Новости искусственный интеллект дзен

Сегодня искусственный интеллект применяют 35% компаний, еще 42% — планируют внедрять его в будущем. это журнал, который посвящен искусственному интеллекту (AI), его развитию, применению и будущим перспективам.У нас можно найти статьи, обзоры и в области AI, а также новости и.

На что способен искусственный интеллект уже сейчас

  • Очередные новости искусственного интеллекта
  • Новости по тегу искусственный интеллект, страница 1 из 51
  • Три типа искусственного интеллекта
  • Искусственный интеллект в медицине: как это работает? Реальные примеры
  • Новости по тегу искусственный интеллект, страница 1 из 51

Google тестирует специализированный ИИ, способный писать новости

Документ также упоминает о наличии ИИ-модуля с производительностью 50 TOPS. Бурное развитие технологий искусственного интеллекта (ИИ) и их применение в самых различных областях — главный технологический тренд уходящего года. На конкретных примерах рассмотрели, какие задачи способен выполнить искусственный интеллект, а какие нет. Как отметил Александр Ведяхин, искусственный интеллект (ИИ) — приоритет в соответствии с национальными планами развития в 21 из 32 стран Африки, которые ответили на соответствующий опрос ЮНЕСКО.

Искусственный интеллект увеличил надежность сети билайна

[NS]: Мы начали разговор с отличной новости, что «Яндекс» вошел в число мировых лидеров в области развития искусственного интеллекта. Искусственный интеллект «Дзена» работает по двум принципам: Фильтрация содержимого — каждая публикация попадает в очередь на анализ характеристик и текстового содержания после загрузки на платформу и только после проверки появляется в лентах пользователей. Искусственный интеллект (ИИ) является одной из самых быстроразвивающихся областей науки и техники. Бурное развитие технологий искусственного интеллекта (ИИ) и их применение в самых различных областях — главный технологический тренд уходящего года.

Молоко убежало

  • Война за таланты в сфере искусственного интеллекта вызывает «золотую лихорадку»
  • В чём разница между Artificial Intelligence, Machine Learning и Data Science
  • AI что значит
  • История развития ИИ

Яндекс-Дзен как пример ограниченности искусственного интеллекта

Эксперты рекламируют искусственный интеллект (ИИ) как настоящий инструмент в борьбе за выживание планеты, но говорят, что комбинация с другими новыми технологиями может даже увеличить шансы. Документ также упоминает о наличии ИИ-модуля с производительностью 50 TOPS. Инженер Google Блейк Лемойн, который недавно заявил, что ИИ LaMDA, над которым давно работает поисковый гигант, имеет собственное сознание и разум, поделился большим интервью с этим самым ИИ. Новая технология искусственного интеллекта работает над редактированием человеческого ДНК.

Мыслит ли искусственный интеллект?

Главная» Архив журнала» 2023 год» Журнал ПЛАС №12 (308)» ИИ-новации в Сбере: искусственный интеллект и не только. Технологии - 16 октября 2023 - Новости Санкт-Петербурга - Распространение технологий искусственного интеллекта (ИИ, AI), стратегия его развития в России и мире, проблемы с внедренияем и сбоями ИИ, использование ИИ в «умных домах» и «умных городах», на финансовом рынке, в управлении, промышленности и ритейле. Искусственный интеллект Сбера теперь доступен во всех умных устройствах Sber под управлением ОС Салют ТВ. это журнал, который посвящен искусственному интеллекту (AI), его развитию, применению и будущим перспективам.У нас можно найти статьи, обзоры и в области AI, а также новости и.

Дзен Новости запретили материалы, написанные искусственным интеллектом

Какие задачи решает ваша компания? У нас трудятся, по большей части, даже не программисты, а математики и исследователи. Продукты IntelliVision можно запускать на серверах, пользоваться как облачным сервисом, а также встраивать в IP-камеры видеонаблюдения что существенно удешевляет стоимость финального решения. Одними из основных клиентов для нас являются разработчики IP-камер. Это западные, азиатские и российские производители камер. Кроме того, наши технологии применяются и в системах домашнего видеонаблюдения — тогда уведомления приходят прямо на телефон владельца квартиры. А в бизнесе, например, в ритейле, видеоаналитика определяет количество посетителей, места наибольшего скопления покупателей, их путь, продуктовую корзину.

