Что такое анодирование. Анодирование алюминия и зачем оно нужно, где применяют анодированный металл, технологии твердого, теплого и холодного анодирования, различия методов и характеристик получаемых покрытий. Анодирование алюминия — наиболее эффективный способ защиты поверхности профиля от коррозии, исключающий отслоение покрытия и подпленочную коррозию.
Анодирование, что это такое? (стр. 1 )
Чаще всего это раствор на основе серной кислоты и дистиллированной воды. Хотя точный тип используемой кислоты зависит от области применения. Электрический ток проходит через алюминиевую часть, в этом случае алюминий действует как анод. Катод производят из алюминия или свинца и также помещают в гальваническую ванну. Вода расщепляется, высвобождая кислород на поверхности алюминия, а затем объединяется, образуя покрытие, тонкий прозрачный слой оксида алюминия. Толщина этого покрытия определяется уровнем электрического тока, а также количеством времени, в течение которого он подается. Цветное анодирование Когда вы думаете об анодировании алюминия, в первую очередь, это поверхность яркого цвета. Цвет может быть нанесен 2 способами: Интегральное нанесение цвета. Этот процесс окрашивания алюминия дает желаемый цвет, когда анодирование проводится в ванне.
Этот процесс дает алюминию более стойкое к истиранию покрытие, но недостатком является стоимость: просто требуется гораздо больше электроэнергии, что делает его более дорогим вариантом. Электролитическая окраска. Этот вид обработки придает цвет алюминиевой детали, потому что процесс анодирования создает стабильные и устойчивые поры на поверхности алюминия, а краситель просто заполняет эти поры.
Анодные оксидные пленки, полученные в результате этого процесса, могут использоваться в защитных и декоративных целях, и даже служить диэлектриком в электролитических конденсаторах. Анодирование алюминия — это необходимый процесс. При отсутствии специальных покрытий поверхность алюминия вступает в реакцию с кислородом и покрывается тонкой оксидной пленкой толщиной 2-3 нм при нормальных условиях. Эта пленка выполняет защитные функции, не давая произойти дальнейшему окислению металла. Но такое покрытие нестабильно: оно не имеет кристаллической структуры, сильно зависит от внешних факторов и не гарантирует защиты изделия от коррозии. Анодная пленка не является отдельным слоем на поверхности алюминия, а растёт из его структуры как наружу, так и внутрь , поэтому риск образования коррозии и отслоения покрытия в процессе эксплуатации полностью исключен.
Стандартный технологический процесс включает в себя следующие основные этапы: Обезжиривание Во время этого процесса с поверхности металла устраняются все загрязнения и масляные пятна. Травление Этот этап предусматривает стравливание с поверхности металла естественной оксидной пленки и поверхностного слоя алюминия. Осветление или нейтрализация Данный этап предусматривает удаление с поверхности присутствующих в сплаве тяжелых металлов. Анодирование Это процесс выращивания искусственной оксидной пленки с учетом заданных параметров. Адсорбционное окрашивание Это проникновение красящего пигмента в поры пленки Уплотнение Во время процесса уплотнения происходит закупоривание пор. Наша компания предлагает следующие виды анодированного алюминиевого профиля: профиль с защитным покрытием, профиль с декоративным покрытием.
Хотя и эстетика также очень важна для любого велосипедиста. Анодированный металл выглядит намного интереснее, чем крашенный.
На рынке можно найти разнообразные детали и запасные части в огромном ассортименте. Это разнообразные выносы, педали, бонки, колпачки для камер и т. Отдельного упоминания заслуживают различные варианты бесцветных анодированных покрытий, которые благодаря интерференции световых лучей придают деталям велосипеда роскошный вид. А светоотражающий эффект оксидных пленок делает велосипедистов заметными в темное время суток. Особого внимания и ухода требуют вилки и амортизаторы. Если поцарапанное или потертое покрытие на руле — проблема исключительно эстетическая, то его повреждение на подвижных частях конструкции, таких как ноги вилки, ведет к более серьезным неприятностям. Малейшие дефекты на этой детали могут стать причиной огромных проблем. По большому счету необходимо следить, чтобы на ногах вообще не было никаких изъянов.
Если же повреждений все-таки избежать не удалось, следует постараться с помощью мелкой наждачной шкурки полностью удалить задиры. В противном случае царапины начнут появляться на башинге и пыльниках, которые в свою очередь будут еще больше царапать покрытие ног вилки. В результате достаточно скоро образуется щель, через которую будет протекать масло. Обнаружив серьезные повреждения на поверхности ног вилки, нужно обращаться в ремонтную мастерскую. Если повезет, дефект устранят, пустив в ход лак для ногтей или восстановив оксидную пленку. К сожалению, часто проблему устранить не удается. Может оказаться, что отремонтировать вилку уже невозможно, а значит — деталь необходимо заменить. Важно отслеживать, в каком состоянии пыльники и башинги.
Если в них набивается песок, это приводит к повреждению покрытия на ногах.
Приготовление электролита ведется в стеклянной посуде. При изготовлении детали, подлежащей анодированию, необходимо оставить на ней небольшую площадку. Это - так называемый технологический контактный лепесток, который после анодирования удаляется.
В нем сверлится отверстие диаметром 3,3 мм под винт МЗ. Деталь тщательно зачищается мелкой шкуркой, обезжиривается в любом стиральном порошке и промывается в проточной водопроводной воде, после чего к ее поверхности не следует прикасаться руками. Винтом с гайкой к лепестку детали присоединяется провод, предназначенный для ее подключения к положительному полюсу источника тока. Лепесток, винт с гайкой и конец провода покрывают слоем пластилина, чтобы исключить их взаимодействие с электролитом.
После этого вся деталь протирается ватой, смоченной ацетоном, и подвешивается в ванночку. Для подвески можно использовать изоляционный стержень из текстолита или оргстекла, положенный на борта ванночки. Ванночка должна быть выполнена из алюминия и соединяется с минусом источника тока через последовательно включенный амперметр можно использовать авометр в режиме амперметра и переменный резистор для регулирования тока. Подвешенная деталь не должна касаться ванночки, а минимальное расстояние между ними должно быть порядка 10 мм.
