Новости применение искусственного интеллекта в медицине

Многие россияне опасаются применения ИИ в медицине. Крупная международная биотехнологическая компания Insilico Medicine объявила о том, что лекарство, которое открыл искусственный интеллект, впервые в мире успешно прошло первую фазу клинических испытаний. Искусственный интеллект в медицине: преображение здравоохранения в XXI веке. Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками.

Собянин: ИИ превратится в базовую медицинскую технологию в Москве

Эти приборы в итоге были одобрены, что позволило использовать их в борьбе с тяжёлыми патологиями и рядом иных острых заболеваний. Фактически, внедрение таких аппаратов ежедневно демонстрирует преимущества использования искусственного интеллекта в сфере здравоохранения, позволяя сокращать влияние человеческого фактора на диагностику и лечение, и, соответственно, снижать количество врачебных ошибок. А повышение уровня качества обслуживания в медицине влияет и на улучшение показателей здоровья населения всей нашей страны. Что, конечно же, особенно актуально в последние два года, когда идёт борьба с коронавирусом. Это стало очевидно уже в 2020 году, и касалось не только напрямую сферы медицины, но и смежных областей.

Стали очевидны такие проблемы, которые в обычной обстановке и со стандартной нагрузкой не так бросались в глаза. И в то же время пандемия стала наиболее эффективным стимулом для развития и внедрения инновационных методов решения различных задач. Разумеется, максимум внимания в исследовательской работе стало уделяться таким направлениям, которые целиком либо в какой-то мере были направлены на борьбу с пандемией, на снижение нагрузки врачей, на оптимизацию здравоохранения. И, конечно же, отдельно стоит упомянуть разработки, нацеленные на предиктивную аналитику и моделирование сценариев развития событий с учётом вероятности возникновения иных эпидемий.

Подготовка к таким событиям становится залогом успеха в борьбе с ними.

Необходимо вкладываться в эту сферу не только потому, что это престижное направление, и исследования по нему позволяют не отставать от уровня мирового здравоохранения. В первую очередь, ИИ нужен для оптимизации медицинской сферы нашей страны. Данную оптимизацию я вижу в снижении роли человеческого фактора в лечении пациентов, в разгрузке медперсонала от рутинной работы, в автоматизации и стандартизации определённых протоколов. У искусственного интеллекта обширная область применения. В качестве примера могу привести устройства, обеспечивающие автоматическую индивидуальную оптимизацию параметров электроимпульса с помощью биологической обратной связи. Я принимала определённое участие в разработке и продвижении этих устройств, чьё назначение заключается в воздействии на нервную, эндокринную, дыхательную и иммунную системы человека одновременно. Чтобы получить одобрение Минздрава РФ , пришлось подготовить убедительную аргументацию о необходимости данной разработки, обосновать для чиновников ценность таких устройств. Эти приборы в итоге были одобрены, что позволило использовать их в борьбе с тяжёлыми патологиями и рядом иных острых заболеваний. Фактически, внедрение таких аппаратов ежедневно демонстрирует преимущества использования искусственного интеллекта в сфере здравоохранения, позволяя сокращать влияние человеческого фактора на диагностику и лечение, и, соответственно, снижать количество врачебных ошибок.

А повышение уровня качества обслуживания в медицине влияет и на улучшение показателей здоровья населения всей нашей страны.

Для этого их нужно обезличить: в ходе этого процесса пациент получает код, а также убираются персональных данных ФИО, номер паспорта и т. При этом год рождения и диагноз, не обезличиваются. Разметка данных. После того, как данные прошли процедуру обезличивания, они передаются врачам на разметку. Прежде чем приступить к разметке данных, врачи определяют методологию, по которой они будут работать с разметкой. Они определяют диагноз, симптоматику, а также зоны и маркеры, с которыми они будут работать.

Только после этого врачи вручную размечают снимки. Сегодня разметка данных, как правило, происходит с помощью программ, где врач в специальном интерфейсе очерчивает необходимые зоны. Повторная разметка. После первичной разметки данных те же снимки проходят аналогичную процедуру, которую проводит уже другая группа врачей. На этом этапе отсеиваются сомнительные, спорные или неверные диагнозы, а также снимки, которые не могут быть валидированы в выбранной модели исследования. Обучение нейросети. Когда все снимки прошли разметку, этот набор данных попадает к разработчикам, которые на их основе начинают обучать нейронную сеть.

