Изображение тени сверхмассивной черной дыры в ядре галактики M 87, полученное в радиодиапазоне с помощью Event Horizon Telescope (2019). Черная дыра M87* наблюдалась с помощью первых прототипов EHT, телескопы которых были расположены в трех географических точках в 2009–2012 годах и в четырех точках в 2013 году. Изображение центральной черной дыры М87, обрамленной аморфным светящимся кольцом, попало в топы практически всех новостных агентств в апреле 2019 года. Соответствующая работа заняла около пяти лет, а полученный портрет Sgr A*, как отмечает сопредседатель научного совета ЕНТ Сера Маркофф, удивил ученых тем, что показал много сходства между двумя черными дырами — М87* и Sgr A*.
Содержание
- LPI - 13.05.2022 N+1. Там дыра. Что астрономы увидели в центре Млечного Пути
- Ученые заметили, как «мерцает» черная дыра
- LPI - 13.05.2022 N+1. Там дыра. Что астрономы увидели в центре Млечного Пути
- Что еще почитать
Телескопы впервые сделали совместный снимок сверхмассивной черной дыры M87 и массивного джета
Эта струя родилась из энергии, создаваемой магнитными полями, окружающими вращающееся ядро черной дыры, и ветрами, поднимающимися от аккреционного диска черной дыры. До этого существовало две теории о том, откуда они могут появиться», — сказал Минтер. Харшал Гупта, руководитель программы NSF обсерватории Грин-Бэнк, добавил: «Это открытие является яркой демонстрацией того, как телескопы, обладающие дополнительными возможностями, могут быть использованы для фундаментального улучшения нашего понимания астрономических объектов и явлений. При использовании материалов с сайта активная ссылка на него обязательна Последние аномальные новости.
На это могут оказывать влияние проявления активности чёрной дыры и вброса в джет вещества или развитие плазменных неустойчивостей. Рисунок 1. Верхняя панель: структура джета в M87 на частоте 43 ГГц при двухгодичном усреднении данных наблюдений. Белые стрелки указывают соответствующее направление джета. Нижняя панель: изменение направления джета за все время наблюдений с 2000 по 2022 год. Красная линия представляет наилучшую подгонку моделью прецессирующей струи с периодом 11 лет.
Источник: Nature Чтобы точно проследить долговременную морфологическую эволюцию джета вблизи сверхмассивной чёрной дыры в М87, учёные проанализировали 170 интерферометрических изображений, полученных в 2000—2022 году на частотах 22—24 и 43 ГГц. Именно эти снимки показали, что, помимо известной постоянной морфологии струи с уярчением к краям, за эти годы можно увидеть изменение позиционного угла направления струи. Для описания наблюдаемой эволюции направления джета авторы работы использовали модель, в которой ось вращения аккреционного диска немного наклонена к оси вращения чёрной дыры Рисунок 2. Вращение массивной чёрной дыры влияет на окружающее пространство-время, приводя к прецессии аккреционного диска, которая распространяется и на джет из-за тесной связи между ним и аккреционным диском. Рисунок 2. Схематическое изображение модели наклонного аккреционного диска. Ось вращения чёрной дыры направлена вертикально, направление джета почти перпендикулярно диску.
Что умеют программные роботы В новом исследовании ученые объявили об обнаружении самых серьезных на сегодня доказательств загадочных черных дыр промежуточной массы. Проанализировав данные, собранные телескопами «Хаббл» и «Гайя» в шаровом звездном скоплении М4, расположенном в 6000 световых годах от Земли, они рассчитали массу центрального объекта, вокруг которого вращается эта группа звезд. Получилось, что она равна 800 массам Солнца, как раз в пределах черной дыры промежуточной массы. Конечно, без непосредственного изучения объекта невозможно окончательно подтвердить, действительно ли это черная дыра и какой она массы. Но если это не она, то тогда это примерно 40 черных дыр звездной массы, втиснутых в пространство диаметром всего одна десятая светового года. Иначе наблюдаемый эффект не объяснить.
