Новости новости нейросети

Новости. All. news. По какому принципу нейросеть действует и как сделать ее своим ассистентом в работе? Читайте последние новости по теме нейросетей и искусственного интеллекта. Сосо Павлиашвили Культура Шоу-бизнес 12 апреля в 15:08 Сосо Павлиашвили сравнил нейросети с «резиновыми бабами».

Вы находитесь здесь: итоги 2023 года в сфере ИИ

За один раз Gemini 1. В ходе исследования Google также успешно протестировала обработку до 10 млн токенов. Gemini 1. Нейросеть способна не только анализировать большие блоки данных, но и быстро находить определённый фрагмент текста внутри них. Также Gemini 1.

В интерфейсе AI Studio нейросеть сейчас доступна с ограничением в 20 запросов в день. Источник изображения: nasa. Авторы проекта попытались заменить стандартные алгоритмы анализа данных TIRA нейросетями семейства YOLO, которые применяются для поиска движущихся объектов на снимках. Версии нейросетей YOLOv5 и YOLOv8 обучили при помощи массива из 3000 снимков околоземного пространства и проверили их эффективность на примере 600 изображений с радаров, на которых были от одного до трёх частиц космического мусора.

Результат оказался выше того, что демонстрирует стандартный алгоритм TIRA. Учёные сделали вывод, что системы машинного зрения могут успешно применяться для поиска космического мусора в околоземном пространстве и для его отслеживания в реальном времени. Это поможет снизить число инцидентов, связанных с попаданием частиц космического мусора в работающие орбитальные аппараты. По оценкам экспертов, на орбите Земли могут находиться более 170 млн частиц космического мусора.

Stable Diffusion 3. Источник изображений: Stable Diffusion 3. Выпуск SDXL в июле значительно улучшил базовую модель Stable Diffusion, и теперь компания собирается пойти значительно дальше. Новая модель Stable Diffusion 3.

Новая нейросеть обеспечит значительно лучшую типографику, чем предыдущие версии Stable Diffusion, обеспечивая более точное написание текста внутри сгенерированных изображений. В прошлом типографика была слабой стороной Stable Diffusion, собственно, как и многих других ИИ-художников. Stability AI экспериментирует с несколькими типами подходов к созданию изображений. Трансформеры лежат в основе большей части современных нейросетей, запустивших революцию в области искусственного интеллекта.

Они широко используются в качестве основы моделей генерации текста. Генерация изображений в основном находилась в сфере диффузионных моделей. В исследовательской работе , в которой подробно описываются диффузионные трансформеры DiT , объясняется, что это новая архитектура для диффузионных моделей, которая заменяет широко используемую магистраль U-Net трансформером, работающим на скрытых участках изображения. Применение DiT позволяет более эффективно использовать вычислительные мощности и превосходить другие подходы к диффузной генерации изображений.

Еще одна важная инновация, которой пользуется Stable Diffusion 3. В исследовательской работе по сопоставлению потоков объясняется, что это новый метод обучения нейросетей с помощью «непрерывных нормализующих потоков» Conditional Flow Matching — CNF для моделирования сложных распределений данных. По мнению исследователей, использование CFM с оптимальными путями транспортировки приводит к более быстрому обучению, более эффективному отбору образцов и повышению производительности по сравнению с диффузионными путями. Улучшенная типографика в Stable Diffusion 3.

Как пояснил Мостак, качественная генерация текстов на изображения стала возможной благодаря использованию диффузионной модели-трансформера и дополнительных кодировщиков текста. С помощью Stable Diffusion 3. Хотя Stable Diffusion 3. В последние месяцы Stability AI также создаст нейросети для создания 3D-изображений и видео.

Компания утверждает, что Sora «может создавать реалистичные и фантазийные сцены по текстовым инструкциям». Источник изображения: OpenAI Sora способна создавать «сложные сцены с несколькими персонажами, определенными типами движения и точной детализацией объекта и фона», говорится в блоге OpenAI. Компания также отмечает, что нейросеть может понимать, как объекты «существуют в физическом мире», а также «точно интерпретировать реквизит и генерировать убедительных персонажей, выражающих яркие эмоции». Модель может генерировать видео на основе неподвижного изображения, заполнять недостающие кадры в существующем видео или расширять его.

Среди демонстрационных роликов, созданных с помощью Sora и показанных в блоге OpenAI, сцена Калифорнии времен золотой лихорадки, видео, снятое как будто изнутри токийского поезда, и другие. Многие из них имеют некоторые артефакты, указывающие на работу искусственного интеллекта. Например, подозрительно движущийся пол в видеоролике о музее. Сама OpenAI говорит, что модель «может испытывать трудности с точным моделированием физики сложной сцены», но в целом результаты довольно впечатляющие.