На основе этих данных можно построить «тепловые карты», что помогает бизнесу выстраивать грамотную логистику и более эффективно применять маркетинговые инструменты.

Для того чтобы что-то рекомендовать, нужно для начала это что-то найти. Обычно рекомендательные сервисы решают эту задачу примитивным способом — формируют ограниченный каталог RSS-лент по интересам.

В случае с Дзеном таких ограничений нет. Поисковые роботы ищут любые материалы. Это могут быть как авторские публикации с популярных блогов, так и качественные истории с форумов или ролики с YouTube.

Это то, что мы называем «диким вебом». Главное, чтобы сайт не был заброшен и на странице содержалось достаточное количество полезного контента. Итак, с одной стороны у нас знания о любимых публикациях миллионов пользователей, с другой — вся мощь глобального поискового индекса Яндекса.

Осталось самое «простое». Научить машину строить рекомендации. Виды рекомендательных систем В истории рекомендательных технологий хорошо известны два их основных вида: фильтрация по содержимому и коллаборативная фильтрация.

Начнем с первого, который основан на сравнении содержимого рекомендуемых объектов. Для примера предлагаю рассмотреть фильмы. Если два фильма относятся к одному и тому же жанру, и пользователь уже высоко оценил один из них, то с определенной вероятностью можно посоветовать ему и второй.

И здесь интересно вспомнить онлайн-кинотеатр Netflix, который увеличил количество жанров с нескольких сотен до десятков тысяч , среди которых можно найти даже «Культовые ужастики со злыми детьми». Большая часть из этих жанров скрыта от глаз зрителей и используется только для построения рекомендаций. В нашем случае никаких жанров нет.

Чтобы сделать вывод о соответствии веб-страницы интересам человека, нужно сравнить ее контент с известными образцами. Причем заниматься этим должен компьютер, которому нужно не просто прочитать материал, но и понять его смысл. И единственный способ решить эту задачу достаточно точно, это использовать опыт Яндекса в области искусственного интеллекта.

К счастью, будущее не предопределено и все в наших руках. Но а если серьезно, то наработки в области ИИ уже сейчас помогают нам решать сложные задачи. Способность машины читать, видеть и, что наиболее важно, понимать смысл открывает большие перспективы.

Когда мы говорим о рекомендациях, то подразумеваем себе материалы, которые были бы достаточно близки по своему смысловому наполнению к образцам пользователя. Иными словами, машина должна прочитать два текста и сделать вывод: близки ли они по смыслу или нет. Ровно это мы и учимся делать.

Специально обученная нейронная сеть преобразует текст в вектор, в котором заключен смысл текста. Два текста могут быть написаны с использованием разных слов и даже на разных языках, но смысл у них будет один. Сравнивая эти векторы, мы можем с определенной вероятностью предсказать интерес человека к новому материалу.

Кстати, если векторы почти совпадают, то это уже говорит о смысловом дубликате рерайт текста или разные статьи об одном и том же событии , с которыми мы боремся в ленте. Другой подход к NLP, над которым работает команда Дзена, это автоматическое присвоение меток для любого текста. Так и здесь.

Классификация публикаций с помощью меток помогает повысить точность итоговых рекомендаций.