Даже если сервис достиг определённого уровня работоспособности, он не может быть сразу использован на практике. Прежде он проходит этап валидации: группе врачей и обученной нейросети выдаются новые данные, которые им предстоит разметить. После этого результаты, полученные врачами и нейросетью, сопоставляются между собой, и модель получает класс точности. Регистрация в Министерстве здравоохранения. По завершении этапа валидации прототип должен пройти регистрацию в Минздраве и получить регистрационное утверждение. На этом этапе экспертная группа — на этот раз со стороны Минздрава — вновь внимательно проверяет работу модели и её алгоритмов. Интеграция в систему здравоохранения.

Только если сервис пройдёт проверку в Минздраве и получит регистрационное утверждение, он может использоваться в медицинских учреждениях. Диагностика заболеваний Чат-боты уже могут с высокой эффективностью помогать пациентам самостоятельно ставить диагноз, а также помогать в постановке диагноза и врачам. Например, ИИ компании Babylon Health предоставляет соответствующую информацию о здоровье на основе симптомов, описанных самим пациентом. Понятно, что симптомы могут быть описаны неверно или пациент может попытаться ввести ИИ в заблуждение умышленно. Поэтому в компании прямо заявляют, что их компьютерный ассистент не ставит диагноз. Это сделано для того, чтобы свести к минимуму юридическую ответственность компании, но в будущем мы наверняка увидим, как чат-боты будут ставить диагнозы по мере повышения точности их работы. А на перспективы ИИ в Babylon Health смотрят оптимистично, заявляя, что они уже доказали эффективность своего ИИ в первичной медико-санитарной помощи, а также смогли создать такую систему искусственного интеллекта для медицины, которая не является «черным ящиком».

Это отличает их, например, от Alphabet, материнской компании Google, представители которой еще сравнительно недавно заявляли о том, что до сих пор не знают, что конкретно изучают их модели машинного обучения, о чём мы писали в статье, посвященной LLM. И пока сложно сказать, насколько они продвинулись в понимании алгоритмов работы своих программ глубокого обучения. А вот исследователи из Babylon Health продвинулись совершенно точно. Также современные ИИ решают проблемы приоритизации и медицинской сортировки. Рекомендации на основе глубокого анализа данных поступающих пациентов для обеспечения точной приоритизации и медицинской сортировки ИИ дает очень быстро в режиме реального времени. Наиболее известные решения для этих целей предлагает Enlitic. ИИ Enlitic Curie сканирует поступающих пациентов, обрабатывая множество клинических данных в том числе учитываются и старые диагностические карты и определяя приоритет на лечение, после чего сразу же направляет больных к наиболее подходящему врачу.

Трудно переоценить пользу этих алгоритмов, исключающих из анализа человеческий фактор, ведь после того как они будут усовершенствованы, они помогут спасти тысячи жизней. Стоит рассказать и о новом алгоритме ИИ, который поможет диагностировать рак легких. Много лет человечество проигрывало борьбу с онкологическими заболеваниями, которые ежегодно убивают около 10 миллионов человек по всему миру. Одной из самых страшных форм онкологии является рак легких, распознавание которого на ранних стадиях и до сих пор является для ученых сложнейшей задачей. Но весьма вероятно, что справиться с этим человеку поможет искусственный интеллект. Исследователи из Бостонского университета разработали ИИ, который долгое время обучался на полноформатных фотографиях легочных тканей пациентов размеры таких изображений составляют обычно более 1 Гб, что делает их анализ человеком крайне сложным. ИИ на примере фото обучали распознавать аденокарциному легкого, плоскоклеточный рак легкого и соседнюю не раковую ткань.

Результаты обучения оказались положительными: алгоритм смог продемонстрировать более высокую эффективность, чем другие современные методы распознавания патологий на полноформатных слайдах. На данный момент новый алгоритм планируется внедрить в помощь патологоанатомам, однако при успешном внедрении возможности ИИ могут быть расширены, ведь главное — научиться диагностировать опасные заболевания на самых ранних стадиях, пока сохраняются высокие шансы на полноценное излечение. Существуют и компании, специализирующиеся на разработке ИИ-продуктов для ранней диагностики различных заболеваний. Они позволяют анализировать хронические состояния, используя лабораторные и другие медицинские данные, чтобы выявлять опасные болезни как можно раньше. Так, программное обеспечение от Ezra использует ИИ при анализе МРТ-сканов всего тела, чтобы помочь специалистам в раннем выявлении рака. Их слоган говорит сам за себя: «Мы обнаружили самую большую слабость рака — раннее обнаружение». SkinVision — компания, занимающаяся диагностикой рака кожи на основе медицинской визуализации, то есть диагностикой по фото.

