Новости теория суперсимметрии

Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. Тем не менее этот вопрос был решен в начале 1980-х годов вместе с введением в теорию струн так называемой “суперсимметрии”. активно развивающейся области теоретической физики, которая вполне может оказаться в центре будущего развития физики. Киральная симметрия (от греч. cheir — рука) — инвариантность уравнений квантовой теории поля относительно преобразований, перемешивающих состояния частиц как с различными.

С теорией суперсимметрии придётся расстаться

Одна из задач, которую ученые пытаются решить с помощью БАК, – это получение экспериментального подтверждения теории Суперсимметрии. Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. му же, в этом случае у нас исчезают расходимости в первом порядке теории возмущений, что тоже является одним из плюсов суперсимметрии. Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы.

Суперсимметрия и суперкоординаты

Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми. Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили. Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами. И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма. Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие.

Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях. Калаби-Яу В частности, суперсимметрия может укрепить теорию струн. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Теория струн остается одним из ведущих кандидатов на «теорию всего», которая объединит всю физику. Тем не менее проверить ее экспериментально чрезвычайно трудно.

Большой адронный коллайдер БАК заработал на рекордной светимости. Об этом сообщается в официальном микроблоге ускорителя. Время между столкновениями сгустков - примерно 25 наносекунд. В сообщении говорится, что этот.. Этого события ждали давно. Пожалуй, ради него и строился в Женеве.. Об этом в пятницу, 12 декабря, было объявлено на 174-й сессии совета ЦЕРН, сообщается в пресс-релизе организации. В настоящее время специалисты проводят.. Препринт исследования находится в распоряжении редакции «Ленты.

Conti, and A. Precision measurement of the orthopositronium vacuum rate using the gas technique. A40 10 , p. Nico, D. Gidley, and A. Rich, P. Vallery, P. Zitzewitz, and D. Resolution of the Orthopositronium-Lifetime Puzzle. Котов, Б. Левин, В. Ортопозитроний: «О возможной связи между тяготением и электричеством». Препринт 1784 ФТИ им. Kotov, B. Levin, V.

Но эта величина, в отличие от стандартного определения, не связана с распределением масс или скоростью вращения, а является чисто квантовым эффектом. Спин может принимать любые положительные значения с шагом 0. Итак, мы приходим к главному различию между фермионами и бозонами: первые обладают полуцелым спином 0. Не садись со мной Самое важное отличие квантовой механики от классической состоит в том, что все величины в квантовой механике могут изменяться только скачкообразно, на очень маленькую величину. Физики говорят, что они «квантуются», подразумевая под «квантом» какое-то конкретное число. Величина этого «скачка» очень мала, и определяется так называемой постоянной Планка, примерно равной 10-34. В нашем обычном мире мы просто не замечаем столь малого изменения, например, температуры. Но в микроскопическом мире это становится принципиально важно. Все характеристики частиц в квантовой механике измеряются в количестве постоянных Планка, и для простоты обозначаются числом. Например, спин 1 означает «одна постоянная Планка». Договорившись, в каком порядке обозначать физические величины, состояние любой частицы можно описать набором квантовых чисел — это будет ее квантовое состояние. Именно в значении спина скрыта фундаментальная разница между фермионами и бозонами. Оказывается, что два фермиона не могут находиться в одном квантовом состоянии, то есть обладать одинаковым набором квантовых чисел. А у бозонов подобных предрассудков нет. И, согласно современным понятиям, из-за столь принципиальных отличий фермионы не могут превращаться в бозоны или обратно. Ты просто «супер» К началу семидесятых годов физикам уже было известно практически все о симметрии в законах физики. Оказалось, что каждое из взаимодействий — электромагнитное, слабое, сильное — обладает своей особой симметрией. Помимо этого, все известные нам теории в целом также симметричны: происходящие явления не зависят, например, от ориентации в пространстве и от направления течения времени.

Суперсимметрия и суперкоординаты

му же, в этом случае у нас исчезают расходимости в первом порядке теории возмущений, что тоже является одним из плюсов суперсимметрии. Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. Теория струн, пожалуй, самая спорная большая идея во всей сегодняшней науке – Самые лучшие и интересные новости по теме: Атом, бозон Хиггса, квантовая физика на. Теория суперсимметрии предполагает, что физические законы должны оставаться неизменными при перестановке бозонных и фермионных частиц. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и суперсимметрии выдвигалась многими. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные.