Чтобы получить изображение этого объекта, астрофизики использовали сеть из восьми обсерваторий в разных частях Земли, которые и образуют все вместе виртуальный телескоп размером с планету, носящий название Телескопа горизонта событий. Сбор данных велся в течение «множества ночей» по много часов подряд, что можно сравнить с фотосъемкой с длинной экспозицией, говорят ученые. Затем информация долго обрабатывалась суперкомпьютерами. Это было словно пытаться сделать четкое фото щенка, стремительно гоняющегося за собственным хвостом», — говорит о работе ученых Чи-Кван Чан из Университета Аризоны. Полученные изображения — это результат сведения воедино различных снимков, их «среднее арифметическое».
Астрономам удалось сфотографировать магнитные поля черной дыры в М87
Полученное изображение откроет путь к более глубокому пониманию этого механизма. В центре большинства галактик находятся сверхмассивные черные дыры, объясняют ученые. Они поглощают материю, расположенную в непосредственной близости от них. Известно, что они также могут выпускать мощные струи материи, выходящие за пределы галактик. Но как именно это происходит, остается загадкой. Чтобы изучить это напрямую, нам нужно наблюдать происхождение джета, расположенного как можно ближе к черной дыре".
Это явление в науке еще называют эффектом Доплера. Команда объясняет это изменение турбулентностью потока вещества, но пока не готова дать окончательный ответ о том, чем она вызвана. Анна Лысенко.
Все они наблюдали за центром гигантской галактики под названием Мессье 87, или М87, или Дева A, до которого от нас примерно 55 миллионов световых лет. Со вторым все понятно — это наша родная черная дыра, которая располагается в центре Млечного пути, и до нее от нас около 26 тысяч световых лет. Почему же тогда звездой решили сделать далекую никому не известную провинциалку? Все оказалось прозаично: черная дыра в центре нашей Галактики двигается; поле зрения телескопа, мягко говоря, не ахти, поэтому сначала проще сфокусироваться на дальнем объекте. Что видно на изображении? Горизонт событий и тень черной дыры — темный круг, окруженный полумесяцем из яркого света, как и предсказывала теория относительности. Джет — струи плазмы, вырывающиеся из центра черной дыры. У М87 длина джета — около пяти тысяч световых лет.
Со вторым все понятно — это наша родная черная дыра, которая располагается в центре Млечного пути, и до нее от нас около 26 тысяч световых лет. Почему же тогда звездой решили сделать далекую никому не известную провинциалку? Все оказалось прозаично: черная дыра в центре нашей Галактики двигается; поле зрения телескопа, мягко говоря, не ахти, поэтому сначала проще сфокусироваться на дальнем объекте. Что видно на изображении? Горизонт событий и тень черной дыры — темный круг, окруженный полумесяцем из яркого света, как и предсказывала теория относительности. Джет — струи плазмы, вырывающиеся из центра черной дыры. У М87 длина джета — около пяти тысяч световых лет. Скорее всего, она вращается.
Теория чёрных дыр
- Телескопы впервые сделали совместный снимок сверхмассивной черной дыры M87 и массивного джета
- Ученые заметили, как «мерцает» черная дыра
- Получено новое изображение черной дыры M87*
- Опубликованы многоволновые изображения черной дыры в галактике М87
Облегчили в сто раз: российские астрофизики определили массу «сфотографированной» чёрной дыры
О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Черная дыра в М87 окружена аккреционным диском и испускает релятивистские джеты — струи заряженных частиц, двигающихся со скоростью, близкой к скорости света. Наблюдения показали, что, возможно, сверхмассивная чёрная дыра находится не в центре М 87, а в стороне от него, на расстоянии 82 световых лет.
Опубликован первый снимок гигантской черной дыры в Млечном Пути
Ученые использовали глобальную сеть телескопов, названную Event Horizon Telescope, для изучения сверхмассивной черной дыры, располагающейся в созвездии Стрельца на расстоянии 26 тысяч световых лет от Земли. О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Как нельзя лучше в качестве первого объекта наблюдений подошла сверхмассивная черная дыра галактики M87 в созвездии Девы.