ИИ, разработанный командой SkinVision, позволяет обнаруживать рак кожи на ранней стадии по фотографиям, сделанным на телефон. Умные алгоритмы после исследования очередного фото просигнализируют о том, если с кожей что-то не так. Таким образом, пациент сможет вовремя обратиться в клинику за помощью.

В 2023 году в промышленности создали 51 новую модель машинного обучения, в то время как в академических целях были представлены только в 15. Модели Frontier становятся намного дороже. В 2023 году 61 известная ИИ-модель была создана американскими учреждениями, что намного превышает 21 модель Европейского союза и 15 моделей Китая.

Инвестиции в генеративный ИИ стремительно растут. Несмотря на снижение общих частных инвестиций в ИИ в прошлом году, финансирование генеративного ИИ резко выросло, увеличившись по сравнению с 2022 годом и достигнув 25,2 млрд долларов. ИИ повышает производительность труда сотрудников. В 2023 году в нескольких исследованиях оценивалось влияние ИИ на труд, и было высказано предположение, что ИИ позволяет работникам быстрее выполнять задачи и повышать качество своей продукции. Эти исследования также продемонстрировали потенциал ИИ для преодоления разрыва в навыках между низкоквалифицированными и высококвалифицированными работниками.

Искусственный интеллект в клинической медицине

В день медикам приходится расшифровывать более 150 снимков. При такой большой обработке данных, признаются, — это настоящее спасение. Особенность этой программы в том, что она распознает самые сложные медицинские термины, в том числе и латинскую лексику. То, что непонятно обычному человеку, машина узнает и прописывает без ошибок. Например, желчнокаменная болезнь, аневризма аорты, инфаркт миокарда, стенокардия напряжения второго функционального класса. Помогают врачам и ученые из ИТМО.

Они создали алгоритм, который может определить признаки инфаркта миокарда. Чтобы создать такой алгоритм, ученые обучили модель более чем на 20 тысячах записях ЭКГ. Вот она обратила внимание на эти изменения, и когда врач смотрит, и у него эта кардиограмма с подписью инфаркт, он смотрит на кардиограмму, эти отведения, и согласен с тем, что сделала нейросеть», — отметила доцент факультета инфокоммуникационных технологий ИТМО Александра Ватьян.

Ключевые слова: искусственный интеллект, машинное обучение, нейронная сеть. Рецензент: Гладских Наталья Александровна - Кандидат технических наук, ассистент кафедры медицинской информатики и статистики. ВГМУ им. Бурденко В современном мире информационные технологии затрагивают почти каждую сферу деятельности человека. И медицина тому не исключение.

Искусственный интеллект ИИ - основа новых информационных технологий. ИИ в лечении и диагностике Одной из главных задач ИИ в медицине является оптимизация диагностики и лечения. В настоящее время созданы и внедрены программы, способные обрабатывать данные жалоб пациентов, осмотра, лабораторных анализов и инструментальных обследований. Так для назначения оптимального лечения используется IBM Watson for oncology, помогающий врачам-онкологам в кратчайшие сроки подобрать терапию, основываясь на большой базе данных, загруженных для обучения ИИ: более 25 тысяч историй болезней, 300 медицинских журналов и 200 учебников. Программа, обрабатывая данные с помощью многочисленных источников, предлагает несколько вариантов терапии, из которых врач может выбрать наиболее подходящий, а также дополнить клиническую картину новыми данными, в зависимости от которых ИИ формирует новый алгоритм лечения. Human Diagnosis project - это программа, соединяющая в себе знания врачей со всего мира и алгоритмы машинного обучения. На сегодняшний день тысячи профессионалов медицины более чем из 80 стран и 500 медицинских институтов вовлечены в создание проекта. Human Diagnosis project направлен на создание наиболее полной базы, способной составить алгоритм помощи любому пациенту.