«Вселенная удваивается»

Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ. К примеру, ученым очень хотелось, но не удалось найти подтверждения суперсимметрии — теории о том, что у каждой элементарной частицы есть гораздо более тяжелый «суперпартнер». Суперсимметрия, возникшая независимо в теории струн, «убила» тахион.

Суперсимметрия

LHC себя ещё покажет. Дейвид Эванс из Бирмингемского университета, работающий в CERN, где коллайдер, говорил, что многие вообще не верили в сам принцип действия этого чуда физики Всё путём..

И специфика высоких энергий такова, что их рождается достаточно много. Живут они очень мало —10-12 секунд, после тут же распадаются. М-мезон — это аналог электрона, но тяжелее его в 200 раз. Правда, не всегда.

А простейший вариант теории суперсимметрии предсказывает ускорение этого процесса. И, в соответствии с теорией, частота распадов может быть увеличена в пять, в 10 раз.

Два разных эксперимента с мюонами в США и Европе в итоге показали неожиданные результаты. Мюоны вели себя не так, как от них ожидали, за пределами Стандартной модели. Это может поменять представление ученых о том, как вообще все работает во Вселенной. Что такое «новая физика»? Стандартная модель — общепринятая на данный момент теоретическая конструкция, описывающая взаимодействие всех элементарных частиц во Вселенной. Свод правил, называемый Стандартной моделью, был разработан около 50 лет назад.

Эксперименты, проводившиеся на протяжении десятилетий, снова и снова подтверждали, что его описания частиц и сил, которые составляют и управляют Вселенной, в значительной степени верны. До настоящего времени. В свою очередь, новая физика — физика за пределами Стандартной модели — относится к теоретическим разработкам, которые необходимы, чтобы объяснить недостатки СТ. Например, происхождение массы, сильная CP-проблема, нейтринные осцилляции, асимметрия материи и антиматерии, происхождение темной материи и темной энергии. Другая проблема заключается в математических основах самой Стандартной модели — она не согласуется с общей теорией относительности ОТО. Одна или обе теории распадаются в своих описаниях на более мелкие при определенных условиях например, в рамках известных сингулярностей пространства-времени, таких как Большой взрыв и горизонты событий черных дыр. Поскольку эти теории, как правило, полностью согласуются с текущими наблюдаемыми явлениями или не доведены до состояния конкретных предсказаний, вопрос о том, какая теория является правильной или по крайней мере «лучшим шагом» к Теории всего , может быть решен только с помощью экспериментов. В настоящее время это одна из наиболее активных областей исследований как в теоретической, так и в экспериментальной физике.

Стандартная модель очень точно предсказывает g-фактор мюона — значение, которое говорит ученым, как эта частица ведет себя в магнитном поле. Этот g-фактор, как известно, близок к значению два, и эксперименты измеряют его отклонение от двух, отсюда и название Muon g-2. Эксперимент в Брукхейвене показал, что g-2 отличается от теоретического предсказания на несколько частей на миллион. Эта крохотная разница намекала на существование неизвестных взаимодействий между мюоном и магнитным полем — взаимодействий, которые могут включать новые частицы или силы. К чему приведут новые открытия? Частицы, выходящие за рамки Стандартной модели, могут помочь объяснить загадочные явления, как природа темной материи, загадочной и широко распространенной субстанции, о существовании которой физики знают, но её еще предстоит обнаружить.