В ванночку заливается электролит до такого уровня, чтобы им была покрыта вся деталь, и деталь соединяется с плюсом источника тока.
Анодирование алюминия
Рисунок 1 — Анодирование металла. Окс высокой толщиной и особенностями процесса нанесения. В ряде случаев у твердого покрытия толщина достигает сотен микрометров, тогда как в обычном покрытии она измеряется десятками. Высокая толщина и твердоть Ан. В качестве электролитов применяются: Малоагрессивные фосфорная, лимонная, борная кислота; Агрессивные серная, сульфосалициловая кислота, хромовый ангидрид. Анодирование металла всегда идет при повышенном напряжении, чаще всего от 12 до 120 В. Иногда напряжение может достигать огромных для гальваники значений - до 600 В.
Выделяющиеся на аноде продукты реакции могут: Полностью растворяться покрытие не образуется ; Создавать на поверхности металла прочно сцепленное тончайшее десятки нанометров компактное электроизоляционное оксидное покрытие; Частично растворяться в электролите и образовывать пористое оксидное покрытие толщиной в десятки и сотни микрометров. После нанесения пористое покрытие может оставаться "как есть", уплотняться в воде, либо наполняться. В первом случае покрытие прекрасно подходит под нанесение лакокрасочных материалов и оклеивание. Во втором покрытие сохраняет серебристый цвет и становится более коррозионно-стойким. В третьем случае покрытию можно придать цвет без нанесения лакокрасочных материалов. Подробнее об этом написано в разделе 6.
Состав и структура оксида алюминия после покрытия. Аноднооксдные покрытия на алюминии могут быть тонкими беспористыми и толстыми пористыми. Рисунок 2 — Схема образования тонкой оксидной плёнки в малоагрессивных электролитах. И все-же напряжение на ванне остается весьма значительным - 150-600 В. Продолжительность обработки составляет 15-30 минут, а толщина покрытий не превышает долей микрона. Ввиду малой пористости тонкие анодно-окисные покрытия окрашиваются плохо.
Толстые пористые аноднооксидные покрытия получают из агрессивных растворов например, из раствора серной кислоты. В покрытиях, полученных из агрессивных электролитов, обычно выделяют два слоя рисунок 3 : Тонкий беспористый барьерный слой, прилегающий к металлу 1 , формирующийся из условия 0,008 - 0,012 мкм на 1 В приложенного напряжения, и обычно составляющий 0,01 - 0,03 мкм. Толстый пористый слой 2 , представляющий собой систему конусообразных пор, пронизывающих оксидную пленку, и имеющий толщину от нескольких микрометров до миллиметров. Рисунок 3 — Структура слоев оксида алюминия, полученного из агрессивных электролитов. Структура толстого пористого аноднооксидного покрытия подтверждается результатами электрохимической импедансной спектроскопии рисунок 4. Слева - модуль Боде, справа - фаза Боде.
Квази-горизонтальная область в графике модуля Боде и соответствующая область минимума в графике фазы Боде характеризуют поведение сопротивления пористого слоя. Крутая часть при более высоких частотах на графике модуля Боде характеризует емкостное поведение пористого слоя. Эквивалентная электрическая схема пористого аноднооксидного покрытия с уплотнением в воде приведена на рисунке 5. Рисунок 5 — Эквивалентная электрическая схема пористого аноднооксидного покрытия с уплотнением в воде: Rsol - сопротивление электролита, Ro и Co - сопротивление и емкость внешнего кристаллического слоя, Rpw и Cpw - сопротивление и емкость стенки поры, Rp и Cp - сопротивление и емкость тела поры, Rb и Cb - сопротивление и емкость барьерного слоя. Что касается состава анодно-оксидных покрытий, то тонкие беспористые пленки представляют собой в основном безводный оксид алюминия, который в чистом виде располагается у границы с металлом. Гидратация стенок усиливается от дна к устью.
Большинство исследователей склоняется к мнению, что вода в покрытии химически не связана, за исключением поверхностных слоев, где она входит в состав бемита. Последние называют структурными анионами.
Слайды и текст этой презентации Слайд 1 Анодирование Презентация ученицы 2-В курса Димовой Дианы Слайд 2 Описание слайда: Анодирование — процесс создания оксидной плёнки на поверхности некоторых металлов и сплавов путём их анодной поляризации в проводящей среде. Существуют различные виды анодирования, в том числе электрохимическое анодирование — процесс получения оксидного покрытия на поверхности различных металлов Al, Mg, Ti, Ta, Zr, Hf и др. Слайд 3 Описание слайда: Широко распространена технология анодирования алюминия, титана, тантала, ниобия, кремния, германия, арсенида галлия.
Обычно анодирование проводят при постоянном токе в гальваностатическом или потенциостатическом режиме. Слайд 4 в водных растворах электролитов; в расплавах солей; в газовой плазме; плазменно-электролитическое оксидирование.
При помощи анодирования можно добиться индивидуальности и эстетичности продукции. Для алюминия основными цветами оксидной пленки являются оттенки желто-коричневой гаммы. Цвета титановых сплавов получаются более разнообразными. В зависимости от плотности тока, состава сплава и электролита это может быть бронзовый и желтый, голубой и пурпурный, ярко-зеленый и ярко-синий электрик. Если же этих цветов недостаточно, то поверхность анодированного металла в отличие от необработанного хорошо удерживает неорганические пигменты и синтетические красители и может быть окрашена в любой цвет.
Достоинства анодирования не исчерпываются широкой цветовой гаммой гальванического покрытия. Оксидные пленки в зависимости от условий процесса придают различные технологические свойства поверхностям металлов.
Эта обработка улучшает внешний вид обрабатываемых элементов, значительно повышает их коррозийную стойкость, износоустойчивость.
Основные понятия и принципы Суть технологии заключается в создании защитного оксидного слоя через погружение детали или предмета в электролит и прохождение через него постоянного тока. В качестве анода используется само алюминиевое изделие , погруженное в электролитическую ванну. Под воздействием постоянного тока на поверхности металла происходит окисление.
В результате формируется твердый антикоррозийный слой. При подключении к электродам анод отдает электроны, приобретает положительный заряд и ионизируется. Эти свободные электроны перемещаются к катоду, вызывая редукцию.