Проект преследует цель не только оптимизировать принятие клинических решений, но и улучшить получение медицинского образования. Одной из таких программ является IBM Medical Sieve, которая в среднем более точно выявляет дефекты и новообразования, что позволяет сократить время диагностики и уменьшить возможность упущения важных данных. Главной задачей этого проекта является создание системы умственного ассистента для лучевых диагностов и кардиологов, которая бы действовала как фильтр и быстро обнаруживала аномалии, используя общий анализ изображений, текста и клинических данных.

Кроме того, ИИ должен использоваться только в тех случаях, где его применение будет полезным и эффективным для пациента, а не для коммерческих или иных целей. Искусственный интеллект в медицине стал важной и развивающейся областью. Однако, проблемы и вызовы, связанные с этикой и безопасностью данных, должны быть учтены и регулироваться соответствующими нормами и правилами, чтобы обеспечить эффективное и этичное использование ИИ в сфере здравоохранения.

Искусственный интеллект в медицинских исследованиях: ускорение разработки новых лекарств и терапий Искусственный интеллект ИИ играет важную роль в современных медицинских исследованиях, позволяя ускорить разработку новых лекарств и терапий. Благодаря использованию ИИ, процесс разработки новых лекарств и терапий становится более эффективным и быстрым. Алгоритмы машинного обучения и нейронные сети позволяют анализировать огромные объемы данных, включая генетическую информацию, результаты клинических испытаний и данные о воздействии лекарственных препаратов на организм. Использование ИИ позволяет выявить связи и тренды, которые могли бы остаться незамеченными при традиционных методах исследования. Таким образом, ученые и фармацевты могут получить новые и глубокие понимания основных механизмов заболеваний и разработать более эффективные методы их лечения. Техники ИИ также позволяют ускорить процесс поиска молекулярных структур, которые могут подавлять определенный вид заболевания.

Алгоритмы машинного обучения способны анализировать огромное количество химических соединений и предсказывать их эффект на организм. Это позволяет исследователям экономить время и ресурсы, и ускоряет процесс разработки новых лекарственных препаратов и терапий. Искусственный интеллект в медицинских исследованиях — это мощный инструмент, который позволяет находить новые подходы к лечению заболеваний и способы предупреждения их развития. С помощью ИИ ученые имеют возможность углубиться в сложные механизмы заболеваний и найти инновационные решения для обеспечения лучшей медицинской помощи и улучшения качества жизни пациентов. Перспективы развития искусственного интеллекта в медицине: роль автоматизации и улучшение пациентского ухода. Искусственный интеллект в медицине — это одна из наиболее перспективных областей развития современной медицины.

На сегодняшний день автоматизация и использование искусственного интеллекта уже сыграли значительную роль в повышении качества оказания медицинской помощи и улучшении пациентского ухода. Развитие искусственного интеллекта в медицине открывает новые возможности для диагностики различных заболеваний. Автоматизированные системы на основе искусственного интеллекта позволяют проводить точную и быструю диагностику, основанную на анализе большого объема медицинских данных. Это помогает врачам принимать обоснованные решения и назначать эффективное лечение. Еще одной перспективой развития искусственного интеллекта в медицине является его роль в проведении лечения. Системы искусственного интеллекта могут помочь медицинскому персоналу в выборе оптимальных методов лечения, учете индивидуальных особенностей пациента и прогнозировании результатов.

Автоматизация и искусственный интеллект также существенно улучшают пациентский уход и коммуникацию между медицинским персоналом и пациентами. Системы умного мониторинга здоровья позволяют в реальном времени следить за состоянием пациента и предупреждать о возможных проблемах. Виртуальные помощники и роботы повышают доступность и качество пациентского ухода, облегчая уход и поддержку пациентов. Таким образом, перспективы развития искусственного интеллекта в медицине включают в себя автоматизацию процессов, улучшение диагностики, эффективное лечение и улучшение пациентского ухода.

Конференция "Вычислительная биология и искусственный интеллект для персонализированной медицины — 2024" - яркое ежегодное событие для врачей, ученых, представителей IT-отрасли и всех специалистов, которых волнуют вопросы медицины будущего. Программа конференции подробно отразит все современные возможности применения информационных технологий в биомедицинских исследованиях и клинической деятельности. Ведущие спикеры обсудят последние достижения в области биоинформатики: платформы для обработки данных, секвенирование и мультиомиксные технологии, а также перспективы внедрения искусственного интеллекта для поддержки врачебных решений в терапии и диагностике.

