Новости термоядерная физика

На фото: физик-теоретик, участник Манхэттенского проекта от Великобритании, передавший сведения о ядерном оружии Советскому Союзу, Клаус Фукс. Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии. К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся. Хорошие новости продолжают поступать в области исследований ядерного синтеза.

Цитаты о СНГ

  • Прорыв в термоядерном синтезе
  • О настоящем и будущем термоядерной энергетики
  • Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии
  • Российские физики рассказали о приручении термоядерного синтеза
  • Подписка на дайджест
  • Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды - Телеканал "Наука"

Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя

Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии. Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора – с проектом ИТЭР. Американцы совершили прорыв в изучении термоядерной энергии. К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся. Пара слов о физике плазмы: на волне Волна боянов, Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост.

Вестник РАН, 2021, T. 91, № 5, стр. 470-478

Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии. Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез. Ученые развивали идею термоядерного синтеза с инерционным удержанием в лаборатории в течение почти 60 лет, пока впервые достигли успеха. Зачем на самом деле строится самый большой термоядерный реактор. Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию. Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии.

Лазерный пресс

  • Физики США вторично добились положительного термоядерного синтеза
  • Ракетчики начали строить термоядерный двигатель
  • Курсы валюты:
  • #термоядерный синтез
  • ЗА ЧТО БОРЕМСЯ

Прорыв в термоядерном синтезе

В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы. познакомьтесь с новейшими разработками, впечатляющими функциями и глубоким анализом ядерной физики. Учёные из США впервые сгенерировали больше энергии в ходе реакции управляемого термоядерного синтеза, чем потребляет топливная капсула, в которой запускается слияние.

Искусственное солнце: как первый в мире термоядерный реактор изменит мир

Физики из Helion Energy разогрели плазму до 100 млн градусов — температура, считающаяся оптимальной для термоядерной реакции. Европейский токамак обновил рекорд по количеству полученной в ходе термоядерной реакции энергии. Эксперимент, в ходе которого был преодолен порог термоядерного синтеза, проводили на установке National Ignition Facility (NIF). познакомьтесь с новейшими разработками, впечатляющими функциями и глубоким анализом ядерной физики.

Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить

Поэтому его на сайте ITER ещё шутливо называют «ashtray» пепельница. Если не удалять пыль из зоны горения, она попадёт в плазменный шнур, разогреется, и тоже начнёт излучать. Это вызовет в свою очередь, перегрев горячей стенки, её повышенный износ испарение и радиационное распыление и образование новых порций пыли. Дивертор ITER состоит из пяти мишеней с щелями между ними.

Металлическая пыль скатывается с пологих поверхностей мишеней и попадает в щели. Оттуда ей очень трудно вновь попасть в плазменный шнур. Дивертор выполнен из 54 кассет [25] , общим весом 700 т.

Корпус кассеты — высокопрочная нержавеющая сталь. По мере износа кассеты будут демонтироваться, и на их место устанавливаться другие. Мало какой материал способен длительно срок службы токамака 20 лет выдерживать такой нагрев.

На начальных стадиях проектирования токамака планировалось выполнить мишени из углеродного композита, армированного углеродным волокном англ. Система охлаждения дивертора будет работать в околокипящем режиме. Суть этого режима такова: теплоноситель дистиллированная вода начинает закипать, но ещё не кипит.

Микроскопические пузырьки пара способствуют интенсивной конвекции, поэтому этот режим позволяет отводить от нагретых деталей наибольшее количество тепла. Однако есть и опасность — если теплоноситель всё-таки закипит, пузырьки пара увеличатся в размерах, резко снизив теплоотвод. Для контроля за состоянием теплоносителя на ITER установлены акустические датчики.

По шуму, который создают пузырьки в трубопроводах, будет оцениваться режим, в котором находится теплоноситель. Системы нагрева плазмы[ править править код ] Для того, чтобы ядра трития вступили в реакцию слияния с ядрами дейтерия, они должны преодолеть взаимное электростатическое отталкивание — кулоновский барьер. При такой высокой температуре кинетическая энергия ядер становится достаточной, чтобы кулоновский барьер был преодолён и термоядерная реакция «зажглась».

После зажигания термоядерной реакции предполагается, что можно будет выключить внешние нагреватели плазмы или снизить их мощность. Ожидается, что термоядерная реакция станет самоподдерживающейся. Кроме того, можно задействовать для нагрева плазмы еще и центральный соленоид.