Да, в ООН уже активно говорят о необходимости принятия обязательной резолюции, ограничивающей использование беспилотников-убийц с искусственным интеллектом, но США входят в группу стран, среди которых Австралия и Израиль , препятствующих любому подобному шагу в этом направлении. Кментту, австрийскому карьерному дипломату, автору книги «Договор о запрещении ядерного оружия» и ответственному за разработку Общей внешней политики и политики безопасности CSFP и Общей политики безопасности и обороны CSDP Евросоюза, похоже, не надо объяснять, какая опасность таится в том, что Пентагон вовсю работает над развёртыванием тысяч беспилотных летательных аппаратов с поддержкой ИИ. Ещё откровеннее выразился Фрэнк Кендалл, министр военно-воздушных сил Штатов: «Индивидуальные решения ИИ по сравнению с неисполнением индивидуальных решений человеком — это разница между победой и поражением, и вы не проиграете», — считает он. Из статьи в The Observer следует и такой факт: «В октябре беспилотники, управляемые ИИ, уже были развёрнуты Украиной на поле боя в её борьбе с российским вторжением, хотя неясно, предприняли ли они какие-либо действия, приведшие к человеческим жертвам. Пентагон не сразу ответил на запрос о комментариях». Не надо думать, что одно только использование ИИ в военно-промышленном комплексе может обрушить и без того шатающийся мир.

BlackListed News сообщил в минувшую пятницу, что дом Ротшильдов, одна из старейших европейских династий банкиров и общественных деятелей еврейского происхождения, требует слияния корпораций, правительств и ИИ для спасения капитализма. Идея отнюдь не сумасбродная. Если централизовать большинство или хотя бы все крупные корпорации с глобальным влиянием и объединить их с правительствами в «сеть, которая ставит идеологию капитализма выше мотива получения прибыли, а не просто хищно бродить по миру, подобно акулам, пожирающим все, во что они могут вонзить зубы», то сложится конгломерат , противостоять которому не сможет никто. Собственно говоря, дело к этому и идёт. Согласно новому закону, страны-участницы будут предлагать гражданам и предприятиям цифровые кошельки, которые смогут связать их национальные цифровые идентификаторы с подтверждением других личных данных например, водительскими правами, дипломами, банковскими счетами, медицинскими картами. Теперь граждане ЕС смогут подтверждать свою личность и обмениваться электронными документами из своих цифровых кошельков одним нажатием кнопки на мобильном телефоне и получать доступ к онлайн-сервисам на территории всей Европы.

Развивающиеся страны получат наименьшую выгоду, поэтому есть риск усиления цифрового неравенства. Почти три четверти бизнес-лидеров положительно оценивают роль ИИ после пандемии и сопутствующего кризиса. По мнению экспертов Оксфордского университета, к 2026 году ИИ напишет эссе, которое сойдет за написанное человеком, заменит водителей грузовиков к 2027 году и станет выполнять работу хирурга к 2053 году. Также ИИ превзойдет людей во всех задачах в течение 45 лет и автоматизирует все рабочие места в течение 120 лет.

По словам экспертов и представителей бизнеса, ИИ помогает компаниям прогнозировать и выявлять проблемы, а также восполняет нехватку навыков сотрудников, хотя до построения бизнес-стратегии искусственным интеллектом еще далеко. Тем не менее, компании так и не научились извлекать из ИИ реальную выгоду. И это не единственный проблемный момент в сфере искусственного интеллекта. Основные вызовы технологии ИИ Бизнес-процессы Чтобы компания извлекала прибыль, недостаточно вложить средства в алгоритм и получить первые успешные результаты после запуска пилотного проекта. Внедрение ИИ — это многоуровневый процесс, включающий культурные изменения в компании, найм и обучение специалистов по data science, автоматизацию и построение бизнес-процессов с учетом алгоритмов, и на этом весь список не заканчивается. Компания должна быть на определенном уровне технологической зрелости для того, чтобы внедрение ИИ приносило пользу», — говорит Леонид Жуков, генеральный директор Института Искусственного Интеллекта AIRI, старший управляющий директор Лаборатории по искусственному интеллекту Сбербанка. Выступая на международной конференции Сбера AI Journey 2021, Юрген Шмидхубер, ученый в области искусственного интеллекта, главный научный советник Института Искусственного Интеллекта AIRI и научный руководитель компании NNAISENSE отметил, что компании в основном сосредоточены на своих частных проблемах, а не на развитии технологий искусственного интеллекта: большая часть их прибыли от ИИ приходится на маркетинг и продажу рекламы. Такие гиганты как Alibaba, Amazon, Facebook, Google массово используют глубокие искусственные нейронные сети, например, Long-Short-Term Memory , чтобы предсказать спрос пользователей и дольше удерживать их на своих платформах, заставляя переходить по большему количеству рекламных объявлений. Нехватка специалистов ИИ развивается с высокой скоростью, и то, что называлось полгода назад state-of-the-art высшим уровнем развития , сегодня может оказаться средней разработкой. Если раньше в сфере искусственного интеллекта была занята узкая прослойка специалистов, сейчас при таком огромном спросе попросту не хватает квалифицированных кадров, способных справиться с постоянно развивающейся технологией, отмечает Жуков.