Искусственный интеллект в клинической медицине

Использование искусственного интеллекта (ИИ) для анализа данных в целях фармаконадзора. Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов. Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования. Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии. Области применения технологий на основе искусственного интеллекта быстро расширяются, в частности, умные технологии приходят на помощь врачам и пациентам.

Искусственный интеллект в медицине. Настоящее и будущее

В идеале это может позволить создать системы поддержки врачебных решений: опираясь на большое число фактов, давать рекомендации доктору, какая терапия в этом случае предпочтительна. А специалист, соединяя их с другими фактами, принимает решение. Расскажите, пожалуйста, об этом проекте. Также эта система позволяет составить карту функциональных зон мозга, отвечающих за движение, зрение, речь и так далее. Бывает форма эпилепсии, когда лекарства не помогают, и таких больных довольно много. Их проблема зачастую заключается в том, что в мозге есть маленькая область, которая вследствие разных причин вызывает поразительную активность и приступ. Если говорить о детях, то они догоняют сверстников, нормально ходят в школу. У взрослых прекращаются приступы, возвращаются когнитивные способности. Но одна из проблем в том, что такие области очень похожи на здоровую ткань и их сложно найти. Заказчиками многих исследований являются известные медицинские научные институты Источник: Анастасия Пешкова По отзывам наших медицинских партнеров, в России есть единицы опытных рентгенологов, которые могут найти такие патологии на снимках МРТ.

Эти врачи есть в крупных городах: в Москве, Питере, Новосибирске. Каждый из них может просматривать в день снимки не более трех-четырех пациентов. Соответственно, ожидание растягивается более чем на полгода. Мы начали делать систему, которая должна выполнить две базовые задачи: помочь опытному врачу сократить время поиска, а неопытному — подсказать, какие части мозга смотреть. Исследования, которыми занимается Центр прикладного ИИ, применяются в лечении онкологии и эпилепсии Источник: Анастасия Пешкова Мы собирали данные из двух медицинских центров больше года, проводили их разметку, и сейчас у нашей команды самый большой в мире датасет по этой патологии. Пока наша система работает на уровне среднего врача, но мы совершенствуем ее. Структурная показывает трехмерную картинку мозга, а функциональная — активность разных зон мозга. У здоровых людей расположение областей, отвечающих за движение, речь, зрение, плюс-минус известно. Но даже у здоровых людей они могут немного варьироваться, их расположение может отличаться на несколько сантиметров.

У людей со структурными патологиями, такими как опухоль, эти зоны могут смещаться ввиду нейропластичности, и до операции это неизвестно. Во время операции нужно соблюдать баланс: убрать как можно больше пораженной ткани и оставить как можно больше здоровой, чтобы не повредить важные мозговые центры. Чтобы не вырезать лишнего, прямо во время операции пациента будят, разговаривают с ним, дотрагиваются электродами до поверхности мозга и смотрят на результат.

От этого могут зависеть жизни пациентов. Google Deepmind Health анализирует симптомы и предлагает несколько диагнозов. Результаты поиска основаны на миллионах страниц научной информации, которые содержат даже самые малоизвестные заболевания. Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента. Диагностика Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии. Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца.

Создание лекарств Разработка вакцины и последующие клинические исследования — это долгие и дорогостоящие процессы. ИИ может уменьшить время на разработку новых лекарств в несколько раз, анализируя молекулярные структуры существующих препаратов и предлагая новые согласно заданным требованиям. Например, в 2019 году компания Insilico Medicine таким образом создала несколько вариантов лекарств для лечения мышечного фиброза. Для этой задачи алгоритмам понадобился 21 день, после чего ученые отобрали наиболее подходящие варианты препаратов и за 25 дней провели тест на лабораторных животных. Таким образом, понадобилось 46 дней для выбора подходящего лекарства. Однако традиционный процесс разработки лекарств занимает около 8 лет и стоит фармкомпаниям несколько миллионов долларов.