Поднимая напряжение в соленоиде от нуля до 30 кВ, можно индуцировать в короткозамкнутом плазменном витке электрический ток. За счет омического нагрева выделяется дополнительное тепло. Такой способ нагрева называется индукционным.

Electron Cyclotron Resonance Heating разогревает электроны плазменного шнура, а также используется для отвода тепла в определённых местах в плазме в качестве механизма минимизации нарастания определённых неустойчивостей, приводящих к охлаждению плазмы. Она выполняет роль «стартера» плазмы в начале выстрела, разогревая нейтральный газ, заполняющий вакуумную камеру. В качестве источников энергии применены гиротроны , каждый мощностью 1 МВт, рабочей частотой 170 ГГц и длительностью импульса более 500 с.

Всего гиротронов 24.

Главред RT уверена, что однажды мы можем проснуться и услышать обращение президента, который «назовет вещи своими именами». И только после этого Маргарита Симоньян начала рассуждать о термоядерном взрыве, как обо «всех вытекающих» сейчас происходящего. Приводим дословную расшифровку речи телеведущей именно об этом.

Она вспомнила слова Владимира Жириновского о том, что удар нужно нанести по Вашингтону: — По Вашингтону долбить не придется. Мне один умный человек рассказал то, о чем я никогда не догадывалась и не знала. Я же не разбираюсь в этом во всем, я же не военный эксперт. Я, знаете, дура-баба, в футболе ничего не понимаю.

И вот человек, инженер-радиоэлектроник, говорит мне: «Мы еще знали в советское время, что если произвести в сотнях километров на нашей же территории, где-нибудь над Сибирью, термоядерный взрыв, например ядерный взрыв, то ничего не будет на Земле. Ничего такого страшного. Ни ядерной зимы, которую все боятся. Ни чудовищной радиации, которая убьет всех вокруг, а кого не убьет, то те умрут в течение десяти лет от онкологии.

Этого ничего не будет. А что будет — так это будет выведена из строя вся радиоэлектроника». Вся цифра, все спутники. Вот эта камера, на которую меня сейчас снимают, вот этот телефон, который рядом со мной лежит.

Мы вернемся с вами в год этак какой-нибудь 93-й. Проводные телефоны. Двушечка или не двушечка, я не помню, в телефоне-автомате. Я вам скажу: чудесно же жили.

Вот право. Я даже обрадуюсь. Как минимум мне не придется объяснять своим детям, почему у всех есть гаджеты, а у них нет.

Ее много выделяется за очень короткое время.

Конкретно эта технология в плане эксперимента наверняка интересная, но в практическом и энергетическом плане с этим намного сложнее. Если говорить в целом о термояде, это, конечно, десятки лет. Но есть грустная шутка: термоядерный синтез — это технология, до которой всегда 30 лет. Всегда говорят: «Через 30 лет».

И так с 1960-х говорят. Так что я продолжу традицию и скажу, что где-то через 30 лет будет». Хотя троекратный успех LLNL заслуженно называют прорывом, дьявол кроется в деталях. Тем не менее Вашингтон ставит деньги на прогресс технологии — пусть не гигантские, но существенные.

Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые, и выделяя огромное количество энергии по пути. На Солнце этот процесс приводится в действие силой гравитации. Одно из построенных решений представлено ИТЭР, ранее известным как Международный термоядерный экспериментальный реактор, который строится с 2010 года в Карадаше, Франция.

Выбор сделан - токамак плюс

Эра термоядерного синтеза Меня уже несколько раз просили подробнее рассказать о термоядерном синтезе, термоядерных реакциях и вот этом вот всём.
О настоящем и будущем термоядерной энергетики В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы.
Международный экспериментальный термоядерный реактор — Википедия Физики из Университета Осаки продемонстрировали реакцию холодного ядерного синтеза, сообщает ресурс New Energy Times.
Ученые в США провели третий успешный эксперимент с ядерным синтезом Глеб Курскиев рассказал ПРОСТО о том, что такое термоядерный синтез и почему он так важен!
Российские физики рассказали о приручении термоядерного синтеза На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз.

Вестник РАН, 2021, T. 91, № 5, стр. 470-478

Стоимость токамака ИТЭР оценивается в 20 миллиардов евро. Ни одно государство не может позволить себе запустить подобный проект самостоятельно, поэтому страны объединяют свои силы. Вид с воздуха на установку ИТЭР — международную исследовательскую площадку для изучения свойств плазмы при реализации термоядерного синтеза Вклад стран-участников не денежный, а технический. Практически у каждой из 35 стран есть собственные термоядерные мини-установки. Работа разделена по секторам будущего реактора, каждая из держав производит свою часть оборудования. Россия — один из главных участников: у наших ученых многолетний опыт использования токамаков. ИТЭР будет весить 23 тысячи тонн некоторые детали столь тяжелы, что пришлось усиливать дороги, ведущие к реактору , а по высоте, более 70 метров, он обгонит Спасскую башню. Объем плазмы, который надеются получить ученые, — 40 кубометров. Температура в мега-реакторе достигнет головокружительной отметки в 150 миллионов градусов.