AMD запустила производство процессоров на архитектуре Zen 5 со встроенным ИИ

СЕО "Дзен" Антон Фролов стал вице-президентом VK по искусственному интеллекту На сегодняшний день искусственный интеллект ученые определяют, как алгоритмы, способные самообучаться, чтобы применять эти знания для достижения поставленных человеком целей.
Искусственный интеллект модифицировал медицину Искусственный интеллект Сбера теперь доступен во всех умных устройствах Sber под управлением ОС Салют ТВ.

Своим умом: как искусственный интеллект изменит экономику России через 10 лет

Например, XP Group с 2019 года использует машинное обучение для улучшения прогнозирования спроса, логистики и анализа ассортимента. Ритейл всегда был достаточно сильно оцифрован, сказал директор по анализу данных X5 Group Михаил Неверов. По его словам, решения принимались на основе собранных и обработанных вручную данных, а сейчас все автоматизируется с помощью ИИ. Александр Тоболь, СТО «ВКонтакте», вице-президент по технологиям и разработке VK, рассказал, что команда прикладных исследований ИИ компании сейчас работает над несколькими ключевыми решениями на базе машинного обучения. Работаем над функциями суммаризации — анализа больших объемов информации и предоставления кратких тезисов на основе, например, длинных видео. Маркетплейс Ozon применяет искусственный интеллект для модерации товаров: система автоматически изучает текст и изображения на предмет соответствия правилам и решает, допускать товар на площадку или нет. В результате модераторы смогут разбирать более сложные ситуации.

На другой торговой площадке «Авито» технологии искусственного интеллекта используют на каждом этапе пользовательского пути. Ежедневно автоматическая система с использованием ИИ проверяет 20 млн объявлений, каждое из которых должно соответствовать не только правилам платформы, но и законодательству, отметил Chief Data Officer «Авито» Андрей Рыбинцев. По его словам, эта же система в сутки анализирует до 10 миллиардов кликов пользователей на платформе. Продажи не единственная сфера, где ИИ получил широкое распространение. Большой потенциал лежит в медицине. Например, во время пандемии ИИ облегчал поиск очагов поражения легких на снимках компьютерной томографии, выделяя подозрительные участки.

Наиболее успешно развиваются три направления в медицине: компьютерная диагностика на базе анализа изображений, о чем было сказано ранее, поддержка принятия решений при диагностике, например при определении дозы лекарств. Также ИИ облегчает рутинные рабочие процессы: голосовые боты переводят речь врача в текст для медицинской карты, а роботы-операторы колл-центров записывают пациентов на прием.

Готовые библиотеки В одном из самых популярных каталогов программного обеспечения, написанного на Python, PyPI сейчас насчитывается более 400 проектов. Среди них, например, есть и такие, которые значительно упрощают и ускоряют сложные вычисления, разработку алгоритмов ML и работу с данными: Пример проектов в PyPI TensorFlow — открытая библиотека для машинного обучения от Google, которая позволяет создавать и обучать нейросети. PyTorch — конкурент TenserFlow от Facebook. Эта библиотека проще в применении для пользователей за счет простого в применении API. Scikit-learn предоставляет функционал, который позволяет масштабировать и кодировать данные для моделей машинного обучения, а также строить и оценивать их. Pandas помогает обрабатывать и анализировать табличные данные, а также подготавливать их для дальнейшего обучения алгоритмов. NumPy предназначена для работы с многомерными массивами и матрицами, которые широко используются в анализе данных.