Процесс сокращает количество ионов в растворе, что ускоряет окисление обрабатываемого предмета.
Процесс анодирования алюминия
Подробно об анодировании-нужно ли анодирование на деталях из алюминия? Важно знать про анодирование | это процесс создания на поверхности алюминия защитной оксидной пленки путем погружения в раствор электролита и воздействия на металл током анодного заряда. |
Механизм и технология анодирования Ан.окс. Структура и свойства оксида алюминия в покрытии. | это электролитическая пассивация, применяемая для увеличения толщины естественного оксидного слоя на поверхности металлических деталей. |
Анодирование в "домашних" условиях V2.0 — Сообщество «Сделай Сам» на DRIVE2 | По своей сути анодирование является востребованным процессом для металлов из-за его впечатляющей способности повышать коррозионную стойкость. |
Что такое "анодирование"? | Что такое анодирование. Анодирование – это метод повышения коррозионной стойкости металлического изделия путем формирования слоя оксида на его поверхности. |
Что такое анодирование алюминия
Глубоким, или твёрдым анодированием называют технологический процесс, в результате которого на поверхности алюминиевых сплавов образуется защитный слой толщиной свыше 50 мкм. Главная» Новости» Анодированный болт что это. Что такое анодирование и в чем заключаются преимущества анодированных металлоконструкций от не прошедших такую обработку?
Подробно об анодировании-нужно ли анодирование на деталях из алюминия? Важно знать про анодирование
Или свяжитесь с нами напрямую, чтобы узнать больше. Основа анодирования Анодирование представляет собой сложную обработку поверхности, при которой металлы, в первую очередь алюминий, погружают в кислоту и подвергают воздействию электрического тока. Этот процесс вызывает окисление поверхности металла, образуя прочный защитный слой. В моменты осознания думайте об этом как о «электризующем» металле, чтобы повысить его долговечность и внешний вид. Благодаря анодированию металлы приобретают повышенную устойчивость к коррозии, укрепленную поверхность и привлекательную отделку.
Эта техника сочетает в себе науку и эстетику, обеспечивая защиту и красоту. Цели анодирования Повышение коррозионной стойкости По своей сути анодирование является востребованным процессом для металлов из-за его впечатляющей способности повышать коррозионную стойкость. Электрохимический процесс утолщает и делает более жестким природный защитный оксидный слой. Таким образом, он защищает основной металл от вредных факторов окружающей среды, таких как влага, окисление и различные химические вещества, продлевая срок службы металла.
Улучшить твердость поверхности Еще одним неотъемлемым преимуществом анодирования является повышение твердости поверхности металла. Образующийся в результате анодирования оксидный слой имеет внутреннюю твердость. Это означает, что анодированные поверхности становятся намного более устойчивыми к износу, царапинам и ежедневному истиранию, гарантируя, что качество продукта не изменится с течением времени. Украсить внешний вид Помимо защитных свойств, анодирование играет ключевую роль в эстетическом улучшении.
Процесс может быть адаптирован для получения множества отделок, от ярких глянцевых оттенков до приглушенных матовых тонов. Однородный и контролируемый оксидный слой можно окрашивать для достижения определенных цветов, что делает его предпочтительным для отраслей, где функциональность и дизайн имеют первостепенное значение. Обеспечьте лучшую адгезию для красок, клеев или смазочных материалов В тех случаях, когда металлы нуждаются в дополнительной обработке, такой как покраска или склеивание, анодированные поверхности обладают превосходными адгезионными свойствами. Пористая природа анодированного слоя служит отличной грунтовкой, обеспечивая более эффективное и долговечное прилипание красок, клеев и смазочных материалов.
Это не только обеспечивает более длительный срок службы покрытия, но и снижает потенциальные проблемы, такие как отслаивание или сколы. Ключевые технические параметры анодирования Плотность тока: Плотность тока, измеряемая в амперах на квадратный фут ASF или амперах на квадратный метр ASM , представляет собой количество электрического тока, подаваемого на ванну анодирования. Выбранная плотность напрямую влияет на скорость роста и толщину анодного оксидного слоя. При более высоких плотностях тока обычно быстрее образуются более толстые оксидные слои.
Однако чрезмерно высокая плотность тока может привести к выгоранию или неравномерному покрытию. Наоборот, низкая плотность тока может привести к более тонкому и менее прочному оксидному слою. Концентрация кислоты: Концентрация кислоты в ванне для анодирования играет ключевую роль в определении структуры и пористости оксидного слоя. Различные концентрации могут привести к различным размерам пор в сформированном слое.
Например, при сернокислотном анодировании поддержание постоянной концентрации кислоты необходимо для получения однородного плотного оксидного слоя. Неточные концентрации могут привести к некачественному анодному покрытию, что повлияет на внешний вид слоя и его защитные свойства. Температура: Контроль температуры ванны анодирования имеет решающее значение для получения стабильных результатов. Он влияет на скорость реакции анодирования и структуру оксидного слоя.
Более высокие температуры, как правило, ускоряют процесс анодирования, но могут поставить под угрозу качество и долговечность оксидного слоя, что может привести к более мягкому и пористому покрытию. С другой стороны, более низкие температуры могут замедлить реакцию, создавая более плотный и твердый анодный слой. Продолжительность лечения: Время, в течение которого металл подвергается процессу анодирования, оказывает непосредственное влияние на толщину анодного слоя. Продление обработки обычно приводит к более толстому оксидному слою, повышающему его защитные свойства.
Однако для каждой установки существует оптимальная продолжительность; чрезмерное анодирование может привести к хрупкому или менее липкому оксидному слою.
От качества данного этапа зависит протекание химических процессов и окончательное качество материала. Гильотинные ножницы WARCOM 60-10 позволяют производить продукцию любых размеров по индивидуальным эскизам и чертежам наших заказчиков. В работу принимаются заготовки разной конфигурации и толщины.
Принимаем заказы на рубку листа без остатка.