Телескопы впервые сделали совместный снимок сверхмассивной черной дыры M87 и массивного джета
Давайте разбираться. Меня зовут Михаил Лисаков, и я изучаю черные дыры. С 2020 года я вхожу в коллаборацию EHT. Вообще, мой основной интерес — джеты, узкие пучки электронов, разгоняемые черными дырами до 0,999 скорости света тут я о них больше рассказываю. Особенно яркие джеты, направленные на нас, видны на огромных расстояниях и служат маяками для построения системы координат. Ваш телефон уже не раз определял по ним свое местоположение на поверхности Земли. И если мы, например, хотим сделать геолокацию еще более филигранной, нужно понять физику релятивистских джетов. А для этого — разобраться, как же черные дыры их запускают. Его угловое разрешение зависит не от размера отдельных телескопов, а от расстояния между ними. Система «видит» не изображение источников на небе, а их пространственный спектр. Каждая пара соседних телескопов определяет на небе крупные детали, а пара наиболее отдаленных — самые мелкие.
Наложение этих наблюдений дает изображение. Чем больше телескопов в интерферометре, тем более качественная картинка. В 2017 году ЕНТ состоял из восьми телескопов, в 2018 — из девяти, с 2022 года — из одиннадцати. Через десять лет планируется удвоить количество телескопов. Что показало самое первое изображение? Первый снимок черной дыры в галактике М87 позволил измерить видимый диаметр ее кольца — 42 микросекунд дуги. Такое кольцо может быть создано черной дырой с массой 6,5 миллиардов масс Солнца — как раз такая масса там и находится, судя по динамике звезд и газа. Эти значения не зависят от математических моделей черной дыры и аккрецирующего вещества, поэтому должны сохраняться от наблюдения к наблюдению их можно записать в учебники. Мы знаем, как должна работать аккреция. На суперкомпьютере мы смоделировали 60 тысяч черных дыр с разными параметрами и веществом, которое на них падает.
Большинство из них оказались совсем непохожими на действительное — значит в них спин, магнитное поле или какие-то другие параметры неправильные. А вот те изображения, которые напоминали реальное, определили диапазон физических параметров черной дыры и окружающего вещества. Оказалось, что более яркая нижняя половина кольца объясняется допплеровским усилением излучения из-за вращения вещества вокруг черной дыры: сама она быстро вращается, а вещество вокруг нее сильно замагничено. Это первое наблюдение черной дыры позволило опровергнуть некоторые теории гравитации. Например, в центре М87 точно находится не кротовая нора и не голая сингулярность. Так что общая теория относительности пока выдерживает проверку. Зачем продолжили наблюдать и обрабатывать данные?
Новые методы машинного обучения, которые мы разработали, предоставляют прекрасную возможность для нашей коллективной работы понять физику черных дыр». Новое изображение должно привести к более точным определениям массы черной дыры M87 и физических параметров, определяющих ее нынешний вид. Эти данные также дают исследователям возможность наложить большие ограничения на альтернативы горизонту событий на основе более темной центральной депрессии яркости и выполнить более надежные тесты гравитации на основе более узкого размера кольца. M87 — массивная, относительно близкая галактика в скоплении галактик Девы. Начиная с 1950-х годов новая тогда техника радиоастрономии показала, что в центре галактики есть компактный яркий радиоисточник. В 1960-х годах предполагалось, что в центре M87 есть массивная черная дыра, которая обеспечивает эту активность. Измерения, сделанные с наземных телескопов начиная с 1970-х годов, а затем космическим телескопом Хаббл, начиная с 1990-х годов, убедительно подтвердили, что M87 действительно содержит черную дыру, масса которой в несколько миллиардов раз превышает массу Солнца, основываясь на наблюдениях за высокими скоростями звезд и газа, вращающихся вокруг ее центра. Наблюдения EHT 2017 года за M87 велись в течение нескольких дней с нескольких разных радиотелескопов, соединенных вместе в одно и то же время, чтобы получить максимально возможное разрешение.