Предполагалось, что в систему загрузят большое количество историй болезни. И тогда «Джейн» могла бы находить совпадения, смотреть, как лечится один пациент, как другой, какие у них прогнозы, признаки выздоровления и так далее. И система такая будет очень полезна, если кто-то заинтересуется её покупкой и внедрением. Проект «Джейн» развивался в течение трёх лет.

Обнаруженные аналоги могли предложить только электронный дневник. Это были простые информационные системы для записи симптомов и жалоб пациентов. Таких крутых фишек, интеллектуальных функций, настроенных именно на проблему эпилепсии, как в «Джейн», больше ни у кого в мире не было. Встречались с представителями популярных компаний, предоставляющих услуги по лабораторной диагностике. Мы предлагали им войти в проект и развивать его под своим брендом. Мы могли бы сделать полную интеграцию. Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество. Стоимость разработки интеллектуальной системы, подобной «Джейн», по оценкам АИИ , начинается от 250 тысяч рублей. Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы? То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины.

Это довольно сложный процесс, который может тянуться годами. Какая должна быть методика? И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний. Затем в ходе испытаний мы проходим по всем пунктам этой методики. Пишем научно-технические отчёты. Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах. В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года. Почему же в больницах до сих пор очень мало таких программ? MYCIN считается первой интеллектуальной компьютерной системой, разработанной специально для медиков.

Её создали в 1970-х годах учёные Стэнфордского университета США. MYCIN предназначалась для подбора антибактериальной терапии. Название было образовано от суффикса «-мицин», часто встречающегося в названиях антибиотиков. Всё дело в доверии. Медицина — это область доверия. Мы же доверяем врачу самое дорогое — своё здоровье и здоровье наших детей. Поэтому компьютерные системы должны не только выдавать рекомендации, но ещё и обладать функцией объяснения, обоснования предложенных решений. Это важный компонент доверия. Вот почему в сфере медицины очень сложно применять популярные сегодня нейронные сети и другие модели, основанные на методах восходящей парадигмы искусственного интеллекта. Если система, основанная на нейронных сетях, сможет объяснять свои решения, то, пожалуйста, применяйте.

Но обычно нейросети на это неспособны. Вопрос, как я уже сказал, в доверии. Врач или консилиум врачей должен иметь возможность проверить выводы программы. Если ИИ даёт второе мнение по какому-то пациенту, то доктору нужно понимать, почему алгоритм пришёл к таким выводам. В случаях, когда «Джейн» помогла уточнить диагнозы, фактически решение приняли врачи консилиум. Система лишь обратила внимание на нестыковки и смогла обосновать альтернативное решение. Окончательное решение всегда остаётся за человеком.

Бизнес активно создает прикладные решения, помогающие оперативно выявлять заболевания, анализировать рентген и даже разрабатывать лекарства. Вложения в медицинские проекты обычно характеризуются высоким риском для инвесторов и достаточно долгой окупаемостью. Тем не менее, интерес бизнес-сообщества к таким проектам, в том числе к цифровым решениям для здравоохранения, постоянно растет. Инвесторы понимают, что спрос на услуги медицины будет высоким всегда. Ведь инвестиции в свое здоровье - долгосрочная перспектива. В России стартапы по цифровизации здравоохранения с применением искусственного интеллекта находят дополнительную поддержку на государственном уровне: ряд институтов развития инвестируют в такие проекты на разных стадиях, а разработчики получают гранты по федеральному проекту «Искусственный интеллект». В своем послании Федеральному Собранию президент РФ Владимир Путин заявил о необходимости достижения самодостаточности и конкурентоспособности в области искусственного интеллекта, что позволит обеспечить «настоящий прорыв» в экономике и социальной сфере. Глава государства сообщил об утверждении обновленной Национальной стратегии развития искусственного интеллекта, включающей участие ИИ в создании цифровых платформ для здравоохранения. Например, на основе данных цифрового профиля он сможет получить дистанционное заключение специалиста федерального медицинского центра, а доктор, семейный врач — оценить именно целостную картину здоровья человека, прогнозировать возникновение заболеваний, предотвращать осложнения, выбирать индивидуальную и потому наиболее эффективную тактику лечения», - указал в своем послании глава государства. Ранее вице-премьер Дмитрий Чернышенко обозначил основные глобальные тренды в сфере искусственного интеллекта. Первый тренд - стремление к технологическому суверенитету; второй - ужесточение борьбы за ИИ-специалистов; третий — движение к безопасному ИИ с упором на конкретного человека; четвертый — развитие больших языковых моделей и генеративного ИИ и пятый - рост экономического эффекта от использования ИИ.