Однако анодирование может производиться без серной кислоты, с использованием таких всегда имеющихся в домашнем хозяйстве химических соединений, как кислый углекислый натрий питьевая сода и хлористый натрий поваренная соль. Для приготовления электролита готовят раздельно два насыщенных раствора питьевой соды и поваренной соли в кипяченой воде комнатной температуры. Для получения насыщенных растворов количество соды и соли берется избыточное, растворение ведут не менее получаса, время от времени помешивая растворы стеклянной палочкой. Затем растворам дают отстояться в течение десяти минут и сливают их с избытка нерастворившихся соды и соли, после чего целесообразно их профильтровать. Электролит готовится из девяти объемных частей раствора соды и одной объемной части раствора соли с тщательным их перемешиванием. Приготовление электролита ведется в стеклянной посуде. При изготовлении детали, подлежащей анодированию, необходимо оставить на ней небольшую площадку. Это - так называемый технологический контактный лепесток, который после анодирования удаляется.
В нем сверлится отверстие диаметром 3,3 мм под винт МЗ. Деталь тщательно зачищается мелкой шкуркой, обезжиривается в любом стиральном порошке и промывается в проточной водопроводной воде, после чего к ее поверхности не следует прикасаться руками. Винтом с гайкой к лепестку детали присоединяется провод, предназначенный для ее подключения к положительному полюсу источника тока. Лепесток, винт с гайкой и конец провода покрывают слоем пластилина, чтобы исключить их взаимодействие с электролитом.
На поверхности металла такая пленка держится достаточно хорошо. Наращивание оксидной пленки можно осуществлять и термическим методом. Однако при этом она получается низкой по прочности и не держится длительное время. Анодированию можно подвергать разные виды металлов. Основным требованием является то, что они должны иметь возможность образовывать только один оксид. Он должен обладать максимальным уровнем устойчивости.
Анодирование, что это такое? (стр. 1 )
Потому вот я и не советую работать с электролитом ниже -10 градусов. В этих пределах нарастает плотный, окрашенный, красивый анодный слой. Я бы весьма рекомендовал плотность тока 2.. Просто это- мой любимый режим. Мне он кажется наиболее надежным. По многим соображениям, о которых тут не буду распространяться. Ведь, напомню, пленка не только нарастает изнутри, но и растворяется снаружи. И, если скорость роста мала- большой толщины слоя вы не дождетесь, процесс анодирования превратится в процесс банального травления металла. В том смысле, что чем больше размер площадь катода пластина из свинца - тем лучше. Лучше потому что это обеспечит весьма «мягкий», равномерный режим распределения плотностей тока по поверхности обрабатываемых деталей, особенно больших.
Эта самая «равномерность» весьма важна для уменьшения проблем с возможными «прогарами»и растравами деталей. Чисто практически, площадь катода рекомендуется хотя бы в 2 раза больше, чем площадь анода-детали. При этом, если лист свинца положен на дно ванны, его нижняя поверхность- не считается, поскольку почти не работает. Таким образом, рекомендую катодную плотность тока вдвое меньшую, чем анодную. Важна лишь плотность тока. Но чисто практически, исходя из того что цепь наша имеет ненулевое электрическое сопротивление, нам потребуется довольно приличный вольтаж нашего блока питания. Причем, очень желательно- чтобы блок питания имел несколько выходных напряжений, ну хотя бы два. Физически это- лишь отвод от середины вторичной обмотки трансформатора. У меня хорошо зарекомендовал себя вариант с 25 и 50 вольтами на выходе.
Кстати, вы в курсе, что напряжение без нагрузки, и напряжение под нагрузкой у блока питания- это две большие разницы? Под нагрузкой напряжение всегда падает «проседает». И большая разница этих напряжений говорит о слабости трансформатора. Как правило, при этом, он трансформатор еще и сильно греется. А значит- его надо менять на более мощный. А вот если напряжение вашего трансформатора при отдаче ампер так 10-15 «просело» лишь на пару вольт- это нормально. И греться сильно он не будет… Почему я хочу купить кондиционер? Соблюдение токового режима при анодировании- дело не особо хитрое. Крути себе реостат, да поглядывай на амперметр… А вот с температурным режимом- все намного сложнее.
Пока что я просто перед анодированием охлаждаю 4-5 канистр с электролитом в бытовом морозильнике, и провожу анодирование при постоянном росте температуры. В смысле, залил я раствор с -10 градусной температурой, включил ток… и поползла температура вверх! А что же вы хотите- там весьма солидное тепло выделяется по ходу дела…. А потом- электролит сливаю в канистры обратно, и по второму кругу в морозильник! Нудно, спросите? Не то слово! Вот потому то моей голубой мечтой является изготовление некой холодильной установки, способной охлаждать електролит прямо в ванне, по ходу процесса! Как это и принято в заводской практике! И, наверное, самым простым путем тут будет переделка оконного небольшого!
Сделать в ванне двойную стенку, залить туда ТОСОЛ, и в него поместить трубку охладителя… Ну или еще проще- гонять холодный воздух по тому «двойному дну». Думаю, что таки сооружу подобную «установку», тем более, что оконный кондиционер и невелик, и не особо дорог… Типичные ошибки процесса. В рамках этого сайта я описываю «холодную» технологию анодирования, в результате которой, покрытие получается очень твердое, достаточно толстое, самоокрашивающееся, с высокой коррозионной защитой. И выглядит примерно так: Поэтому, в случае отклонения процесса в какую либо сторону от именно этого варианта, я буду называть результат браком. Хотя даже и такое бракованное покрытие- вполне честный вариант анодирования, дающий тоже неплохую защиту и приличный внешний вид. Итак, речь пойдет о типичных ошибках и «как с ними бороться». На самом деле их не так уж и много. Попробую перечислить их по порядку: 1 — Температура процесса слишком низкая. Вы не можете добиться правильной плотности тока на детали анодной плотности тока.
Несмотря на то, что реостат выкручен по максимуму и напряжение, идущее с блока питания- максимально. В результате малой плотности тока покрытие растет очень медленно, и оно- бесцветно. Проблема в том, что при очень низкой температуре элекрическое сопротивление электролита сильно возрастает, вследствии чего вашего напряжения 25-50 вольт недостаточно для получения «правильной» плотности тока. У вас есть 2 пути решения: или поднять напряжение вольт так до 60-100 опасно!!! Я бы советовал второй вариант. Плотность тока правильная, а вот твердость анодного слоя слабовата, да и окраски у него по сути нет. Так себе, легкий мутновато-молочный оттенок… Дело в том, что температура- важнейший показатель процесса. И при превышении порога допуска, процесс изменяется качественно. Из «холодного» он становится «теплым».