Дмитрий Васильевич Волков 1925-1996 : историческая справка Д. Волков — выдающийся физик-теоретик, академик Национальной академии наук Украины, крупный специалист в области элементарных частиц, квантовой электродинамики, ядерной физики, квантовой теории поля, физики твердого тела. В этом году ему должно было исполниться 80 лет. Двадцатипятилетним молодым человеком приехал в Харьков Дмитрий Волков и на протяжении 45 лет его деятельность была связана с этим городом. В 1951 году он приехал сюда с группой студентов из разных вузов страны он — из Ленинградского университета по приказу Министерства высшего образования для продолжения учебы в Харьковском университете на вновь организованном отделении ядерной физики при физико-математическом факультете. Родился Д. Волков 3 июля 1925 года в Ленинграде в семье рабочего-слесаря и учительницы. В семье было двое сыновей: старший Левушка и младший Митенька, названные так в честь героев произведений Л. Толстого, большой поклонницей которого была мать, Ольга Ивановна. Она занималась духовным воспитанием детей, прививая им любовь к литературе, музыке. Отец, Василий Николаевич, старался закалить их физически, занимаясь с ними спортом, но он всячески поощрял стремление мальчиков и к знаниям. Великая Отечественная война 1941-1945 гг. Дмитрий окончил восьмой класс средней школы, отец, не подлежавший мобилизации по возрасту, ушел добровольцем в народное ополчение и в феврале 1942 года пропал без вести. Старший брат Лева, став курсантом Ленинградского воинского подразделения, в декабре 1941 года был ранен и умер. Но горе, обрушившееся на семью Волковых, не сломило их. Участвовал в боях на Карельском и на 1-м Дальневосточном фронтах в качестве связиста, радиста, артиллерийского разведчика. За проявленное в боях мужество награжден несколькими медалями, в 1965 г. После войны Дмитрий Волков возвращается в родной Ленинград с твердым намерением учиться. В течение года он экстерном сдает экзамены за 9-й и 10-й классы и в 1947 году поступает на физический факультет Ленинградского университета. В процессе учебы профессорско-преподавательский коллектив не только дал ему знания и сформировал интерес к профессии, но и привил глубокое уважение и любовь к науке. И эту любовь Волков пронес через всю жизнь. В Харьковском университете ему тоже повезло. Здесь читали лекции известные всему научному миру физики, академики А. Вальтер, К. Синельников, А. Ахиезер — ведущие ученые УФТИ. В 1956 году по окончании аспирантуры Д. Здесь он сложился и вырос как ученый, защитив кандидатскую 1958 г. Научные интересы Дмитрия Васильевича охватывают широкий круг исследований в теоретической физике. Довольно рано сформировался его научный стиль, отличающийся глубоким и оригинальным подходом к исследуемым вопросам. Уже в первых его работах проявилась нестандартность подхода к фундаментальным проблемам квантовой теории поля. Международное признание ученый получил сразу — открытая им парастатистика, названная впоследствии статистикой Грина-Волкова и обобщая известные статистики Бозе-Эйнштейна и Ферми-Дирака, сыграла важную роль в развитии представлений о кварковой структуре адронов. В 1960 году Д. Волков, молодой еще физик, в составе советской делегации впервые принимал участие в конгрессе по физике элементарных частиц в США. Обмениваясь в аэропорту с американскими коллегами новостями науки, глава делегации М. Марков спросил: «Что у вас нового? Ли ответил: «Это у вас новости! Результативными были и последующие годы. Мировую известность Волкову принесло открытие нового типа симметрии — суперсимметрии — и построение на ее основе теории супергравитации, обобщающей теорию тяготения Эйнштейна. Концепция суперсимметрии определила основное направление развития физики элементарных частиц на десятилетия. Волковское открытие в области суперсимметрии цитировалось как основополагающее в трудах многих крупных международных конференций. В 1962 г. Волков открыл совместно с В. Грибовым новое явление, получившее название «заговор полюсов», что стимулировало целый поток теоретических и экспериментальных работ в области физики высоких энергий. Дмитрий Васильевич был не только талантливым ученым, но и удивительно трудолюбивым человеком, он работал много и упорно, предъявляя высокие требования к качеству выполняемой работы, ее логическому научному завершению. По воспоминаниям коллег, он был открытым человеком. Обсуждать с Волковым ту или иную проблему было большим удовольствием. Он быстро вникал в суть дела и высказывал, как правило, оригинальные соображения и идеи. Ему был дан редкий дар видеть важный физический результат за сложными математическими выкладками, используя в расчетах современную математику. Дмитрий Васильевич не останавливался в поиске, для исследований он выбирал наиболее сложные научные проблемы, выдвигая новые идеи и фундаментальные подходы. Он постоянно следил за достижениями в различных областях физики и математики, старался расширять круг своих интересов. Этому способствовали научные командировки в международные центры Европы и Америки и общение с выдающимися учеными. Ездил он туда регулярно — с 1958 г. Каждая поездка завершалась подробным отчетом, где давался глубокий анализ не только основных теоретических исследований, проводимых в ЦЕРНе, но и организации научной работы; отмечались ее преимущества, давались конкретные рекомендации. В 1994 г. Волков был приглашен на Международную конференцию авторов оригинальных идей и открытий XX века в физике элементарных частиц в Эриче Италия , где выступил с докладом «Supergravity before 1976». Последний раз он докладывал на конференции «Суперсимметрия-95» SUSY-95 во Франции, где выдвинул новую концепцию обобщенного принципа действия для суперструн и супермембран. К Дмитрию Васильевичу всегда тянулась молодежь, потому что он щедро делился идеями и открытиями и искренне радовался успехам и достижениям своих учеников и коллег. Созданная им в Харькове научная школа пользуется заслуженной мировой известностью. На его научных идеях и под его непосредственным руководством подготовлено около 20 кандидатских и докторских диссертаций. Много сил и энергии Д. Волков отдавал научно-организационной работе. Он входил в состав ряда проблемных научных Советов, редколлегий, научных журналов и сборников.