AI-платформа для анализа медицинских изображений

Искусственный интеллект помогает в диагностике болезней и назначении оптимального лечения, а также напоминает выпить таблетку и угрожает безработицей. Искусственный интеллект (ИИ) сегодня является инновационной технологией, которая вызвала настоящую революцию в различных отраслях, и медицина не стала. Теперь же искусственный интеллект готов прийти на помощь к профессионалам медицины. Как присутствие искусственного интеллекта влияет на современную российскую медицину? 6 случаев, когда искусственный интеллект может творить чудеса в здравоохранении. Попробуем проанализировать, как решения на основе искусственного интеллекта применяются в медицинских учреждениях и как они влияют на качество диагностики и лечения.

Чем так хорош искусственный интеллект в медицине?

  • Искусственный интеллект в медицине. Настоящее и будущее | Образовательная социальная сеть
  • Эксперт объяснил провал искусственного интеллекта в медицине
  • Нейронные сети в помощь врачам
  • Разработка и синтез лекарственных препаратов

Искусственный интеллект в клинической медицине

"Искусственный интеллект для психического здоровья" Искусственный интеллект находит свое применение в психиатрии, помогая диагностировать и лечить пациентов с психическими расстройствами. 2022 год для искусственного интеллекта (ИИ) в российской медицине ознаменовался двумя знаковыми событиями. Кроме того, искусственный интеллект помогает врачам-терапевтам поликлиник в постановке диагноза и формировании перечня необходимых исследований. Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний.

Искусственный интеллект в медицине

Качество диагностики выходит на совершенно другой уровень. Однако с развитием технологий появляются и опасения у людей — некоторые пациенты сейчас склонны не доверять искусственному интеллекту. Но дело в том, что за весь процесс полная ответственность все также остается на враче — именно он выносит окончательное решение о диагнозе и лечении. ИИ лишь помогает ему собрать все нужные данные воедино и указывает на сигналы, которые могут свидетельствовать об отклонении. Сама технология рассматривается только в качестве СППВР-сервиса — системы поддержки принятия врачебных решений.

ИИ анализирует информацию о пациенте, и только врач определяет, что и как делать дальше. Искусственный интеллект не менее полезен для Министерства здравоохранения, например, при массовом медицинском осмотре — скрининге. Для примера возьмем норматив — двойной повторный пересмотр маммографических исследований на рак молочной железы. В этом случае мы снимаем с врачей обязанность проводить первичный или второй просмотр карты пациента и поручаем это искусственному интеллекту.

Благодаря алгоритму, большой системный процесс автоматизируется, у врачей появляется свободное время — его можно уделить более тщательной диагностике, которую пока нельзя доверить технике. Этика применения ИИ Расширение участия ИИ в медицине поставило перед специалистами ряд этических вопросов, связанных, в том числе, с его использованием без контроля врача. Речь идет о вероятности самостоятельного применения инструментов пациентом. Между человеком и машиной всегда должно быть промежуточное звено — медицинский специалист.

Чтобы пациенты не использовали технологии себе во вред и не занимались самолечением, существует Всероссийский свод этических правил применения искусственного интеллекта в медицине. Что касается повсеместного использования «умных» устройств, которыми пользуется каждый второй, то отнести их к технологиям ИИ нельзя. Гаджеты не анализируют информацию и не могут поставить предположительный диагноз. Устройства могут считывать пульс, сердцебиение, уровень кислорода, то есть предоставлять данные об одном или нескольких параметрах, но не могут конкретно указать, в чем проблема.

Крупные бренды, выпускающие «умные» устройства, всегда советуют обращаться к врачу, если показатели изменились в худшую сторону.