Со всеми вытекающими: бесцветная и не слишком толстая и твердая пленка. Даже уже полученный «холодный слой», при этом разрыхляется и постепенно растворяется. Окраска исчезла не полностью, но пленка потеряла всякую прочность. Царапины от ногтя: 3 — Анодная плотность тока мала. Анодный слой растет медленно, он бесцветен. Хотя и прочен вполне. Дело в том, что окрашенность у анодного слоя появляется скачкообразно, примерно с анодной плотности тока в 1,5.. При меньшей- слой получается бесцветным, а вернее- слегка мутно-белым. И хоть прочность такого слоя не так уж и плоха, мы ведь хотим еще и эстетики?
В качестве небольшого запаса надежности. Вдруг вы ошиблись при подсчете площади поверхности детали? Хочется чтобы процесс шел быстро- потому вы подняли ток выше нормы. Но вас преследуют частые «пробои» и растравы то детали, то зажима подвески. Это явление называется «прогар». Вот почему это происходит: Прогар — отчего он происходит? В принципе, при очень интенсивном перемешивании электролита, и как следствии — хорошем отводе тепла от детали, допустимы большие плотности тока. Это сокращает время процесса, и позволяет нарастить особо толстый анодный слой. В промышленности возможен даже вариант с 2мм слоем анода.
Так обрабатывают рабочую поверхность цилиндров судовых двигателей. Для этого там имеют место во первых, супер качественное охлаждение детали в процессе анодирования, во вторых- напряжение анод-катод в сотни вольт. Но ни то, ни другое мы позволить себе не сможем, к сожалению. И в итоге, из за естественной концентрации тока на углах и концах детали, деталь наша будет иметь зоны местного перегрева. А такие зоны нагревают окружающий электролит. А нагретый электролит имеет значительно более низкое электрическое сопротивление. Значит весь электрический ток устремляется именно в перегретую зону, перегревая ее этим еще больше! Кроме того, теплый электролит интенсивно растворяет анодный слой! В зоне перегрева начинается такой себе мини-процесс в «теплой» интерпретации.
В течении нескольких секунд, такая микрозона перегрева полностью оголяется до белого метала, и через нее начинает течь ток, в разы больший нормального. За пару минут деталь может раствориться наполовину! И все вышеуказаные проблемы- из за недостаточного перемешивания электролита! Таким образом, я не слишком советую большую плотность тока. В том смысле, что площадь поверхности свинцового катода мала, в сравнении с площадью поверхности обрабатываемой детали. Это не самая большая проблема, если вы обрабатываете маленькие детали, расположенные далеко от катода в разных концах ванны. Но вот, если вы станете анодировать тот же рессивер, в ванне не слишком больших габаритов, то начнутся проблемы. Появится высокая склонность к прогару и растравливанию детали. Дело в том, что малые размеры катода способствуют неравномерному распределению силовых линий тока по поверхности детали.
А это и приводит в итоге к повышенному риску прогара. Мой совет: площадь катода должна быть хотя бы в 2 раза больше чем площадь детали. В этом случае, получится достаточно равномерное распределение тока на поверхности детали. В идеале- лучше всего иметь свинцовую «облицовку» по всем стенкам и дну ванны. Не удается добиться правильной силы тока, а самое главное,- при подаче тока на деталь, пузырьки кислорода идут не с ее поверхности, а с поверхности зажима. Ну или- вообще не идут. Чисто електрическая проблема. Возникшая, скорее всего, от вашей лени сделать качественный зажим. Всяческие варианты с обматыванием детали алюминиевой проволокой, имхо, ненадежны.
Зажим должен быть струбциноподобным, с резьбовой контактной шпилькой-электродом из алюминия. Только такая конструкция позволяет с достаточной силой прижать електрод к детали, обеспечив тем самым, надежный электрический контакт. Возможна и еще одна причина- точка контакта шпильки-электрода на зачищена наждачкой. Надо перед каждым анодированием обязательно зачищать точку контакта. Алгоритм правильного режима анодирования: 1- Вы аккуратно подсчитали площадь поверхности детали, и правильно вычислили необходимую силу тока. Диаметр пузырьков крайне мал, их общее течение напоминает скорее струйки дыма, чем собственно пузырьки. Для полного понимания вот вам фото «правильного» течения процесса: 4- Длительность процесса контролируется в общем то визуально по цвету детали, но в среднем равна 20-30 минутам для мелких деталей заглушки и т. Подготовка под анодирование. Есть несколько специфичных тонкостей, которые надо знать, чтобы подготовить детали к анодировке.
Легко подсчитать, что при толщине слоя 0,05 мм, болту в гайке станет теснее на 0,2 мм. Шлифовать тем или иным способом деталь уже анодированную почти невозможно- твердость покрытия как у керамики. Да и крайне неэстетично обдирать часть покрытия, открывая, к тому же, дорогу коррозии… Значит единственный способ- обеспечить «запас» до обработки. Плоские участки можно подогнать напильником и шкуркой. Ну а у резьбы, как показывает практика, достаточно легко шлифовать лишь самую вершину резьбы- именно ей «становится тесно». Это можно сделать очень мелкой наждачкой. Во первых сильно выигрывает эстетика, во вторых снижается вероятность «прогара» при анодировании. Хотя, на самом деле, не так этот прогар и страшен.. Надо отметить что дефекты поверхности анодный слой не маскирует- они будут видны и на обработанной детали.