Gensim — библиотека для неконтролируемого тематического моделирования и анализа сходства документов. Она широко используется для таких задач, как обобщение текста и кластеризациия документов. Кросс-платформенность Один и тот же код, написанный на Python, будет одинаково хорошо работать на различных операционных системах. Это существенно ускоряет процесс разработки, так как нет необходимости создавать отдельные версии под Windows, Linux, macOS и, соответственно, позже тестировать каждую из них. Также программисты, которые пишут ИИ на Python на разных ОС, могут легко взаимодействовать в рамках проекта, что помогает снизить затраты на кросс-платформенную разработку для бизнеса. Комьюнити разработчиков Разработчики, которые используют Python, объединяются в сообщества по всему миру, где обмениваются знаниями по разным направлением использования языка программирования, в том числе и в машинном обучении. Например, в MoscowPython регулярно проходят митапы, на которых программисты делятся своими кейсами и наработками. Что, кроме Python, нужно знать, чтобы внедрять решения на базе AI В отличие от открытых решений на базе машинного обучения и нейросетей, таких как ChatGPT и Midjourney, разработать и внедрить технологии искусственного интеллекта способны только разработчики с определенным техническим бэкграундом.

Награждение прошло на международной конференции Сбера AI Journey. Число таких уникальных решений будет только расти, уверен заместитель председателя правительства РФ Дмитрий Чернышенко. Совместными усилиями мы добьемся технологического лидерства страны, и в этом будет вклад каждого из номинантов премии в сфере ИИ», — отметил Чернышенко. Премию за вклад в научное сообщество в изучении ИИ получили трое исследователей из Москвы. Руководитель исследовательской группы в Сколковском институте науки и технологий и научный сотрудник в Институте искусственного интеллекта AIRI Александр Коротин награждён за разработку новых алгоритмов для обучения генеративных моделей данных на основе теории оптимального транспорта. Третий лауреат — научный сотрудник Московского физико-технического института Александр Безносиков. Ему удалось обучить ИИ объединять между собой информацию из данных, хранящихся у абсолютно разных агентов, получать значительно более персонализированные результаты для каждого пользователя.

В терминах обучения ИИ в качестве базовых понятий используются языки программирования и инструменты для изучения языков. Если нейросеть обучена, то она будет знать языки программирования, если нет — то нет. Без учителя Данный вид процесса обучения предполагает только ввод данных. В таком случае алгоритм изменяется, чтобы значимые и обладающие весом коэффициенты корректировались, а нейронная сеть могла по определенным параметрам схожих данных на «выходе» дать результат, который обнаруживает связи. Также во время этой операции выявляются определенные соответствия между данными. Так в ходе обучения выделяют параметры, которые свойственны моделям материала обучения, впоследствии этим модели по схожим признакам объединяют в группы. Когда учитель полностью отсутствует, то НС выстраивает целую цепочку, которая состоит из логических решений, также образует определенное понимание, основанное на вводных данных. Такое устройство машинного обучения без учителя применимо в отношении статистических моделей. Базовый язык нейросети— это язык, на котором система будет осуществлять взаимодействие с человеком. Библиотека языков программирования — это набор операторов языка, которые будут использоваться для обработки данных, поступающих от ИИ. Способность к обучению у нейронных сетей Способность и технология обучения нейронных сетей имеет свои особенности. Так, одним из наиболее распространенных методов считается Backpropagation, в основе которого заложен алгоритм вычисления градиентного спуска. Если говорить проще, то во время движения по градиенту происходит расчет минимального и максимального значения функции. Для осознания такого способа функцию переводят в график. Образуется кривая, на которой определяют точки с наименьшим и наибольшим показателем. В это же время графически отображают все веса, и для каждого из них рассчитывают глобальный минимум. Также обучение может происходить по другому направлению — Resilientpropagation. Альтернатива предыдущей технологии. Если результат нужен здесь и сейчас, то данный способ считается не самым эффективным и удобным. Но в ряде случаев обучение происходит именно по Rprop. Он основан на принципах epoch, то есть только знаки производного случая применяют с целью корректировки значимых коэффициентов. Другой распространенный метод — генетический алгоритм. По своей сути он напоминает процессы, которые происходят в окружающей среде. Простыми словами — эволюционные изменения. Это целая наука.