Важно изучить, как представлять входные данные и обобщать их таким образом, чтобы они отражали несколько модальностей. Например, текст представляется символами, а аудио и визуальные модальности — сигналами. В контексте медицинского применения вся диагностическая информация о пациенте может быть интегрирована в такие мультимодальные данные и обрабатываться системой ИИ, обученной рассматривать как внешнее изображение человека и фрагментов его тела, так и результаты анализов, МРТ- и КТ-изображения, аудиозаписи ответов на вопросы и т. Все это приближает нас к построению универсального диагноста, использующего холистический подход к диагностике заболеваний, и сокращению количества посещений разных врачей-специалистов для назначения эффективного лечения. Приложения для здоровья на базе искусственного интеллекта Самое большое потенциальное преимущество искусственного интеллекта — возможность помочь людям оставаться бодрыми, чтобы им не приходилось посещать врача или по крайней мере делать это не слишком часто. Искусственный интеллект и интернет медицинских вещей IoMT уже постепенно меняют парадигму с «реактивного» здравоохранения на «проактивное». Сочетание искусственного интеллекта и IoMT со временем сделает подключенные устройства для мониторинга состояния здоровья более интеллектуальными.

ИИ и огромные объемы данных, генерируемые IoMT, также могут использоваться для постановки диагноза. Различные приложения для здорового образа жизни на основе искусственного интеллекта, такие как MyFitnessPal и HealthTap, предоставляют людям полный контроль над своим здоровьем и благополучием, обратную связь с медучреждением и рекомендации для поддержания здоровья. Например, HealthTap узнает о симптомах пациента и их изменении с течением времени и координирует процесс лечения: отправляет напоминания, предоставляет текстовые ответы, сопоставленные с данными об истории болезни, руководствами, созданными врачами, а также обеспечивает возможность проведения онлайн-консультаций по видеоконференцсвязи. ИИ в медицине — это прорыв? Можно ли назвать применение ИИ прорывом в диагностике и лечении? На мой взгляд, сегодня прорыв еще не произошел. Поэтому я бы использовал количественную оценку развития технологии, например, число успешных исследовательских проектов в этой области или число публикаций. Если такой показатель растет экспоненциально, то можно говорить о быстром продвижении вперед.

С этой точки зрения мы присутствуем при развитии прорывных технологий диагностики и лечения. Автор: Владимир Крылов Перейти к источнику Другие статьи по теме.

Нейронные сети для пациентов Алгоритмы, которые пациенты могут использовать самостоятельно, развиваются медленнее, чем те, которые используют клиницисты. Датчики на часах определяют частоту сердечных сокращений пользователя в состоянии покоя и при физической нагрузке, и когда происходит сильное отклонение от ожидаемого, пользователю выдается предупреждение о записи ЭКГ через часы, результаты которого затем интерпретирует алгоритм. Некоторые приложения для смартфонов используют нейронные сети для мониторинга и контроля приема лекарств, например AiCure заставляет пациента делать селфи-видео во время проглатывания предписанной таблетки. AiCure контролирует прием лекарства Алгоритмы, основанные на том, как повышаются или понижаются значения глюкозы, используются пациентами с диабетом. Они помогли предотвратить эпизоды гипогликемии. Таким образом, распространенные хронические состояния, такие как гипертония, депрессия и астма, теоретически можно лучше контролировать с помощью приложений. Проблемы и ограничения Главная проблема будущего искусственного интеллекта в медицине заключается в том, насколько хорошо могут быть обеспечены конфиденциальность и безопасность данных.

Существует риск выявления конфиденциальных данных пациента из истории болезни. Более того, есть риск преднамеренного взлома алгоритма для нанесения вреда людям в больших масштабах, например передозировки инсулина у диабетиков. Вторая проблема — неточная работа алгоритмов.

Перейти к источнику Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Авторы отмечают, что существует ряд условий, необходимых для дальнейшего развития ИИ в сфере здравоохранения: совершенствование нормативного регулирования, разработка единых стандартов по распоряжению биомедицинскими данными, их контролю и определению границ использования ИИ, этических норм; создание общедоступных датасетов, репрезентативных, релевантных и корректно структурированных медицинских данных, необходимых для обучения моделей, которые должны быть разработаны совместно с экспертным сообществом; стимулирование спроса со стороны государственных органов и медицинских организаций в виде грантов и субсидий на использование ИИ-продуктов и сбора данных для общего пользования внутри медицинских организаций; разработка ускоренных процедур сертификации и регистрации или решений на основе ИИ в медицине с четко определенной процедурой, сроками, алгоритмами для тестирования и апробации систем. Документы pdf16.

Похожие новости:

Оцените статью
Добавить комментарий