Не советую держать ее в горячем едком калии или натрии, как рекомендуют заводские технологи- это заметно портит чистоту поверхности. Лучше пользоваться куском хозяйственного мыла и зубной щеткой- детали мелкие, работа нас не пугает… 4 — Очень эффективно обезжиривает стиральный порошок: достаточно растворить его в горячей воде, залить в пластиковую емкость, высыпать туда детали и хорошенько потрясти посудину. Но есть одно НО: после промывки детали надо тут же высушить горячим воздухом, иначе дюраль интенсивно окисляется! Видимо, стиральный порошок уж очень агрессивен! Тончайший слой жира с пальцев рук- не помеха. Он моментально окисляется кислородом при первых секундах анодирования и всплывает в виде черных хлопьев… Вот и все. Этого вполне достаточно. Самодельная установка для анодирования. Тут я постараюсь подробно описать устройство всего необходимого оборудования.
С некоторыми рекомендациями по изготовлению. Ну и, по возможности, с фотографиями. Замечу, установка пригодна для анодирования деталей с площадью поверхности примерно до 7-8 дм2. На практике этого хватит для ресиверов ружей 70-90 см. Итак, приступим: Гальваническая ванна. Ванна, скорее всего, понадобится даже не одна. У меня их, например, три. Одна- для обработки всяких маленьких деталей, другая- для недлинных труб до 60 см , третья- для длинных труб 70-90 см. Замечу, для работы с последней, нужен весьма мощный блок питания, до 20-30 ампер при 50 вольтах.
Материал для изготовления ванны может использоваться разный, можно даже использовать нержавейку или алюминий. Но эти ванны придется тщательно мыть после использования. И в них нельзя оставлять электролит надолго. Потому как коррозия будет иметь место.
В результате их изысканий и удалось создать такой продукт, как анодированный алюминиевый профиль.
Поверхностное покрытие тверже чистого металла и даже большинства его применяемых в быту сплавов. Уровень износостойкости у него также выше. Еще в числе важных преимуществ оказывается легкость использования красителей на органической основе, потому что пленка содержит много пор. Это обстоятельство важно для тех встраиваемых и отдельных продуктов, которые призваны иметь повышенный декоративный эффект. Сам процесс нанесения пленки подразумевает использование электрохимических процессов но об этом немного позже.
Во многих случаях конструктивный анодированный профиль имеет окрас под натуральное серебро или оформлен в изысканном черном цвете — что и позволяет почти всегда определить факт анодирования. После такой обработки материал становится намного долговечнее и химически стабильнее. Специалисты отмечают также, что его использование безопаснее, чем применение традиционных сплавов без дополнительного покрытия. Установлено, что анодированный профиль легче поддерживать в чистоте и порядке. Он отлично сопротивляется даже воздействию высокой влажности и другим неблагоприятным факторам.
Наиболее распространенные типы анодирования включают анодирование хромовой кислотой типа I, анодирование серной кислотой типа II и твердое анодирование типа III. Другие менее распространенные методы анодирования включают анодирование фосфорной кислотой и титаном. Наиболее распространенные процессы анодирования перечислены и описаны ниже: Тип I — анодирование хромовой кислотой Из трех основных типов анодирования анодирование хромовой кислотой тип I дает самый тонкий оксидный слой от 0,00002 до 0,0001 дюйма. При правильном уплотнении оксидный слой, полученный анодированием хромовой кислотой, обеспечивает алюминию уровень коррозионной стойкости, аналогичный более толстым слоям, полученным другими методами анодирования, такими как серная кислота или твердое покрытие. Из-за того, что слой покрытия тоньше, оксидные покрытия типа I поглощают меньше цвета при окрашивании, и покрытие имеет сероватый оттенок. Этот сероватый оттенок ограничивает использование анодирования хромовой кислотой в качестве декоративной отделки. Тем не менее, покрытие Типа I можно окрасить в черный цвет и применить его для защиты корпусов оптических компонентов. Некоторые из ключевых особенностей анодирования хромовой кислотой включают в себя: хорошее сцепление клеев с другими объектами и непроводящие электричество свойства.
Анодирование хромовой кислотой часто используется для аэрокосмических компонентов, сварных компонентов или в качестве основы для дополнительной окраски. Тип II — анодирование серной кислотой Тип II серная кислота является наиболее популярным методом анодирования. Пленки, полученные сернокислотным анодированием, имеют толщину от 0,0001 до 0,001 дюйма. Накопление оксида изменяет поверхность детали, делая ее подходящей для ситуаций, когда необходимы стойкость к истиранию и твердость. Красочная отделка поверхности алюминия и родственных сплавов достигается за счет использования пористости сернокислотных покрытий перед герметизацией. Пористый оксид алюминия легко впитывает красители. Герметизация анодно-оксидной пленки после нанесения красителя помогает избежать выцветания детали во время использования. Несмотря на то, что в целом цветостойкие, цветные анодированные пленки имеют склонность к выцветанию при постоянном воздействии УФ-излучения.
Некоторые из вариантов цвета, доступных с этой техникой анодирования, включают: черный, серый, коричневый, красный, синий, зеленый и золотой. По сравнению с другими методами анодирования, при сернокислотном анодировании используются менее дорогие химические вещества, меньше энергии и меньше времени для достижения желаемой толщины. Также возможна отделка большего количества типов сплавов. Другие преимущества этого метода заключаются в том, что он дает более прочное покрытие, чем анодирование хромовой кислотой, и дает четкую и естественную отделку, что позволяет добавлять другие цвета при окрашивании. Обработка отходов процесса анодирования Типа II также дешевле и проще, чем обработка отходов анодирования хромовой кислотой. Общие области применения анодирования типа II включают оптические и электронные детали, корпуса гидравлических клапанов и корпуса для электроники и компьютеров. Тип III — твердое анодирование Анодирование с твердым покрытием обычно применяется с использованием электролита на основе серной кислоты. При этом образуется значительно более плотный и толстый оксидный слой, чем при сернокислотном анодировании.