Новые методы в классической и квантовой теории поля с расширенной суперсимметрией

Откройте свой Мир! Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы.
ВЗГЛЯД / «Вселенная удваивается» :: Общество Теория суперсимметрии предполагает, что физические законы должны оставаться неизменными при перестановке бозонных и фермионных частиц.
Суперсимметрия - Supersymmetry - Если рассмотреть квантовую электродинамику, то это теория с не очень большим, по сравнению с суперсимметрией, количеством симметрий.
Большой адронный коллайдер подорвал позиции теории суперсимметрии » Последние новости — Аргументы Теория струн, пожалуй, самая спорная большая идея во всей сегодняшней науке – Самые лучшие и интересные новости по теме: Атом, бозон Хиггса, квантовая физика на.
Гляжусь, как в зеркало: есть ли шансы у суперсимметрии? | Futurist - будущее уже здесь На днях теория суперсимметрии получила еще один удар от Большого адронного коллайдера (БАК).

Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел

ОИЯИ является международной организацией, и им проще организовать международную коллаборацию, без которой создание установки такого класса было бы гораздо труднее. Если же говорить о том, зачем строить установки такого класса у себя, то, во-первых, это вопрос престижа государства. Во-вторых, если хочешь пользоваться плодами мировой науки, необходимо развивать ее у себя. Ученые работают все вместе — если кто-то предложил интересную идею, об этом становится известно всем, но реализует ее лишь тот, у кого есть не только интеллект, но и средства.

Наука похожа на спорт, и, если у тебя нет амбиций, трудно чего-то добиться. Развитие фундаментальной науки очень важно. Если вы хотите, чтобы в вашей стране были профессора мирового уровня — необходимо, чтобы они работали именно у вас, а не в CERN.

Потому что, если в ваших вузах преподают лучшие профессора, у вас и студенты будут соответствующие. Например, мое поколение получило фантастически хорошее образование. Я скорее отрицательно отношусь к рейтинговой системе оценок университетов, потому что она ориентирована на «западный» стиль организации науки, в котором тоже есть проблемы.

Мне кажется более привлекательным способ организации науки как в Новосибирском Академгородке в Советском Союзе, где университет и научные институты были единым целым. Насколько я понимаю, эта система действует до сих пор. Лучшее учебное заведение в районе Fermilab — Чикагский университет — в одном часе езды на автомобиле, и то если повезет с трафиком.

Также до недавнего времени к нам на стажировку приезжали ребята из России. Для них это хороший опыт, и для нас польза. Как это получилось?

По результатам экспериментов я защитил кандидатскую диссертацию. Мне повезло с учителями. Пожалуй, наибольшее влияние на мое воспитание как ученого оказал Василий Васильевич Пархомчук теперь академик.

Когда я еще был студентом, я участвовал в экспериментах на НАП-М накопитель антипротонов , где Василий Васильевич был основной движущей силой. Это был один из лучших экспериментов ИЯФ. За изучение однопролетного электронного охлаждения мы получили премию Сибирского отделения Академии наук.

В 1994 году я уехал, сначала в Данию, а через год в Америку. Однако отмечу, что при этом ни одна лаборатория, работающая в физике высоких энергий в России, не сохранила научный потенциал так, как это сделали в Новосибирске. Даже технику безопасности можно довести до полной потери какого бы то ни было смысла.

Один мой знакомый стоял на лестнице между двумя этажами, потерял равновесие, упал и порвал связку на ноге. Дело житейское и, казалось бы, не имеет отношения к производственной травме, но этот случай был расценен именно так. Никто не спорит, что безопасность — это очень важно, но всякое хорошее дело можно довести до абсурда.

