Примерами незатухающих колебаний являются осцилляции маятника, электромагнитные колебания в контуре, а также световые волны, распространяющиеся в оптических волокнах. Другим примером незатухающих колебаний является электромагнитные колебания, которые возникают в радиочастотных колебательных контурах. Приведи пример вариантов незатухающих колебаний Просмотров 43 Незатухающие колебания — это физический процесс, при котором система продолжает колебаться без потери энергии. Уравнение незатухающих колебаний Незатухающие колебания являются одним из видов колебаний, при которых отсутствует потеря энергии со временем.
Затухающие и незатухающие колебания: разница и сравнение
Свободные незатухающие колебания: понятие, описание, примеры | О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. |
Свободные незатухающие колебания | Другим примером незатухающих колебаний являются электромагнитные колебания в контуре с постоянными параметрами. |
Приведи пример вариантов незатухающих колебаний
На рис. Груз висит на пружине, нижний конец которой погружается при колебаниях этого пружинного маятника в чашечку со ртутью. Один полюс батареи присоединен к пружине наверху, а другой — к чашечке со ртутью. При опускании груза электрическая цепь замыкается и по пружине проходит ток.
Витки пружины благодаря магнитному полю тока начинают при этом притягиваться друг к другу, пружина сжимается, и груз получает толчок кверху. Тогда контакт разрывается, витки перестают стягиваться, груз опять опускается вниз, и весь процесс повторяется снова. Таким образом, колебание пружинного маятника, которое само по себе затухало бы, поддерживается периодическими толчками, обусловленными самим колебанием маятника.
При каждом толчке батарея отдает порцию энергии, часть которой идет на подъем груза. Система сама управляет действующей на нее силой и регулирует поступление энергии из источника — батареи. Колебания не затухают именно потому, что за каждый период от батареи отбирается как раз столько энергии, сколько расходуется за то же время на трение и другие потери.
Что же касается периода этих незатухающих колебаний, то он практически совпадает с периодом собственных колебаний груза на пружине, т. Автоколебания груза на пружине Подобным же образом возникают незатухающие колебания молоточка в электрическом звонке, с той лишь разницей, что в нем периодические толчки создаются отдельным электромагнитом, притягивающим якорек, укрепленный на молоточке. Аналогичным путем можно получить автоколебания со звуковыми частотами, например возбудить незатухающие колебания камертона рис.
Под затуханием свободных колебаний принято понимать плавное снижение амплитуды колебаний с течением времени. Главная причина состоит в потере энергии колебательной системой. Условия возникновения свободных колебаний Чтобы возникли свободные колебания, необходимо вывести систему из равновесия, обеспечить при отклонениях действие силы, стремящейся вернуть систему в исходное состояние.
При этом потери в системе должны быть минимальны, поскольку только при соблюдении этого условия возвращающая систему в состояние равновесия энергия будет теряться медленно. Свободные колебания — это раскачивающийся маятник, часовой балансир, скачущий мяч, звенящая струна. В зависимости от того, полезны или вредны колебания, для их усиления или ослабления принимают соответствующие меры.
Так, в случае с часовым маятником снижают потери, а с деталями и агрегатами механизмов и устройств используют специальные элементы — демпферы и амортизаторы. Причины колебаний в разных системах Собственные незатухающие колебания — это, скорее, теоретическое явление.
Когда маятник отклоняется от своего равновесного положения и отпускается, он начинает колебаться вокруг этого положения. В идеальных условиях, без учета сопротивления воздуха и трений, колебания маятника будут незатухающими. Еще одним примером незатухающих колебаний является колебательный контур.
Колебательный контур состоит из индуктивности, емкости и сопротивления. Когда энергия подается в такой контур, например, при подключении источника переменного тока, происходят колебания заряда и тока в контуре. В идеальном случае, без учета потери энергии на сопротивлении, колебания будут незатухающими. Еще одним примером незатухающих колебаний является свободное колебание механической системы с одной степенью свободы. Такая система может представлять собой маятник, пружинный маятник или массу на наклонной плоскости.
Как получают такие колебания? Мы знаем, что вынужденные колебания, при которых потери энергии восполняются работой периодической внешней силы, являются незатухающими. Но откуда взять внешнюю периодическую силу?
Ведь она в свою очередь требует источника каких-то незатухающих колебаний. Незатухающие колебания создаются такими устройствами, которые сами могут поддерживать свои колебания за счет некоторого постоянного источника энергии. Такие устройства называются автоколебательными системами.
На рис. Груз висит на пружине, нижний конец которой погружается при колебаниях этого пружинного маятника в чашечку со ртутью. Один полюс батареи присоединен к пружине наверху, а другой — к чашечке со ртутью.
При опускании груза электрическая цепь замыкается и по пружине проходит ток. Витки пружины благодаря магнитному полю тока начинают при этом притягиваться друг к другу, пружина сжимается, и груз получает толчок кверху. Тогда контакт разрывается, витки перестают стягиваться, груз опять опускается вниз, и весь процесс повторяется снова.