Пару лет назад именно генераторы текста в изображение, такие как Midjourney, лучше всего демонстрировали способности ИИ превращать слова в изображения. Но в последнее время генеративное видео стало улучшаться заметными темпами: такие компании, как Runway и Pika, продемонстрировали впечатляющие модели преобразования текста в видео, а Lumiere от Google , похоже, станет одним из главных конкурентов OpenAI в этой области. Как и Sora, Lumiere предоставляет пользователям инструменты для преобразования текста в видео, а также позволяет создавать видео из неподвижного изображения. В настоящее время Sora доступна только отдельным тестировщикам, которые оценивают модель на предмет потенциального вреда и рисков.

OpenAI также предлагает доступ по запросу отдельным художникам, дизайнерам и кинематографистам, чтобы получить обратную связь.

Читайте также: Коварный Open Source: какие опасности кроются в открытом и свободном ПО Основные тренды в развитии опенсорсных моделей Компании работают над опенсорсными моделями, схожими с аналогичными в проприетарными проектами: снижение числа галлюцинаций, увеличение длины контекста, повышение скорости и точности ответов, добавление мультимодальных возможностей и так далее. Разработчики ведут поиск архитектур, способных преодолеть недостатки популярных нейросетей типа «трансформер». На рынке существуют сотни открытых LLM, которые уже соревнуются между собой на виртуальных тестовых аренах, подобных Chatbot Arena Leaderboard от Hugging Face. Число опенсорсных проектов и их конкуренция продолжит расти.

Стоимость внедрения и дообучения LLM снижается. Так, доработка и запуск нейросети Alpaca обошлись в 600 долларов. Один из механизмов снижения стоимости — использование «синтетических» данных, созданных ИИ. Французский стартап Mistral AI в первый год своего существования привлёк 385 миллионов евро инвестиций. Это может стать прецедентом финансирования опенсорсных моделей за счёт инвесторов.

Чего ждать в 2024 году Главное — появления ещё большего числа дешёвых и эффективных моделей с открытым исходным кодом от небольших стартапов и крупных компаний. Отрасль ИИ станет меньше зависеть от IT-гигантов. В новом году ждём от них самых навороченных нейронок. Опенсорсные модели займут нишу простых и доступных по стоимости решений. На их основе будут созданы персональные ИИ-ассистенты нового поколения, способные работать в смартфонах и других гаджетах.

Мы ждём, что рост конкуренции в опенсорс-сообществе приведёт к появлению прорывных технологий, а не только к количественному усложнению моделей. Например, могут появиться новые способы обучения или архитектуры нейросетей, лишённые недостатков предшественников. Не стоит забывать про опасности Open Source. В отсутствие контроля хакеры и интернет-мошенники начнут использовать генеративный интеллект для противозаконных действий. Например, для создания вирусов, взлома паролей или кражи денег с помощью социальной инженерии, создавая «двойников» людей для телефонных или даже видеозвонков.

В 2023 году основной прорыв в массовом использовании нейронок с открытым кодом внесла LLaMA, на базе которой появились десятки моделей: Mistral, Zephyr , Alpaca, Phi-2 , Qwen, Yi и другие. В развити опенсорсных моделей просматриваются три тренда, которые усилятся в 2024 году: Желание пользователей устанавливать нейросети на свои устройства и использовать их без подключения к интернету и, соответственно, без оплаты услуг компаний. Раньше качества нейросетей, а также мощностей ноутбуков и смартфонов для этого не хватало, но теперь их достаточно. Поэтому происходит массовый отток пользователей от платных сервисов. Замена людей в процессе получения обратной связи при обучении ИИ-моделей.

Это обучение с подкреплением от ИИ, а не от человека. Создание специализированных небольших моделей для медицины, науки, графовых моделей, а также нейросеток с архитектурой MoE. Появление изначально закрытых моделей GPT-3, ChatGPT создало новый рынок, а открытые модели позволили бизнесу использовать их практически без ограничений. Так, например, открытые решения позволяют компаниям контролировать весь процесс работы с данными своих пользователей, адаптировать их под свои нужды и в целом снизить риски, используя собственную инфраструктуру. Кроме того, появление открытых моделей стало причиной роста компетенций академического сообщества в работе с LLM.