Вторая серьезная проблема — личная ответственность. Если, например, вспомнить советскую космическую программу и советский опыт в целом, личная ответственность, несомненно, играла важную роль. Сегодня в Америке все немного иначе.

Если дело провалено — жестких последствий ни для кого нет, ответственность разделяется между огромным количеством людей, и никто ни в чем не виноват. В худшем случае поменяют начальство без каких-либо серьезных последствий для этих людей. В Советском Союзе возможностей по трудоустройству было меньше, но то, что я действительно ценил в Новосибирском университете, — нас никого не заставляли ходить на занятия, достаточно было приходить на экзамены и успешно сдавать их.

Для университета, который готовил научных сотрудников, это более чем оправданно. Если в науке человек не мотивирован, его невозможно заставить, это же не рабочий, которому можно сказать: «Копай траншею от сих до сих». Мотивировать нужно со школы, а на последнем этапе — поздно.

В настоящее время специалисты проводят.. Препринт исследования находится в распоряжении редакции «Ленты. Выводы ученых основаны на интерпретации результатов.. Достигнутая энергия в два раза превысила предыдущий «рекордный» результат. Суммарная энергия.. Это первый научный инструмент для создания и изучения кварк-глюонной плазмы.

Кварки и глюоны являются строительными блоками всего видимого вещества - от звезд и планет до человеческих тел. Понимание эволюции.. Ученым удалось добиться получения максимальных показателей на данный момент- протонов энергии в 4 тераэлектронвольта.

Она основана на предположении, что существует гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и наоборот. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. Эти физики очень рассчитывали получить с помощью Большого адронного коллайдера первое экспериментальное подтверждение этой теории.

Однако новое наблюдение, о котором было доложено на конференции по физике адронного коллайдера в Киото, противоречит многим моделям в рамках теории суперсимметрии. Теория суперсимметрии Гипотеза суперсимметрии была впервые сформулирована в 1973 году австрийским физиком Юлиусом Вессом и итальянским физиком Бруно Зумино и постулирует существование определенного рода симметрии между двумя основными классами частиц — бозонами и фермионами. Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение. На сегодня эта гипотеза не была подтверждена экспериментально.

Первый результат указывает на существование неоткрытых частиц или сил. Эта новая физика может помочь объяснить давние научные загадки, что приведет к новому пониманию нашей Вселенной и разработке новых технологий. Представители проекта Muon g-2 «Мюон джи минус два» огласили первые результаты измерений магнитных свойств мюонов. Проект Muon g-2 — продолжение эксперимента, который начался в 90-х годах в Брукхейвенской национальной лаборатории Министерства энергетики США, когда ученые измерили магнитное свойство фундаментальной частицы, называемой мюоном. Эксперимент в Брукхейвене дал результат, который отличался от значения, предсказанного Стандартной моделью, лучшим описанием учеными структуры и поведения Вселенной. Новый эксперимент представляет собой воссоздание эксперимента Брукхейвена, созданный для того, чтобы оспорить или подтвердить несоответствие с более высокой точностью.

Недавно ученые выяснили, что в поведении мюонов есть почти неоспоримые следы «новой физики» — то есть явлений, которые не описывает основная теория физики элементарных частиц — так называемая Стандартная модель. Об этом рассказал официальный представитель проекта Крис Полли, выступая на онлайн-брифинге для журналистов. Он критически важен для понимания того, что именно было причиной расхождения в измерениях 20-летней давности и предсказаниях Стандартной модели. Мы удвоили точность измерений и не нашли ничего, что противоречило бы прошлым результатам. Но это не все. Два разных эксперимента с мюонами в США и Европе в итоге показали неожиданные результаты. Мюоны вели себя не так, как от них ожидали, за пределами Стандартной модели. Это может поменять представление ученых о том, как вообще все работает во Вселенной. Что такое «новая физика»? Стандартная модель — общепринятая на данный момент теоретическая конструкция, описывающая взаимодействие всех элементарных частиц во Вселенной.

Свод правил, называемый Стандартной моделью, был разработан около 50 лет назад. Эксперименты, проводившиеся на протяжении десятилетий, снова и снова подтверждали, что его описания частиц и сил, которые составляют и управляют Вселенной, в значительной степени верны. До настоящего времени. В свою очередь, новая физика — физика за пределами Стандартной модели — относится к теоретическим разработкам, которые необходимы, чтобы объяснить недостатки СТ.