Как правило цвет полученной поверхности тёмно-коричневый или чёрный. Например, некоторые колёсные обода подвергаются этому процессу для получения более прочной боковой поверхности для торможения, а также для усиления обода в районе отверстий для спиц. К сожалению, анодированная поверхность обладает гораздо худшими сцепными свойствами по сравнению с обычным алюминием, а также становятся совершенно неприглядными со стёртой тёмной анодированной плёнкой в ходе эксплуатации. Также, жёсткая поверхность является более хрупкой. Это может повлечь за собой появление трещин вокруг отверстий для спиц. Однако анодирование может производиться без серной кислоты, с использованием таких всегда имеющихся в домашнем хозяйстве химических соединений, как кислый углекислый натрий питьевая сода и хлористый натрий поваренная соль. Для приготовления электролита готовят раздельно два насыщенных раствора питьевой соды и поваренной соли в кипяченой воде комнатной температуры. Для получения насыщенных растворов количество соды и соли берется избыточное, растворение ведут не менее получаса, время от времени помешивая растворы стеклянной палочкой. Затем растворам дают отстояться в течение десяти минут и сливают их с избытка нерастворившихся соды и соли, после чего целесообразно их профильтровать. Электролит готовится из девяти объемных частей раствора соды и одной объемной части раствора соли с тщательным их перемешиванием.
Приготовление электролита ведется в стеклянной посуде. При изготовлении детали, подлежащей анодированию, необходимо оставить на ней небольшую площадку.
Процесс анодирования алюминия
Этапы анодирования Принципы процесса анодирования разделены на 3 этапа: • Рабочий процесс анодирования алюминия начинается с подготовки. Что такое анодирование. Процессом анодирования называется электролитическая химическая реакция металла с окислителем. Что такое анодированная металлическая поверхность. Название анодирования носит процесс, протекающий при использовании электролита и электрического тока различной величины и позволяющий получить на изделии прочную оксидную пенку. Анодированный алюминий: черный, матовый, листовой Сферы применения материала, методики и технологии анодирования в промышленности и в домашних условиях.
Анодированный алюминий
Анодирование алюминия | При анодировании защитная пленка из окислов образуется из самого защищаемого металла. |
Анодирование алюминия | Анодирование можно определить как экологически чистый электрохимический процесс, который заключается в создании оксидного слоя на поверхности обрабатываемого металла. |
Анодированный алюминий, полученный в домашних условиях | Что такое анодирование алюминия. |
Анодирование алюминия | Наиболее частой технологией анодирования алюминия является так называемое сернокислое анодирование – по химическому составу анодного раствора (электролита). |
Принцип анодирования алюминиевого корпуса-обработка алюминиевой поверхности
Толщина пленки может составлять от 0,5мкм и менее для декоративных целей и до 150мкм для архитектурных зданий , чаще всего 15-20 мкм. Концентрация электролита, степень кислотности, температура раствора, сила тока тщательно контролируются для равномерного создания качественного защитного слоя. Жесткие толстые пленки, как правило, получают с использованием более разбавленных растворов при более низких температурах с высокими напряжениями и током. После завершения процесса поры заполняются цветными красителями, создавая глубокий слой ровного окраса детали, или бесцветными нейтральными подавителями коррозии. Если нет необходимости в высоком сцеплении поверхности, поры после окрашивания закрываются запечатываются, уплотняются , чтобы не допустить коррозии через них и удержать красители.
Холодная обработка, когда поры закрываются пропиткой герметиком тефлоном, ацетатом никеля, ацетатом кобальта, бихроматами натрия или калия в ванной при комнатной температуре, более распространена из-за экономии электроэнергии но такие покрытия не подходят для склеивания. Такое покрытие из-за большой толщины износостойкое и дает защиту алюминия даже при износе со временем поверхности и при образовании не слишком глубоких царапин. Цвета покрытия Цвета анодированных покрытий, создаваемых раствором красителей как правило анилиновых могут быть самыми разнообразными. Цвет также может являться неотъемлемой частью оксидной пленки: в таком случае в раствор серной кислоты при анодировании добавляются органические кислоты также использующиеся при окраски ткани, щавелевая, малеиновая, сульфосалициловая и другие органические кислоты , используется импульсный ток.
Кроме того, в поры оксидной корки могут электролитически осаждаться металлы чаще всего — соединения олова , создавая более светоустойчивые цвета от бледного шампанского до бронзового или черного. К сожалению, не существует единого стандарта обозначения вида отделок, получаемых анодированием. Наиболее распространенные цвета анодирования: Естественный матово-серебрянный цвет чистого алюминия.
Принцип окисления: процесс электризации алюминиевого сплава в качестве анода и электролита в качестве катода и постепенное образование оксидной пленки на поверхности алюминиевого сплава под действием электронов. Несколько факторов, влияющих на формирование оксидной пленки: материал, ток, температура, концентрация, время, эти пять факторов являются ключевыми факторами, которые непосредственно определяют конечное качество оксидной пленки. Основным компонентом оксидной пленки является оксид алюминия, представляющий собой сотовую микропористую структуру, которая может адсорбировать молекулы красителя в порах, что является принципом окрашивания. Особенности оксидной пленки: высокая твердость, коррозионная стойкость, изоляция, возможность окрашивания. Весь процесс окисления делится на четыре части: предварительная обработка, окисление, окрашивание и постобработка. Предварительная обработка: обезжиривание, промывка водой, травление щелочью удаление оксидной пленки , химическая полировка повышение яркости.
Окисление: как указано выше Крашение: делится на адсорбционное окрашивание и электролитическое окрашивание. Адсорбционная окраска делится на монохромную и колеровочную. Молекулы красителя проникают в микропоры оксидной пленки, и краситель будет претерпевать переходы электронных уровней энергии под действием сильных длин волн, таких как ультрафиолетовые лучи, тем самым изменяя цветовую систему и вызывая существенное обесцвечивание. Электролитическое окрашивание требует электричества, но не используемого красителя, а электролита, который не выгорает. Последующая обработка: в основном герметизация, герметизация - это процесс, в котором оксид алюминия вступает в реакцию с водой и другими добавками с образованием объекта в гелеобразном состоянии и заполнением микропор оксидной пленки. Три степени окисления, пассивация, анодирование, жесткое окисление.
Оксидная пленка обычно составляет от 1 до 3 микрон. Слой оксидной пленки образуется путем пропитки алюминиевого сплава сильным окислителем. Этот слой оксидной пленки очень тонкий, поэтому он может проводить электричество. Точно так же сам алюминиевый сплав образует оксидную пленку в естественной среде, что является реакцией с кислородом, и эта оксидная пленка тоньше. Пассив не может быть окрашен, потому что оксидная пленка не имеет условий для окрашивания. Подойдет только проводящий желтый цвет, светлый цвет с очень маленькими молекулами красителя.