Что такое нейросети: на что способны, как работают и кому нужны

На основе этого бюджета умозаключений модель может предсказать будущее поведение человека при столкновении с проблемой. Это позволит ученым лучше программировать системы искусственного интеллекта, давая им возможность лучше понять процессы "мышления" в различных контекстах. Например, понимая причины, стоящие за решениями пользователя, ИИ-помощник может предложить более адаптированную поддержку и предугадать будущие потребности. Многообещающие результаты метода моделирования, исследователи протестировали систему в трех различных условиях. Первый эксперимент включал в себя наблюдение за людьми, перемещающимися по лабиринту, чтобы понять, как они продвигаются вперед.

Во втором эксперименте анализировались коммуникации между двумя людьми, участвующими в игре.

Нейросети уже успешно справляются с написанием текстов, генерацией картинок, воссозданием голосов и другими задачами. Они, с одной стороны, облегчают жизнь человеку, а с другой — вызывают опасения и вопросы. Что такое искусственный интеллект? Зачем он нужен, если есть интеллект человеческий? Какую пользу сегодня приносит искусственный интеллект? Может ли он навредить обществу? Подробные ответы на эти и многие другие вопросы журналистов дали гости Научного кафе.

Модераторами дискуссии традиционно выступили Любовь Стрельникова, главный редактор журнала «Химия и жизнь», и Сергей Ивашко, пресс-секретарь химического факультета МГУ.

За год виртуальный эксперт в три раза снизил количество случаев, в которых скорость мобильного интернета по разным причинам могла замедляться. Под его круглосуточным наблюдением находится 150 тыс. Технология одновременно контролирует и анализирует более 30 различных параметров и тут же отправляет информацию техническим специалистам билайна. Одновременно делать такой объем работы ему помогают современные технологии на базе искусственного интеллекта. Одна из них — алгоритмы машинного обучения.

И если честно, был весьма ошеломлён его возможностями, да это не полноценный ИИ, а всего лишь нейросеть, но то что он умеет - поражает воображение! Итак, начал я с создания канала на Дзене. Название и описание канала придумала нейросеть, а аватарка сгенерирована с помощью Stable Diffusion. Получилось весьма недурно, результат можете оценить на фотографии ниже План написания весьма простой, идею статьи скармливаем на английском языке ChatGPT, а получившийся результат переводим с помощью DeepL.

«Искусственный интеллект никогда не ошибается. За ним будущее»

Все новости о создании, развитии и достижениях в области искусственного интеллекта. Получалась картина, при которой алгоритмы, управляемые искусственным интеллектом, обладали полной ситуационной осведомленностью во время испытаний DARPA AlphaDogfight, которые завершились в 2020 году и передавались непосредственно в ACE. В основе алгоритмов Дзена лежит искусственный интеллект и работает он на 2 технологиях фильтрации. В ответ компания разрабатывает методы раннего обнаружения мошеннических действий, увеличивает количество команд, работающих над безопасностью ИИ, и экспериментирует с технологиями удостоверения подлинности цифрового контента, такими как C2PA. Гонка за искусственным интеллектом, которому сегодня приписывают мыслимые и немыслимые возможности процветания, переходит в ажиотаж. Искусственный интеллект подразумевает собой искуственно созданную машину, умеющую решать задачи с возможностью дальнейшего самообучения.

Похожие новости:

Оцените статью
Добавить комментарий