Это может показаться не таким уж серьезным, но это удивительное свидетельство силы человеческой изобретательности» — Лоуренс Краусс, физик, популяризатор науки. Что дальше? Плюс три телескопа к сети EHT, что улучшит разрешение изображения и позволит различить место присоединения джета к поверхности горизонта событий. Пока ученые следили за М87 всего четыре дня. По их словам, будь у них две недели, а еще лучше — два месяца, они бы сделали видео. Новостью активно стали делиться популяризаторы науки, но шутки про первую запечатленную черную дыру уже ушли в народ, и М87 тут же стала мемом. By its very nature, a black hole cannot be seen, but the hot disk of material around it shines bright. По своей природе черная дыра не видна, но горячий диск материи вокруг нее ярко светится.
Объекты с интенсивными гравитационными полями из которых свет не может уйти рассматривались еще в XVIII веке. Однако только в 1916 году Карл Шварцшильд дал первое современное решение общей теории относительности, характеризующее черную дыру. Современная астрофизика рассматривает три типа черных дыр во Вселенной: звездные образуются как конечный этап жизни звезды , сверхмассивные образуют ядра большинства галактик и реликтовые маленькие черные дыры, образование которых происходило на ранних стадиях развития Вселенной. Черная дыра может иметь массу, столь же малую, как луна Земли, и огромную, в десять миллиардов раз превышающую массу Солнца. Ее масса пропорциональна размеру горизонта событий, который измеряется как радиус Шварцшильда. Более того, ни одна черная дыра не является бесконечно маленькой: минимальная масса выше или равна массе Планка, которая составляет около 22 микрограммов.
Свежие записи
- Что еще почитать
- Мы только что получили беспрецедентные новые изображения сверхмассивной черной дыры M87* - RW Space
- Сверхмассивная черная дыра в самой удаленной галактике удивила ученых
- Правила комментирования
- Российские астрофизики определили массу «сфотографированной» чёрной дыры
Ученые: «чудовищная» черная дыра M87 вращается!
Исторические снимки были представлены 10 апреля 2019 года и стали знаменательным для науки событием. Новость Первый снимок черной дыры превратился в мемы фото Изображение было получено в рамках проекта Event Horizon Telescope в результате наблюдений, которые длились около недели в 2017 году. Одна часть диска кажется ярче, другая — более тусклой. Но зоны яркости заметно меняются с течением времени.
Параллельно с этими измерениями студент Джереми Мерфи использовал другой инструмент, из обсерватории Западного Техаса, чтобы исследовать внешние области галактики — так называемое темное гало. Эта область пространства простирается в десятки раз дальше видимой границы галактики и заполнена темной материей, составляющей большую часть ее массы. Ученые давно поняли, что галактики состоят далеко не только из того вещества, которое можно наблюдать в телескоп в различных диапазонах волн.
Если бы это было так, то скорость вращения звезд по мере удаления от центра галактик падала бы. Однако оптические и радионаблюдения показывают, что в большинстве случаев скорости вращения звезд и газа почти не зависят от расстояния до центра, а иногда даже возрастают к краю. Это обстоятельство указывает на то, что бал в большинстве галактик правит не столько видимое барионное вещество, сколько проявляющая себя исключительно гравитационным взаимодействием темная материя. Гигант на заднем дворе Чтобы точно определить массу центральной черной дыры, ученым необходимо принять в расчет все компоненты наблюдаемой галактики. Поэтому изучение внутренних и внешних областей галактики позволяет отдельно оценить вклад звезд, газа и темной материи в общую массу.
Расстояние до сверхмассивной чёрной дыры — 27 тысяч световых лет. Чёрная дыра в центре Млечного Пути стала второй, изображение тени которой смог получить Телескоп горизонта событий. Открытие позволило астрономам окончательно доказать существование чёрной дыры в центре нашей галактики.