Сейчас уже никого не удивишь чат-ботом, сравнимым с ChatGPT, который запущен на ноутбуке каким-то энтузиастом, хотя ещё два года назад это казалось фантастикой. Такой уровень доступности технологий позволил учёным опубликовать уже сотни, если не тысячи интересных и полезных научных статей. Роман Душкин генеральный директор ООО «А-Я эксперт» , компании — разработчика систем искусственного интеллекта — Опенсорсные LLM должны быть открытыми не только с точки зрения исходного кода самих моделей, но и с точки зрения данных, на которых они обучаются. И я думаю, что в будущем году упор будет сделан именно на это — на чистоту и прозрачность.

Этот трек создан в нейросети udio. Была выбрана интересная идея сделать фолк трек в стиле кельтской музыки но со стихами из детской песенки. Получилось очень круто.

Поделись улыбкою своей, И она к тебе не раз еще вернется. К тебе вернется!

Кроме того, нейросети активно используются в финансовом секторе, принимая решение о выдаче кредитов потенциальным клиентам банков. Голосовые помощники та же Алиса от «Яндекса» или Siri от Apple используют нейросети для распознавания голосовых команд и обработки запросов. С каждым днем сфера применения нейросетей расширяется, упрощая наше взаимодействие с цифровым миром. Ранее мы рассказывали: Как технологии меняют нашу еду?

Преимущества и недостатки нейросетей Очевидно, что само изобретение нейросетей было направлено на то, чтобы приносить как можно больше пользы человечеству. Их основное преимущество перед другими сложными математическими моделями заключается в распознавании более сложных и глубоких закономерностей, позволяющих решать любые поставленные перед ними задачи. При грамотной настройке нейросети способны выдавать пугающе точные результаты, но нейросети бывают и неточными, а их результаты — слишком приблизительными или только отдаленно напоминающими что-то, что вы хотели бы увидеть. Соответственно, нельзя полностью полагаться на результаты работы нейросети, но их можно использовать в качестве дополнительного инструмента решения конкретных задач. Хоть нейросети и можно назвать своего рода искусственным интеллектом, пусть и в зачаточном состоянии, до полноценного ИИ нейросетям еще очень далеко. Это связано с тем, что вычислительные возможности человеческого мозга пока что просто невозможно повторить, так как в теле человека содержится 86 млрд биологических нейронов, а в самых современных нейросетях — не более 10 млрд.

Какими бы сложными математическими моделями ни были нейросети в своей основе, до человеческого мозга они пока что недотягивают. Примеры самых полезных и интересных нейронных сетей Нейросетей в интернете великое множество. Среди них можно выделить несколько полезных и интересных простому обывателю. Ваши друзья, скорее всего, уже установили себе на смартфон приложение Lensa, превращающее обычные селфи в удивительные яркие аватарки. На YouTube можно найти множество примеров подобных роликов: А одна российская студия недавно даже сняла целый DeepFake-сериал с поддельными западными актерами. Можно даже послушать поток бесконечной генеративной музыки.

Но это все развлекательные примеры использования нейросетей. Есть ли какие-то полезные? Нейросеть DeOldify позволяет раскрашивать старые черно-белые фотографии. Looka поможет создать логотип для вашего бренда.

нейронные сети

Fox News: нейросети смогли создать ИИ-инструменты без помощи человека. Новости Искусственного Интеллекта (ИИ), машинное обучение, квантовые компьютеры, нейронные сети и другие научные новости и открытия в сфере Искусственного Интеллекта. Читайте последние новости на тему в ленте новостей на сайте РИА Новости. Нейросети используют для анализа снимков с беспилотных летательных аппаратов и камер городского видеонаблюдения.

Нейронные сети

Сервисы с искусственным интеллектом для получения новостей, генерации новостных лент, создания новостных рекомендаций. нейросеть — самые актуальные и последние новости сегодня. Будьте в курсе главных свежих новостных событий дня и последнего часа, фото и видео репортажей на сайте Аргументы и. Нейросеть теперь может генерировать изображения с одним и тем же персонажем, сохраняя его внешность. Недавно вышло обновление популярного интерфейса Automatic1111 для графической нейросети Stable Diffusion.

Записи из рубрики - Нейросети

Данные, полученные каждым нейроном, представляют собой сумму всех данных, умноженных на коэффициент веса каждого искусственного синапса. Полученные значения формируют выходные сигналы, которые передаются до тех пор, пока информация не достигнет конечного выхода. Все равно звучит сложно? Тогда попробуем упростить еще больше. В нейросеть, то есть в заранее созданную сложную математическую модель, как в пустую емкость, загружается массив данных. Это могут быть научные работы, литературные произведения, коллекции изображений и так далее. Если загрузить в нейросеть собрания сочинений мировых литературных классиков, то на выходе она сможет написать собственный текст в стиле Шекспира — если максимально упрощать и утрировать.