Суперсимметрия

особенностями обладают различные элементарные частицы? Когда была была предложена теория, предполагающая связь. активно развивающейся области теоретической физики, которая вполне может оказаться в центре будущего развития физики. На днях теория суперсимметрии получила еще один удар от большого адронного коллайдера (бак. Теория Суперсимметрии имеет дело с Суперпространством, в котором трехмерие дополняется принципиально ненаблюдаемыми измерениями. Возвращаясь к эпизоду "Теории большого взрыва", предлагаемым объяснением наблюдаемого в настоящее время несоответствия является суперсимметрия.

Новые методы в классической и квантовой теории поля с расширенной суперсимметрией

Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория. Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и суперсимметрии выдвигалась многими. Чем больше мы исследуем теорию суперсимметрии, тем неотразимее она становится», — пишет специалист по физике элементарных частиц Дэн Хупер.

Суперсимметрия в свете данных LHC: что делать дальше?

Квантовая хромодинамика говорит, что многие элементарные частицы — мезоны и барионы например, протон — состоят из кварков. Однако изолированные кварки никогда не наблюдались это явление называется конфайнментом. Из-за сложности уравнений квантовой хромодинамики конфайнмент до сих пор не выведен из них напрямую. Кстати, решение уравнений Янга — Миллса и объяснение конфайнмента является одной из семи проблем тысячелетия, за которые институт Клэя назначил приз в миллион долларов. Квантовая хромодинамика также находит подтверждение в ускорительных экспериментах. Стандартная модель фундаментальных взаимодействий включает в себя модель электрослабых взаимодействий и квантовую хромодинамику.

Стандартная модель оказалась в состоянии объяснить практически все экспериментальные данные, полученные к настоящему времени в физике элементарных частиц. Суперсимметрия Идея суперсимметрии Перед тем, как перейти к обсуждению суперсимметрии, рассмотрим понятие спина. Спин — это собственный момент импульса, присущий каждой частице. Он измеряется в единицах постоянной Планка и бывает целым или полуцелым. Спин является исключительно квантовомеханическим свойством, его нельзя представить с классической точки зрения.

Наивная попытка трактовать элементарные частицы как маленькие «шарики», а спин — как их вращение, противоречит специальной теории относительности, так как точки на поверхности шариков должны в таком случае двигаться быстрее света. Суперсимметрия — это симметрия между частицами с целым и полуцелым спином. Идея суперсимметрии была предложена в теоретических работах Гольфанда и Лихтмана, Волкова и Акулова, а также Весса и Зумино около 40 лет назад. Вкратце она заключается в построении теорий, уравнения которых не изменялись бы при преобразовании полей с целым спином в поля с полуцелым спином и наоборот. С тех пор были написаны тысячи статей, суперсимметризации были подвергнуты все модели квантовой теории поля, был разработан новый математический аппарат, позволяющий строить суперсимметричные теории.

Стандартную модель фундаментальных взаимодействий, рассмотренную ранее, тоже можно сделать суперсимметричной. При этом решается ряд ее проблем. Рассмотрим некоторые из них. Мотивировка суперсимметрии Несмотря на огромные успехи Стандартной модели в объяснении экспериментальных данных, она обладает рядом теоретических трудностей, которые не позволяют Стандартной модели быть окончательной теорией, описывающей наш мир. Оказывается, часть этих трудностей может быть преодолена при суперсимметричном расширении Стандартной модели.

Объединение констант связи Гипотеза великого объединения, которой придерживаются многие физики, говорит, что различные фундаментальные взаимодействия есть проявления одного, более общего, взаимодействия. Это взаимодействие должно проявляться при огромных энергиях по различным оценкам, энергия великого объединения в 1013 или даже в 1016 раз превосходит энергию, доступную современным ускорителям элементарных частиц. При понижении энергии от объединенного взаимодействия «отщепляется» сначала гравитационное взаимодействие, потом сильное, а в завершение электрослабое взаимодействие распадается на слабое и электромагнитное. Нейтралино — одна из гипотетических частиц, предсказываемых теориями, включающими суперсимметрию. Так как суперпартнёры Z-бозона, фотона и бозона Хиггса соответственно: зино, фотино и хиггсино имеют одинаковые квантовые числа, они смешиваются, образуя собственные состояния массового оператора, называемые нейтралино.