Чтобы добыть достаточное количество плазмы, магнитное поле в токамаке должно быть в 200 тысяч раз больше земного! Огромные сверхпроводящие магниты будут охлаждаться до экстремальной отметки в минус 269 градусов Цельсия. Завершить строительство ИТЭР планируют к концу 2025 года, тогда же ученые надеются получить первую плазму. Но запуск реактора не откроет эру управляемого термояда. ИТЭР — это прежде всего экспериментальная установка, призванная доказать, что человечество в принципе способно получать термоядерную энергию в промышленном масштабе. Одна из необходимых особенностей современных токамаков — гигантские размеры. Чем меньше реактор, тем больше плазмы выделяется в процессе диффузии, и тем менее эффективно он работает. Поэтому о миниатюрных термоядерных реакторах в стиле костюма Железного Человека в ближайшем будущем мечтать не приходится.

Однако сократить размеры токамаков может помочь искусственный интеллект ИИ. В 2022 году разработали алгоритм, способный создавать и контролировать плазму. ИИ прошел тесты на настоящем токамаке, где он управлял термоядерным синтезом. Если магнитными полями и плазмой внутри реактора получится управлять более тонко, его габариты можно будет уменьшить и использовать как в промышленности, так и в космосе. Топливо для термояда, безопасность и перспективы управляемого синтеза У термоядерных реакторов мало общего с реакторами на атомных станциях. Если удержание плазмы прекратится, то она расширится и охладится, реакция остановится и не приведет к взрыву, хотя стенки термоядерного реактора разрушатся от взаимодействия с плазмой. В отличие от реакции деления, в процессе синтеза не образуются долгоживущие радиоактивные отходы.

Министерство энергетики объявило о «крупном научном прорыве, на достижение которого ушли десятки лет и который откроет путь к прогрессу в национальной безопасности и будущем чистой энергии». Через полгода ученые-ядерщики закрепили свой успех и подтвердили, что вновь достигли положительной по затратам энергии термоядерной реакции синтеза, хотя точных данных пока не огласили. Как сообщает Reuters, результаты будут обнародованы на пресс-конференции и опубликованы в научных журналах.

И все же о достижении экономически выгодного управляемого термоядерного синтеза пока говорить рано. Установка Национального комплекса зажигания использует метод инерционного синтеза, который заключается в облучении изотопов водорода лазерным пучком. Он создавался как сугубо научный, не имеющий реального коммерческого применения.

Их обновленный «Глобус» стал называться «Глобусом-М2». Конечно, это меньше, чем на большом торе у европейцев, но их показатели нельзя сравнивать из-за небольших размеров нашего «Глобуса», который имеет диаметр всего 36 сантиметров диаметр JET — около 3 метров.

На «Глобусе-М2» мы пытаемся проверить правильность выбора сферической формы для термоядерного реактора, понять, будет ли у него преимущество по удержанию плазмы, будет ли он превосходить классический тор по энергозатратам. Но у него будет ряд принципиальных отличий. Прежде всего из-за увеличенных размеров качественно изменятся параметры плазмы. Кроме того, будут впервые испытаны в таком масштабе сверхпроводящая магнитная система, новые системы дополнительного нагрева плазмы и многое другое. И есть подозрение, что у них это получится быстрее, чем у международного консорциума.

Кто в итоге выживет, это пока вопрос. Скорей всего, термоядерный реактор будет построен на базе классического токамака. Но для сферических токамаков может найтись своя ниша, а их коммерческое применение может начаться гораздо раньше. Гибридные технологии Как выяснилось, мало нашим физикам-ядерщикам сферической модернизации термоядерного реактора. Сейчас, по словам Минаева, в нашей стране параллельно запускается процесс разработки и создания гибридной электростанции, основанной на термоядерной и ядерной технологиях.

Это позволит эффективней удерживать плазму? Мы хотим за счет термоядерных технологий решить проблему с «замыканием» ядерного топливного цикла. Представляете, мы сможем нарабатывать искусственное топливо для атомных реакторов, получать в реакторе энергию, а после дожигать отработанное топливо до безопасного состояния, чего раньше никогда не было. До сих пор мы просто захоранивали ядерные отходы, накапливая их. В целом новая гибридная атомная станция будет значительно безопасней и экологичней.