Аналогичным образом происходит генерация изображений: вы загружаете в нейросеть базу картинок в различных художественных стилях самых разных художников, а на выходе получаете совершенно новое изображение, созданное по мотивам загруженных данных. Точно так же нейросети позволяют находить различные закономерности и совпадения при анализе огромных баз данных, например находить преступников или делать прогнозы на несколько лет вперед, основываясь на ранее полученных исследованиях. Виды нейронных сетей Все нейронные сети можно разделить на несколько видов: однослойные, многослойные, прямого распространения, рекуррентные. Однослойные сети сразу же выдают результат после загрузки в них некоторого массива данных. Многослойные сети прогоняют вводную информацию через несколько промежуточных слоев и принципом своей работы больше напоминают биологическую нейронную сеть. Выходная информация получается после прохождения всех слоев, на которых происходит обработка и анализ.

Сети прямого распространения чаще всего используются для распознавания образов, классификации и кластеризации данных — они направлены в одну сторону и не умеют перенаправлять информацию обратно. Ввели данные — получили ответ. Рекуррентные сети перенаправляют информацию туда и обратно, пока не получат конечный результат. Они используют эффект кратковременной памяти, на основании которого информация дополняется и восстанавливается. Такие сети чаще используются для прогнозирования. Каждую нейросеть можно распределить по еще нескольким типам.

Однородные и гибридные сети — в зависимости от типов нейронов, обучаемые и самообучающиеся — в зависимости от метода обучения, а также аналоговые, двоичные или образные — в зависимости от типа входных сигналов.

А поисковый сервис Bing с помощью ИИ может выполнять за вас поиск и обобщать найденную информацию. Всего 386 материалов.

Это могут быть научные работы, литературные произведения, коллекции изображений и так далее. Если загрузить в нейросеть собрания сочинений мировых литературных классиков, то на выходе она сможет написать собственный текст в стиле Шекспира — если максимально упрощать и утрировать. Аналогичным образом происходит генерация изображений: вы загружаете в нейросеть базу картинок в различных художественных стилях самых разных художников, а на выходе получаете совершенно новое изображение, созданное по мотивам загруженных данных. Точно так же нейросети позволяют находить различные закономерности и совпадения при анализе огромных баз данных, например находить преступников или делать прогнозы на несколько лет вперед, основываясь на ранее полученных исследованиях. Виды нейронных сетей Все нейронные сети можно разделить на несколько видов: однослойные, многослойные, прямого распространения, рекуррентные.

Однослойные сети сразу же выдают результат после загрузки в них некоторого массива данных. Многослойные сети прогоняют вводную информацию через несколько промежуточных слоев и принципом своей работы больше напоминают биологическую нейронную сеть. Выходная информация получается после прохождения всех слоев, на которых происходит обработка и анализ. Сети прямого распространения чаще всего используются для распознавания образов, классификации и кластеризации данных — они направлены в одну сторону и не умеют перенаправлять информацию обратно. Ввели данные — получили ответ. Рекуррентные сети перенаправляют информацию туда и обратно, пока не получат конечный результат. Они используют эффект кратковременной памяти, на основании которого информация дополняется и восстанавливается. Такие сети чаще используются для прогнозирования. Каждую нейросеть можно распределить по еще нескольким типам.

Однородные и гибридные сети — в зависимости от типов нейронов, обучаемые и самообучающиеся — в зависимости от метода обучения, а также аналоговые, двоичные или образные — в зависимости от типа входных сигналов. На самом деле, классификаций еще больше, но это уже материал для еще одной огромной статьи. Задачи и сферы применения нейросетей Помимо уже описанных выше задач по сопоставлению образов, прогнозированию, кластеризации информации или генерации текстов и изображений в стиле различных писателей и художников исключительно в целях развлечения , нейросети также решают и другие задачи, о которых вы, возможно, и не догадывались. Практически в каждом современном флагманском смартфоне сейчас имеется нейрочип, помогающий анализировать и классифицировать множество входящих данных. Камеры телефонов научились применять автоматические настройки и фильтры во время съемки самых разных объектов, понимая, что вы снимаете еду, природу или архитектуру. Поиск по картинкам, по словам или по названиям каких-либо объектов также может использовать простенькую нейросеть.