Свойства нейтралино зависят от того, какая из составляющих зино, фотино, хиггсино доминирует. Легчайшее нейтралино стабильно, если оно легче гравитино, а R-чётность сохраняется. Нейтралино участвует только в слабом и гравитационном взаимодействиях. Если нейтралино является стабильной или долгоживущей частицей, то при рождении в ускорительных экспериментах оно будет ускользать от детекторов частиц; однако большие потери энергии и импульса в событии такого рода могут служить экспериментальным проявлением рождения этой частицы. Стабильные реликтовые нейтралино могут быть обнаружены по рассеянию на ядрах в неускорительных экспериментах по поиску частиц тёмной материи.

Легчайшее нейтралино массой 30-5000 ГэВ является основным кандидатом в составляющие холодной тёмной материи из слабовзаимодействующих массивных частиц вимпов. В Стандартной модели, однако, электрослабое и сильное взаимодействия объединены лишь формально. Они могут оказаться разными проявлениями общего взаимодействия, а могут и не оказаться. Тем не менее, анализ экспериментальных результатов дает некоторые подсказки к вопросу о существовании великого объединения. У каждого из фундаментальных взаимодействий есть величина, которая характеризует его интенсивность.

Эта величина называется константой взаимодействия. Константа электромагнитных взаимдействий просто равна заряду электрона. В случае сильных и слабых взаимодействий ситуация несколько сложнее. Одно из интересных свойств квантовой теории поля состоит в том, что константа взаимодействия на самом деле не константа — она меняется при изменении характерных энергий процессов с участием элементарных частиц, причем теория может предсказать характер этой зависимости. В частности, это означает, что при приближении к электрону на расстояния, гораздо меньшие размеров атома, начинает меняться его заряд!

Причем такое изменение, обусловленное квантовыми эффектами, подтверждено экспериментальными данными, например, небольшим изменением уровней энергии электронов в атоме водорода лэмбовский сдвиг. Константы электромагнитного, слабого и сильного взаимодействий измерены с достаточной точностью для того, чтобы можно было вычислить их изменение с ростом энергии. Результаты изображены на рисунке. В Стандартной модели графики слева нет таких энергий, где произошло бы объединение констант взаимодействий. А в минимальном суперсимметричном расширении Стандартной модели графики справа такая точка имеется.

Это значит, что суперсимметрия в физике элементарных частиц обладает приятным свойством — в ее рамках возможно великое объединение! Объединение с гравитацией Стандартная модель не включает гравитационное взаимодействие. Оно совершенно незаметно в ускорительных экспериментах из-за малых масс элементарных частиц. Однако при больших энергиях гравитация может стать существенной. Современная теория гравитационных взаимодействий — общая теория относительности — является классической теорией.

Квантовое обобщение этой теории, без сомнения, стало бы самой общей физической теорией, если бы было построено. Помимо отсутствия каких бы то ни было экспериментальных данных, имеются серьезные теоретические препятствия в построении теории квантовой гравитации. В объединении гравитации с остальными взаимодействиями также есть трудности. Переносчик гравитационного взаимодействия, гравитон, должен иметь спин 2, в то время как спин переносчиков остальных взаимодействий фотон, W- и Z-бозоны, глюоны равен 1. Чтобы «перемешать» эти поля, нужно преобразование, меняющее спин.

А преобразование суперсимметрии как раз и есть такое преобразование. Таким образом, объединение с гравитацией в рамках суперсимметрии вполне естественно. Природа темной материи Вселенной Суперсимметрия может объяснить некоторые результаты исследований в космологии. Один из таких результатов заключается в том, что видимая светящаяся материя составляет не всю материю во Вселенной. Значительное количество энергии приходится на так называемую темную материю и темную энергию.

Прямым указанием на существование темной материи являются зависимости скоростей звезд в спиральных галактиках от их расстояния до центра. Эту зависимость легко вычислить.

В 2011—2012 годах LHC обнаружил бозон Хиггса с массой около 125 ГэВ и связями с фермионами и бозонами, которые согласуются со Стандартной моделью.

MSSM предсказывает, что масса легчайшего бозона Хиггса не должна быть намного больше массы Z-бозона и, в отсутствие точной настройки с масштабом нарушения суперсимметрии порядка 1 ТэВ , не должна превышать 135 ГэВ. БАК не обнаружил никаких ранее неизвестных частиц, кроме бозона Хиггса, который, как уже предполагалось, существует как часть Стандартной модели , и, следовательно, не обнаружил никаких доказательств суперсимметричного расширения Стандартной модели. Косвенные методы включают поиск постоянного электрического дипольного момента EDM в известных частицах Стандартной модели, который может возникнуть, когда частица Стандартной модели взаимодействует с суперсимметричными частицами.