Свои результаты EHT может подтвердить только сам. Во-вторых, были данные. Телескоп работал в 2018-м, когда даже внутри коллаборации ни у кого еще не было изображений за прошлый год и никто не знал, успешны ли те наблюдения. Раз данные есть — надо их обработать. Обработали — публиковать. В-третьих, хотелось ответить новыми результатами на критику японских астрономов под руководством Макото Миёси. Его команда утверждала, что в данных EHT 2017 года нет никакого кольца, зато есть джет протяженностью 1000—10000 микросекунд. Но EHT в 2017-м не мог регистрировать такие большие структуры — это раз. Мы нашли ошибки в их алгоритмах — это два. И в конце концов получили такое же кольцо по новым данным. Шах и мат. В-четвертых, в 2018 году чувствительность EHT увеличилась в 1,5 раза благодаря более широкой полосе приема сигнала. А к наблюдениям подключился телескоп в Гренландии. При небольшом числе телескопов добавление одного увеличивает количество данных на целых 30 процентов. Правда, погода подвела, и поэтому в 2018 году качество данных получилось похожим на 2017-й. В-пятых, в 2017 году согласованное изображение получили тремя разными алгоритмами. А вот данные 2018 года обработали уже восемью, и все уверенно восстановили кольцевую структуру с одинаковым размером и распределением яркости. Напомню, интерферометр измеряет амплитуду и фазу пространственных частот, и для получения изображения еще надо сильно постараться. Современные астрономические данные — это на 20 процентов наблюдения и на 80 процентов математика. Что получилось? Мы ожидали, что две характеристики изображения останутся неизменными: диаметр кольца и его неоднородная яркость. Это бы согласовалось с общей теорией относительности и подтвердило качество наблюдений и анализа. Так и вышло. Ведь если ОТО работает, то диаметр кольца зависит от расстояния до Земли и массы черной дыры, которую за один год значимо не изменишь. Расстояние же практически постоянно на таком промежутке времени. Гипотеза подтвердилась: размер кольца в 2018 году, 45 микросекунд, не отличается от предыдущего измерения с учетом погрешности. И яркость нового кольца такая же неоднородная — это связано с вращением вещества вокруг черной дыры: остановить его или существенно замедлить не получится. Но что могло — то поменялось.
Чем так примечательна галактика Мессье 87 и что о ней нужно знать?
Впервые получен снимок черной дыры, испускающей мощный джет | Чёрная дыра M87 почти не двигается в течение недели наблюдения, но Стрелец A* меняет свой вид каждые пять минут. Задача специалистов состояла в том, чтобы отделить то, что меняется, от того, что остается неизменным, — и таким образом очертить структуру, лежащую в основе. |
Опубликованы 10 лет наблюдений за первой в истории сфотографированной черной дырой M87* | О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. |
Черная дыра оказалась совсем маленькой | Снимок зафиксировал свет, искривленный гравитацией черной дыры, которая в четыре миллиона раз массивнее Солнца. |
Чем так примечательна галактика Мессье 87 и что о ней нужно знать? | Ученые, наблюдающие за компактным радиоядром M87, узнали больше о природе сверхмассивной черной дыры (СМЧД) этой галактики. |
Телескоп Джеймса Уэбба только что сделал первый реальный снимок внутренней части черной дыры! | Знаменитое изображение черной дыры в центре галактики M87, которую иногда называют «оранжевым пончиком», впервые улучшили с помощью машинного обучения. |
Мы только что получили беспрецедентные новые изображения сверхмассивной черной дыры M87*
В 2019-м работающие на нем ученые сообщили о реконструкции изображения сверхмассивной черной дыры в эллиптической галактике M87* — в 54 миллионах световых лет от Земли в созвездии Девы. Эта сверхмассивная черная дыра, масса которой в 6,5 миллиардов раз превышает массу нашего Солнца, находится в центре галактики Мессье 87 (M87) в скоплении галактик Девы, расположенном в 55 миллионах световых лет от Земли. По словам участников проекта, получить фотографию черной дыры в Млечном Пути было намного сложнее, чем в галактике Messier 87, поскольку газ, вращающийся вокруг нее, совершает полный оборот всего за пару минут. Как и черная дыра, обнаруженная внутри М87, Sgr A* изгибает весь свет вокруг себя. Поймать блуждающую черную дыру в обычный телескоп невозможно — она не. Тень чёрной дыры в галактике M87 и улучшенный вариант изображения в поляризованном.