Адсорбционная окраска делится на монохромную и колеровочную. Молекулы красителя проникают в микропоры оксидной пленки, и краситель будет претерпевать переходы электронных уровней энергии под действием сильных длин волн, таких как ультрафиолетовые лучи, тем самым изменяя цветовую систему и вызывая существенное обесцвечивание. Электролитическое окрашивание требует электричества, но не используемого красителя, а электролита, который не выгорает.
Последующая обработка: в основном герметизация, герметизация - это процесс, в котором оксид алюминия вступает в реакцию с водой и другими добавками с образованием объекта в гелеобразном состоянии и заполнением микропор оксидной пленки. Три степени окисления, пассивация, анодирование, жесткое окисление. Оксидная пленка обычно составляет от 1 до 3 микрон.
Слой оксидной пленки образуется путем пропитки алюминиевого сплава сильным окислителем. Этот слой оксидной пленки очень тонкий, поэтому он может проводить электричество. Точно так же сам алюминиевый сплав образует оксидную пленку в естественной среде, что является реакцией с кислородом, и эта оксидная пленка тоньше.
Пассив не может быть окрашен, потому что оксидная пленка не имеет условий для окрашивания. Подойдет только проводящий желтый цвет, светлый цвет с очень маленькими молекулами красителя. Различные продукты требуют разной толщины оксидной пленки.
Чем толще оксидная пленка, тем выше твердость, лучше коррозионная стойкость и тем хуже окрашивание. Наша серебристо-белая оксидная пленка обычно составляет 8-10 микрон, и серебристо-белую оксидную пленку не нужно красить, а время окисления составляет 20 минут. Черная оксидная пленка обычно составляет 15-18 микрон, окрашивается после окисления, а время окисления составляет 60 минут.
Только когда оксидная пленка толстая и поры глубокие, краситель может впитаться в достаточном количестве, иначе он будет черным, но не черным. Цвет не глубокий. Поэтому стоимость темного цвета выше, чем у светлого, в основном за счет времени и других затрат, приносимых временем.
Эта пленка выполняет защитные функции, не давая произойти дальнейшему окислению металла. Но такое покрытие нестабильно: оно не имеет кристаллической структуры, сильно зависит от внешних факторов и не гарантирует защиты изделия от коррозии. Анодная пленка не является отдельным слоем на поверхности алюминия, а растёт из его структуры как наружу, так и внутрь , поэтому риск образования коррозии и отслоения покрытия в процессе эксплуатации полностью исключен. Стандартный технологический процесс включает в себя следующие основные этапы: Обезжиривание Во время этого процесса с поверхности металла устраняются все загрязнения и масляные пятна. Травление Этот этап предусматривает стравливание с поверхности металла естественной оксидной пленки и поверхностного слоя алюминия.
Осветление или нейтрализация Данный этап предусматривает удаление с поверхности присутствующих в сплаве тяжелых металлов. Анодирование Это процесс выращивания искусственной оксидной пленки с учетом заданных параметров. Адсорбционное окрашивание Это проникновение красящего пигмента в поры пленки Уплотнение Во время процесса уплотнения происходит закупоривание пор. Наша компания предлагает следующие виды анодированного алюминиевого профиля: профиль с защитным покрытием, профиль с декоративным покрытием. При выполнении защитно-декоративного анодирования алюминиевых изделий и профиля наша компания соблюдает требования, установленные международной системой качества QUALANOD Швейцария.
Защитное анодирование используется, если необходима только защита от коррозии. Если же значение имеет и эстетическая составляющая, следует выбирать декоративное анодирование.
Анодирование разных металлов, преимущества метода, оборудование
Технология анодирования алюминия | Алюмпарк | Что такое анодирование. Процессом анодирования называется электролитическая химическая реакция металла с окислителем. |
Механизм и технология анодирования Ан.окс. Структура и свойства оксида алюминия в покрытии. | это электрохимический процесс, который превращает металлическую поверхность в декоративную., прочный, сопротивление ржавчине, анодно-оксидная отделка. |
Что такое анодирование металлов и зачем его использовать?
Анодирование – это метод обработки, который изменяет химию поверхности различных материалов, в частности, металлов. Анодирование образует защитную пленку за счет воздействия на металл электролиза. Что такое анодирование и для чего оно нужно - разберем в данной статье.
Какие преимущества дает анодирование алюминия?
Его характеристики можно улучшить благодаря анодированию, в результате которого на поверхности образуется прочный и устойчивый защитный слой. Что такое анодирование. Анодированный алюминий: черный, матовый, листовой Сферы применения материала, методики и технологии анодирования в промышленности и в домашних условиях. Гальваническое анодирование представляет собой процесс образования на поверхности различных металлов оксидной пленки путем анодного окисления в проводящей среде. #2 Что такое процесс черного анодирования? Черное анодирование относится к процессу электролитического окрашивания, который превращает поверхность алюминия в прочный черный оксид отделка. Анодирование можно определить как экологически чистый электрохимический процесс, который заключается в создании оксидного слоя на поверхности обрабатываемого металла.
Рассказываем вам об одном из самых перспективных направлений обработки алюминия и его сплавов!
это техника нанесения слоя металла на какой-либо предмет путем гальваностергии. Что такое анодирование алюминия. Анодирование представляет собой метод повышения коррозионной стойкости металлических деталей за счет образования на их поверхности оксидного слоя. Важным преимуществом импульсного наноструктурного анодирования является тот факт, что чередование режимов способствует лучшему рассеиванию тепла с поверхности заготовок. Что такое анодирование и в чем заключаются преимущества анодированных металлоконструкций от не прошедших такую обработку? Анодирование алюминия и зачем оно нужно, где применяют анодированный металл, технологии твердого, теплого и холодного анодирования, различия методов и характеристик получаемых покрытий. Прежде чем разобраться в технологии, нужно разобраться, что такое анодированный алюминий. Во время процесса анодирования или же анодного оксидирования происходит появление оксидной пленки на поверхности образца за счет химического взаимодействия.