательным, как бескомпромиссно Поль Дирак относится к вещам, допускающим ясное выражение на логическом языке; то, что вообще может быть сказано, считает он, может быть также и ясно сказано, а о чем нельзя говорить, о том, по выражению Витгенштейна, нужно молчать. Так что представляется разумным понять боровскую отсылку к Витгенштейну как пояснение позиции самого Бора — позиции апофатического молчания. Эта гипотеза представляется согласующейся со всем тем, что о Боре известно. Она весьма органична сочетанию двух дополнительных качеств великого физика: неустанного, вдохновляющего стремления к полной ясности и, в то же время, глубокого понимания недостижимости последних истин о «вещах в себе». Как писал Бор, «Наша задача — не проникать в суть вещей, смысла которых мы не знаем в любом случае, а разрабатывать концепции, которые позволят нам продуктивно рассуждать о явлениях природы». Переход на язык теологии и мистики мог казаться Бору чем-то недопустимым из-за неизбежной профанации непостижимого, о котором потому и следует молчать. Любой же разговор о познаваемости вселенной на этот неприемлемый язык и выводил.
Но еще Плотин определял философию как разговор о самом главном, чем она и была с древнейших времен. Если же о самом главном можно только молчать, то как оно вообще может быть удержано? Где нельзя говорить, где теряется логос, свет поглощается тьмой. Почему погружающийся во тьму алтарь не опустеет, не заполнится бессмысленностью или не окажется захваченным идолами, из тех, что побойчее? Таких вопросов Бор не ставил.
Задачей «Эпсилона» было определить, насколько близко немцы подобрались к созданию атомной бомбы.
Для обеих сторон результат оказался удивительным. Американцы поняли, что никакой угрозы нацистского ядерного гриба и близко не существовало, а Гейзенберг с коллегами были буквально шокированы бомбардировками Хиросимы и Нагасаки. Они были уверены, что опережают конкурентов, и даже представить себе не могли, насколько на самом деле в США ушли вперед. Поместье Фарм-Холл. Почему Гитлер не получил ядерной бомбы Вопрос, реально ли было создание Третьим рейхом атомного оружия, волнует не только любителей альтернативной истории Второй мировой войны. Действительно, еще в начале 1940-х нацисты опережали своих противников.
Возможно, при определенных обстоятельствах например, если бы Гитлер не ввязался бы в войну с Советским Союзом Германия смогла бы с помощью концентрации ресурсов всей Европы, лежащей у ее ног, в течение нескольких лет подойти к созданию ядерной бомбы. Другой вопрос, насколько реальным был продолжительный мир с СССР и сколь трезво оценивали потенциал «уранового проекта» в высшем руководстве Третьего рейха. В конце концов, среди историков, изучавших проблему, сложилось три точки зрения на причины немецкого атомного провала. Послевоенные статьи и выступления Вернера Гейзенберга и его соратников настойчиво проталкивали мысль о пассивном саботаже учеными своей работы. Мол, германские физики понимали, чем грозит их успех человечеству, поэтому сознательно тормозили свою работу. В общем-то, в такой позиции ничего удивительного нет.
Многие из непосредственных участников создания ядерного оружия в США или в СССР после Хиросимы и Нагасаки, холодной войны, «Карибского кризиса» стали убежденными противниками своих разработок и жалели о своем в них участии. Даже Эйнштейн переживал о том письме 1939 года Рузвельту, во многом инициировавшем включение США в атомную гонку: «Мое участие в создании ядерной бомбы состояло в одном-единственном поступке. Я подписал письмо президенту Рузвельту, в котором подчеркивал необходимость проведения в крупных масштабах экспериментов по изучению возможности создания ядерной бомбы. Я полностью отдавал себе отчет в том, какую опасность для человечества означает успех этого мероприятия. Однако вероятность того, что над той же самой проблемой с надеждой на успех могла работать и нацистская Германия, заставила меня решиться на этот шаг. Я не имел другого выбора, хотя я всегда был убежденным пацифистом».