Отсутствие большого количества опасных отходов также позволит повысить экспортный потенциал нашей атомной промышленности. Развивая эту технологию, мы оставим своим потомкам более чистую планету, без залежей ядерных отходов. Мы будем использовать термоядерный реактор как мощный источник нейтронов для получения ядерного топлива. При этом параметры плазмы в таком термоядерном источнике нейтронов могут быть существенно ниже, чем в чисто термоядерном энергетическом реакторе, а размеры — существенно меньше, чем у того же ИТЕРа. Следовательно, такой реактор-источник будет значительно дешевле.

Но самое главное: реализация гибридной концепции позволит существенно сократить время, требующееся для внедрения уже наработанных термоядерных технологий в коммерческий оборот. Существует еще и открытый тип реактора — зеркальные ловушки, или, образно говоря, «магнитные бутылки», имеющие на концах магнитные «пробки» или магнитные «зеркала». На концах такого реактора, возле «пробок», магнитное поле сильное, в центре — слабее. Частицы плазмы привязаны к силовым линиям магнитного поля и движутся от одной «пробки» к другой, каждый раз отражаясь от них. Конструкция такого реактора получается более простой, а значит, дешевой и легкой в сборке.

Будет вам АДА! Зря мы смеемся над маленькими украинскими воздушными шарами, долетевшими до Москвы и Тулы — это страшное оружие Понятно, что в журнале никаких инструкций по сбору бомбы и быть не могло. Просто издание решилось опубликовать рассекреченные документы полувековой давности, представлявшие собой отчёты советских агентов, которые работали в американском ядерном центре в Лос-Аламосе, с подробнейшим описанием всех американских наработок. На документах стояли резолюции Сталина , Берии, других ответственных товарищей. Особенно испугало мнение руководителя нашего атомного проекта Игоря Курчатова: он написал, что без наших разведчиков мы никогда не создали бы атомного оружия.

В плеяде учёных, ставших советскими разведчиками, особое место занимает Клаус Фукс, чьей гениальностью восхищались Роберт Оппенгеймер и Энрико Ферми. Его отец Эмиль был лютеранским священником, приверженцем христианского социализма, а с 1912 года — членом Социалистической партии Германии. В 1930—1931 годах Клаус учился в Лейпцигском университете, где вступил в Социал-демократическую партию. В 1932 году он стал членом Компартии Германии. После прихода к власти нацистов в январе 1933 года Фукс перешёл на нелегальное положение, а в июле того же года бежал во Францию, откуда перебрался в Великобританию.

Работал аспирантом в лаборатории физика Невилла Мотта в Бристольском университете, где в декабре 1936 года получил степень доктора философии по физике. С 1937 года по рекомендации Мотта работал в лаборатории Макса Борна в Эдинбургском университете, в соавторстве с Борном написал ряд научных статей. После начала Второй мировой войны, в апреле 1940 года, Фукс был интернирован как гражданин враждебной державы и провёл полгода в лагере на острове Мэн, а затем в Канаде. После ходатайств ряда учёных в декабре 1940 года был освобождён и вернулся в Англию. В 1940 году Фукса включили в группу Рудольфа Пайерлса, работавшую в Бирмингемском университете над уточнением критической массы урана и проблемой разделения изотопов в рамках британского ядерного проекта.

В 1942 году Клаус получил британское гражданство. Тогда же ему было поручено наблюдение за работами по германскому атомному проекту, для чего он получил доступ к совершенно секретным материалам «Интеллидженс сервис».

Искусственное солнце: как первый в мире термоядерный реактор изменит мир

Академик В.П. Смирнов: термояд — голубая мечта человечества Физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии, чем потребил.
Термоядерный запуск. Как Мишустин нажал на большую красную кнопку | Аргументы и Факты Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба".

Искусственное солнце: как первый в мире термоядерный реактор изменит мир

Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора – с проектом ИТЭР. Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. На фото: физик-теоретик, участник Манхэттенского проекта от Великобритании, передавший сведения о ядерном оружии Советскому Союзу, Клаус Фукс. Для исследования лазерного термоядерного синтеза разработаны мишени прямого и непрямого облучения. Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии. Глеб Курскиев рассказал ПРОСТО о том, что такое термоядерный синтез и почему он так важен!

Похожие новости:

Оцените статью
Добавить комментарий