Таким образом, колебание пружинного маятника, которое само по себе затухало бы, поддерживается периодическими толчками, обусловленными самим колебанием маятника.
Ликбез: почему периодические колебания затухают
Свободные незатухающие колебания: понятие, описание, примеры | ударь по своему стоячему члену, вот пример колебаний которые затухают. |
Механические колебания | теория по физике 🧲 колебания и волны | Примерами незатухающих колебаний являются осцилляции маятника, электромагнитные колебания в контуре, а также световые волны, распространяющиеся в оптических волокнах. |
Явление резонанса — условия, формулы, график | Другим примером незатухающих колебаний являются электромагнитные колебания в контуре с постоянными параметрами. |
Ликбез: почему периодические колебания затухают | Затухающие колебания — это колебания, амплитуда которых со временем уменьшается из-за внешней силы или трения, в то время как незатухающие колебания продолжаются неопределенно долго с постоянной амплитудой. |
Гармонические колебания и их характеристики.
Примеры незатухающих колебаний в природе 1. Плазменные колебания: В плазме, которая является четвертым состоянием вещества, происходят незатухающие колебания. Еще одним примером незатухающих колебаний является свободное колебание механической системы с одной степенью свободы. Примеры автоколебаний Незатухающие колебания маятника часов за счёт постоянного действия тяжести заводной гири; Колебания скрипичной струны под воздействием равномерно движущегося смычка.
§ 30. Незатухающие колебания. Автоколебательные системы
Явление резонанса | Ясно, что именно второе слагаемое не дает получить желанное уравнение незатухающих колебаний. |
Незатухающие колебания. Автоколебания | Рассмотрим динамику собственных незатухающих колебаний пружинного маятника. |
2.5. Вынужденные колебания. Резонанс. Автоколебания | Свободные незатухающие колебания или собственные характерны для идеальной системы, где отсутствует трение. |
Свободные незатухающие колебания
Еще одним примером незатухающих колебаний является свободное колебание механической системы с одной степенью свободы. Примеры незатухающих колебаний в природе 1. Плазменные колебания: В плазме, которая является четвертым состоянием вещества, происходят незатухающие колебания. Примеры незатухающих колебаний Незатухающие колебания — это колебания системы, которые продолжаются вечно без потери энергии.
Основные сведения о затухающих колебаниях в физике
Режим установившихся автоколебаний характеризуется устойчивостью. При любых отклонениях амплитуды как под действием случайных, так и преднамеренных причин реакция системы такова, что амплитуда возвращается к своему установившемуся значению. Подтолкнем маятник настенных часов, чтобы размах его колебаний стал больше. Вы увидите, что буквально через несколько колебаний амплитуда станет такой же, как и прежде. Устойчивость режима установившихся автоколебаний легко понять из энергетических соображений, учитывая, что должен обеспечиваться баланс поступающей от пружины и рассеиваемой энергии за период колебаний. Если амплитуда колебаний вдруг станет больше, то возрастут и потери энергии за период, превысив поступление энергии. И наоборот, уменьшение амплитуды от установившегося значения приводит к превышению поступающей энергии над потерями на трение. Амплитуда начнет увеличиваться. Предельный цикл. Устойчивость установившихся автоколебаний можно понять, рассматривая процесс выхода системы на предельный цикл, которому соответствует замкнутая фазовая траектория на рис.
Если, например, отклонить осциллятор автоколебательной системы на небольшой угол и отпустить без начального толчка, выход фазовой траектории на предельный цикл будет происходить так, как показано на рис. Фазовая траектория постепенно приближается к предельному циклу изнутри. Выход фазовой траектории на предельный цикл, соответствующий установившимся автоколебаниям Напротив, если начальное отклонение превышает значение установившейся амплитуды, фазовая траектория приближается к предельному циклу извне рис. Электромагнитные автоколебания. Действие генератора незатухающих электромагнитных колебаний аналогично рассмотренному механическому примеру автоколебательной системы. Схема такого генератора на транзисторе с колебательным контуром в цепи коллектора показана на рис. Роль заводной пружины, пополняющей энергию колебаний, играет постоянный источник энергии — батарея. Колебательный контур управляет этим источником через цепь обратной связи, содержащую индуктивно связанную с ним катушку включенную в цепь эмиттера. Транзистор здесь играет роль вентиля, открывающего доступ энергии батареи в колебательный контур.
Управление этим вентилем осуществляется подаваемым с катушки напряжением к переходу эмиттер—база. Благодаря этому отпирание транзистора происходит в нужные моменты времени, чтобы импульс тока от батареи пополнял энергию колебаний, компенсируя потери на сопротивлении катушки и проводов. Генератор незатухающих электромагнитных колебаний на транзисторе Параметрический резонанс.
Дальнейшие исследования незатухающих колебаний позволят расширить возможности науки и техники. Колебания в окружающем мире Незатухающие колебания широко распространены в природе, быту, технике. Давайте рассмотрим некоторые примеры: Колебания в живой природе. В организмах постоянно происходят колебательные процессы - пульс, дыхание, электрическая активность мозга. Ритмические сокращения сердечной мышцы обеспечивают кровообращение.