Американские солдаты на немецком ядерном реакторе. Другая группа экспертов уверена, что неудачи нацистов были вызваны некомпетентностью немцев, изгнанием из рейха ученых-евреев, выбором в качестве замедлителя реакции тяжелой воды, а не графита, другими научными ошибками, в основе которых лежит принципиальная невозможность успешного творчества ученого в условиях тоталитаризма. Определенное рациональное зерно есть и в таком мнении. Гейзенберг и его команда, другие исследовательские группы, работавшие параллельно, действительно немало ошибались, но в этом и заключается экспериментальная наука. А аргумент про влияние степени тоталитарности режима на успешность решения поставленных научных задач и вовсе не выдерживает критики, как показывает уже опыт XXI века в Северной Корее. Вернер Гейзенберг и Нильс Бор.
Наиболее вероятной является третья причина. Третий рейх просто не мог себе позволить ядерное оружие. Крайнее напряжение немецкой экономики, особенно после начала войны на Восточном фронте, недостаток ресурсов, а со временем и концентрация их остатков на эфемерном, но казавшемся более эффективным «оружии возмездия», чудесном «вундерваффе», которое сможет в последний момент переломить ход войны, не оставили проекту Гейзенберга ни малейшего шанса. Нацисты, фюрер, увлекавшие публику, а с ней и самих себя фантазиями о чудо-оружии, баллистических ракетах Фау-2, межконтинентальных бомбардировщиках, реактивных самолетах и прочих разработках, в которых они действительно были пионерами, не поняли одного.
Астафьев Почему таблица называется периодической Суть открытия Менделеева в том, что с ростом атомной массы химические свойства элементов меняются не монотонно, а периодически. После определенного количества разных по свойствам элементов свойства начинают повторяться. Так, калий похож на натрий, фтор — на хлор, а золото схоже с серебром и медью. Появление новых элементов в таблице Менделеева Пользуясь периодической системой, Менделеев также предсказал открытие нескольких новых химических элементов и описал их химические и физические свойства. В дальнейшем расчеты ученого полностью подтвердились: галлий открыт в 1875 году , скандий открыт в 1879 году и германий открыт в 1885 году поразительно точно соответствовали тем свойствам, которые описал Менделеев. Затем прогнозы гениального химика продолжили реализовываться и были открыты еще восемь новых элементов, среди которых: полоний 1898 год , рений 1925 год , технеций 1937 год , франций 1939 год и астат 1942—1943 годы.
Кстати, в 1900 году Дмитрий Менделеев и шотландский химик Уильям Рамзай пришли к мнению, что в таблицу должны быть включены и элементы нулевой группы — до 1962 года они назывались инертными, а после — благородными газами. На сегодняшний день в Периодической системе химических элементов — 118 элементов. Последний, самый тяжелый из известных, — оганесон Og , названный так в честь своего первооткрывателя Юрия Цолаковича Оганесяна. Научный руководитель лаборатории ядерных реакций имени Г. Флерова Объединенного института ядерных исследований в Дубне стал четвертым в истории ученым, при жизни которого его именем был назван химический элемент. Менделеева расположены по рядам в соответствии с возрастанием их массы, а длина рядов подобрана так, чтобы находящиеся в них элементы имели схожие свойства. Например, благородные газы, такие как радон, ксенон, криптон, аргон, неон и гелий, с трудом вступают в реакции с другими элементами, а также имеют низкую химическую активность, из-за чего расположены в крайнем правом столбце. А элементы левого столбца калий, натрий, литий и т. Говоря проще, внутри каждого столбца элементы имеют подобные свойства, варьирующиеся при переходе от одного столбца к другому. В своем первоначальном варианте периодическая система понималась только как отражение существующего в природе порядка, и никаких объяснений, почему все должно обстоять именно так, не было.
И лишь когда появилась квантовая механика, истинный смысл порядка элементов в таблице стал понятен. Это произошло, когда доктор Алан Айткен наводил порядок в кладовке химического факультета.
Это представляет собой больше лестницу, чем склон: электроны могут находиться только на ступенях и никогда в их промежутках. Позже формулировки этой парадигмы Бор получил спектр атома водорода. Здесь каждой линии частоты испускаемого света соответствовал переход электрона с одной орбиты на другую, меньшую. Фактически Бор открыл закон квантования энергии. Автограф Нильса Бора. Он ввел в структуру атома постоянную Планка и сформулировал принцип соответствия. Мы не будем описывать и формулировать этот принцип, но заметим, что он связал классическую физику с новыми квантовыми явлениями.
Но уже в середине 1920-х годов эта связь была прервана. Произошел драматический поворот, который изменил сами представления о том, что такое физика. По стопам Бора уже шли молодые физики. Это выразилось в создании под руководством Н. Бора Копенгагенской школы физики.