Постоянный EDM в любой фундаментальной частице указывает на нарушение физики обращения времени и, следовательно, на нарушение CP-симметрии через теорему CPT. Такие эксперименты EDM также намного более масштабируемы, чем обычные ускорители частиц, и предлагают практическую альтернативу обнаружению физики, выходящей за рамки стандартной модели, поскольку эксперименты на ускорителях становятся все более дорогостоящими и сложными в обслуживании. Текущий лучший предел для EDM электрона уже достиг чувствительности, чтобы исключить так называемые «наивные» версии суперсимметричных расширений Стандартной модели.

Текущий статус Отрицательные результаты экспериментов разочаровали многих физиков, которые считали суперсимметричные расширения Стандартной модели и других основанных на ней теорий наиболее многообещающими теориями для «новой» физики, выходящей за рамки Стандартной модели, и надеялись на признаки неожиданные результаты экспериментов. В частности, результат LHC кажется проблематичным для минимальной суперсимметричной стандартной модели, поскольку значение 125 ГэВ относительно велико для модели и может быть достигнуто только с помощью больших радиационных петлевых поправок от верхних скварков , которые многие теоретики считают «неестественными». В ответ на так называемый «кризис естественности» в минимальной суперсимметричной стандартной модели некоторые исследователи отказались от естественности и изначальной мотивации решать проблему иерархии естественным образом с помощью суперсимметрии, в то время как другие исследователи перешли к другим суперсимметричным моделям, таким как суперсимметрия расщепления.

Третьи перешли к теории струн в результате кризиса естественности. Бывший активный сторонник Михаил Шифман дошел до того, что призвал теоретическое сообщество искать новые идеи и признать, что суперсимметрия - неудавшаяся теория в физике элементарных частиц. Однако некоторые исследователи предположили, что этот кризис «естественности» был преждевременным, потому что различные расчеты были слишком оптимистичными относительно пределов масс, которые позволили бы суперсимметричное расширение Стандартной модели в качестве решения.

Общая суперсимметрия Суперсимметрия появляется во многих связанных контекстах теоретической физики. Возможно иметь несколько суперсимметрий, а также суперсимметричные дополнительные измерения. Расширенная суперсимметрия Может существовать более одного вида преобразования суперсимметрии.

Теории с более чем одним преобразованием суперсимметрии известны как расширенные суперсимметричные теории.

При этом Тара Шиарс уточнила, что не нашла подтверждения и упрощённая версия теории суперсимметрии, однако полученные результаты не опровергают более сложный вариант теории. К концу 2012 года на детекторе LHCb Большого адронного коллайдера была накоплена статистика по распаду странного B-мезона на два мюона [18]. Таким образом, вероятность этого крайне редкого события статистически достоверна и хорошо согласуется с предсказанием Стандартной модели. Результаты проверки электрического дипольного момента электрона 2013 также не подтвердили варианты суперсимметричных теорий [20].

Тем не менее суперсимметричные теории могут быть подтверждены другими экспериментами, в частности, наблюдениями за распадом нейтрального B0-мезона. После перезапуска весной 2015 года, БАК планирует начать работу на мощности 13 ТэВ и продолжит поиск отклонений от статистических предсказаний Стандартной модели. Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон. Отсутствие экспериментальных данных, подтверждающих теорию суперсимметрии, привело к появлению критиков данной теории даже среди бывших энтузиастов суперсимметрии.

Эти физики очень рассчитывали получить с помощью Большого адронного коллайдера первое экспериментальное подтверждение этой теории. Однако новое наблюдение, о котором было доложено на конференции по физике адронного коллайдера в Киото, противоречит многим моделям в рамках теории суперсимметрии. Теория суперсимметрии Гипотеза суперсимметрии была впервые сформулирована в 1973 году австрийским физиком Юлиусом Вессом и итальянским физиком Бруно Зумино и постулирует существование определенного рода симметрии между двумя основными классами частиц — бозонами и фермионами. Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение. На сегодня эта гипотеза не была подтверждена экспериментально.

Для того чтобы фактически проверить ее, существует несколько возможностей. Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений.

Похожие новости:

Оцените статью
Добавить комментарий