Нейросеть вполне способна справиться с кратким пересказом основных событий, отмеченных редактором. Таким образом, использование нейросетей существенно ускоряет процесс написания материалов и позволяет сэкономить время журналистов, увеличивая объем производимого контента, или снижать затраты на оплату труда райтеров и журналистов. Нейросеть может быть особенно полезна при написании рерайтов и редактировании готовых материалов.

Однако пока что использование нейросетей требует контроля со стороны человека, чтобы избежать публикации некорректной или ложной информации. Извлечение смыслов из текста Извлечение смыслов для нейросети - более простая задача. Однако это тоже упрощает труд людей, работающих с большими объемами данных. Нейросеть может выделить теги, написать подзаголовки для материала, составить аннотацию и заключение, сформировать оглавление. Что касается тегов, то категоризация, или, другими словами, автоматическая расстановка тегов - задача, над которой прямо сейчас бьются ИТ -отделы многих крупных информационных агентств. Теги должны аккумулировать основной смысл материала. Это необходимо для связи с другими материалами, с похожим смыслом. Многие годы журналисты из-под палки расставляют теги вручную. Сейчас, из 2023 года, кажется что эта работа изначально не была человеческой.

Но такая возможность есть уже несколько лет. У автоматической расстановки тегов, кроме экономии времени журналистов, множество других плюсов. Во-первых, так можно поставить очень много тегов. Ради эстетики часть из них можно скрыть. Они понадобятся для разных служебных целей, вроде вывода похожего материала, сборки рубрик, формирования сюжетов, досье на персон. Можно создавать новые сложные типы материалов, которые будут скрыты как минимум от читателей, а может быть, и от журналистов. Поверх них можно строить интересные алгоритмы подбора. Например, определять субъект, объект, действия и тональность материала. Что еще можно делать?

Коротко перечислим и другие возможные способы применения нейросетей в работе онлайн-СМИ. Генерация видеороликов. Сочетая последовательно несколько нейросетей, можно генерировать клипы с видеорядом, озвучкой и титрами. На имеющихся технологиях получится примитивно, но такие короткие ролики можно ставить в сторис, шортс или просто ленты соцсетей. Это привлекательнее статичных картинок и несет минимум человеческих трудозатрат. Обработка временных рядов. Временные ряды метрик, разные графики, дашборды … Сейчас графики просматриваются глазами, обрабатываются с помощью аналитики данных, затем определяются отклонения, которые произошли в прошлом, и общий тренд. Но большинство аномалий на пересечениях параметров по-прежнему замечаем случайно. Нейросети можно было бы поручить предсказание аномалий.

Нейронка учится определять, как ведет себя график перед резким ростом или резким падением и предупреждает об аномалиях. Еще в 2016-2017 годах крупные компании рассказывали в докладах о подобной практике.

Please wait while your request is being verified...

Нижегородские учёные определили, что в импульсной нейронной сети, решающей последовательно несколько. Читайте последние новости по теме нейросетей и искусственного интеллекта. Новости Искусственного Интеллекта (ИИ), машинное обучение, квантовые компьютеры, нейронные сети и другие научные новости и открытия в сфере Искусственного Интеллекта. Российские нейросети уже вполне могут составить конкуренцию нашумевшим ChatGPT и Midjourney. Айтишник разработал нейросеть, которая ищет настроенных на секс девушек.

Что такое нейросеть простым языком

  • Топ-10 событий 2023 года в области искусственного интеллекта и нейроинтерфейсов
  • «Удаление» человека с видеоизображения в режиме реального времени
  • Новости по тегу Нейросети |
  • Материалы с тегом

Каким будет будущее нейросетей в 2024 году

Журнал Popular Mechanics разобрался в вопросе. Когда нейросети станут умнее человека и почему этого стоит бояться. Главные новости к утру 2 апреля. Журнал Popular Mechanics разобрался в вопросе. Когда нейросети станут умнее человека и почему этого стоит бояться.

Посмотрите на Россию 3854 года: неожиданное будущее страны по версии трех нейросетей

читайте последние и свежие новости на сайте РЕН ТВ: Руководитель компании по нейросетям вживил в себя три чипа В ЕС допустили появление паники при появлении фейка. Новости. Midjourney заблокировала доступ всем сотрудникам конкурирующей Stability AI. Недавно вышло обновление популярного интерфейса Automatic1111 для графической нейросети Stable Diffusion. Поэтому следить за новостями в этой области станет сложнее. — Какие существуют опасности использования нейросетей в журналистике? Здесь вы найдете новости о последних достижениях в области машинного обучения, нейронных сетей, робототехники и других областях, связанных с ИИ.

Похожие новости:

Оцените статью
Добавить комментарий