Вдохи и выдохи создают колебательные движения воздуха в легких. Звуковые колебания. Звук представляет собой упругие волны в воздухе, возникающие при колебаниях источника. Музыкальные инструменты. Струнные, духовые, ударные инструменты создают музыкальные звуки за счет колебаний. Звуки речи образуются колебаниями голосовых связок и резонаторов речевого аппарата. Бытовые колебательные процессы. Многие привычные вещи в быту работают за счет колебаний.
Маятник часов совершает строго периодические колебания. Мобильный телефон. Антенна телефона излучает и принимает радиоволны благодаря электромагнитным колебаниям. Колебания в технических устройствах. Незатухающие колебания лежат в основе работы многих технических систем. Генераторы колебаний. Генераторы создают электрические колебания с помощью резонаторов и усилителей. Кварцевые генераторы.
Кварцевые резонаторы обеспечивают высокую стабильность частоты благодаря пьезоэлектрическому эффекту.
Замыкание происходит теперь не при расхождении, а при сближении ножек, т. Легко видеть, что в этом случае камертон будет все время сжат непрерывно включенным электромагнитом, т. Электромеханические автоколебательные системы применяются в технике очень широко, но не менее распространенными и важными являются и чисто механические автоколебательные устройства.
Достаточно указать на любой часовой механизм. Незатухающие колебания маятника или балансира часов поддерживаются за счет потенциальной энергии поднятой гири или за счет упругой энергии заведенной пружины. На этом рисунке изображен так называемый анкерный ход. Колесо с косыми зубьями 1 ходовое колесо жестко скреплено с зубчатым барабаном, через который перекинута цепь с гирей 2.
К маятнику 3 приделана перекладина 4 анкер , на концах которой укреплены палетты 5 — пластинки, изогнутые по окружности с центром на оси маятника 6. Анкер не позволяет ходовому колесу свободно вращаться, а дает ему возможность провернуться только на один зуб за каждые полпериода маятника. Но и ходовое колесо действует при этом на маятник, а именно, пока зуб ходового колеса соприкасается с изогнутой поверхностью левой или правой палетты, маятник не получает толчка и только слегка тормозится из-за трения. Но в те моменты, когда зуб ходового колеса «чиркает» по торцу палетты, маятник получает толчок в направлении своего движения.
Таким образом, маятник совершает незатухающие колебания, потому что он сам в определенных своих положениях дает возможность ходовому колесу подтолкнуть себя в нужном направлении. Эти толчки и восполняют расход энергии на трение.
Таким образом, можно сказать, что везде, где есть потеря энергии, движение затухает, и, следовательно, колебания затухают.
Затухание колебаний вызывается рассеянием запасенной энергии, то есть постепенным уменьшением амплитуды колебаний. В обычных случаях почти все колебания либо более, либо менее затухают по амплитуде, что делает обязательной компенсацию энергии. Читайте также: Пестициды против удобрений: разница и сравнение Что такое незатухающие колебания?
Незатухающие колебания возникают, когда потери, возникающие в электрической системе, могут быть компенсированы, поэтому амплитуда колебаний, происходящих в это время, остается постоянной и неизменной. Проще говоря, его можно определить как незатухающие колебания, которые остаются неизменными во времени. Основным фактом незатухающих колебаний является отсутствие потерь мощности, если генератор издает такие колебания.
В отличие от затухающих колебаний, если производимые колебания не затухают, потери мощности не будет, и, следовательно, не будет необходимости компенсировать энергию или любые потери, вызванные ею. В то время как в затухающих колебаниях большая часть энергии требует компенсации из-за потери мощности.
§ 30. Незатухающие колебания. Автоколебательные системы
Примерами незатухающих колебаний могут служить колебания маятников в. Незатухающие колебания характеризуются постоянством и регулярностью амплитуды, частоты и фазы. Примерами незатухающих колебаний могут служить колебания маятника или звуковой волны, распространяющейся в открытом пространстве. Примеры незатухающих колебаний Незатухающие колебания широко применяются в различных областях науки и техники. Примером незатухающих колебаний может быть колебания маятника или электрическое колебание в резонансном контуре. Примером незатухающих колебаний может быть колебания маятника или электрическое колебание в резонансном контуре. Примером незатухающих колебаний может служить колебание маятника с нулевым затуханием.
Основные сведения о затухающих колебаниях в физике
Еще одним примером незатухающих колебаний является свободное колебание механической системы с одной степенью свободы. Примеры незатухающих колебаний Незатухающие колебания — это колебания системы, которые продолжаются вечно без потери энергии. Примеры применения: Электроника: Незатухающие колебания используются в радиоэлектронике для создания точных частотных генераторов. Незатухающие колебания создаются такими устройствами, которые сами могут поддерживать свои колебания за счет некоторого постоянного источника энергии. Автоколебания — незатухающие колебания, которые существуют за счет поступления энергии в систему под ее же управлением.