– Искусственный интеллект обращает внимание на то, каким словарным запасом владеют ученики, что им нравится, какой контент для них является сложным.
Как искусственный интеллект повлияет на нашу жизнь в будущем
Конец года — время подводить итоги. Редакция проекта «Мир 2051» подготовила для вас целую серию видео про технологические достижения, впечатлившие нас в 2023. Искусственный интеллект однозначно стал главной темой мира технологий в 2022 году. В статье узнаете, какие возможности сегодня появились благодаря ИИ в сфере EdTech, как искусственный интеллект может помочь преподавателям и учащимся повысить эффективность и результативность учебного процесса в 2024 году. Искусственный интеллект. Авторы ежегодного доклада AI Index Report 2023 подчеркивают, что искусственный интеллект вступает в новую фазу развития.
Как искусственный интеллект изменит нашу жизнь через 30–50 лет
Проект по применению искусственного интеллекта | Двенадцатиярусные стеки памяти поднимают быстродействие в задачах искусственного интеллекта на 34 % в среднем по сравнению с 8-ярусными. |
Samsung заключила контракт с AMD на поставку HBM3E на сумму $3 млрд | Известный ученый и популяризатор концепции общего искусственного интеллекта (Artificial General Intelligence, AGI) Бен Герцель в ходе своего выступления на Beneficial AGI Summit 2024 в Панаме в марте предсказал появление ИИ, который будет таким же ум. |
Ключевые тенденции-2024 в области ИИ | Наработки в области искусственного интеллекта в ближайшие годы могут принести государству триллионы рублей. |
Будущее сейчас. Как технологии искусственного интеллекта влияют на экономику и бизнес
Тем не менее люди старшего возраста от 45 до 55 лет чаще отмечают, что ИИ-технологии пока не принесли им никакой конкретной пользы. Вместе с тем они отмечают свою общую заинтересованность в таких инновациях. Общий тренд на интерес к технологиям искусственного интеллекта и доверие к нему продемонстрировали респонденты с детьми. Заметна и тенденция на рост использования ИИ в повседневной жизни. Респондент мог указать несколько вариантов ответа. ООO «Техкомпания Онор». Место нахождения: 121614, г. Москва, ул.
Наиболее успешно развиваются три направления в медицине: компьютерная диагностика на базе анализа изображений, о чем было сказано ранее, поддержка принятия решений при диагностике, например при определении дозы лекарств. Также ИИ облегчает рутинные рабочие процессы: голосовые боты переводят речь врача в текст для медицинской карты, а роботы-операторы колл-центров записывают пациентов на прием. Рентгенологи Москвы благодаря голосовому вводу уже заполнили свыше 210 тыс. В перспективе ИИ может помочь с разработкой новых лекарств и дженериков, что сэкономит миллиарды рублей на НИОКР и годы кропотливого труда ученых. Все свое, родное Крупные российские технологические компании вкладывают средства в собственные научные исследования и разработки, открывая лаборатории по ИИ и даже целые институты. В апреле «Яндекс» запустил бета-версию нейросети для генерации изображений по текстовым запросам пользователей. Его назвали «Шедеврум». Приложение доступно на мобильных платформах Android и iOS. Нейросеть GigaChat пока доступна в тестовом режиме по приглашениям. В отличие от иностранного аналога, GigaChat лучше понимает запросы на русском языке, заявили в банке. Сбербанк использует решения на базе искусственного интеллекта в большинстве продуктов и процессов компании, ранее заявил президент, предправления Сбербанка Герман Греф. Например, банк использует собственные ИИ-модели для повышения безопасности транзакций: онлайн-переводов, эквайринга, операций по картам. В финансовой сфере благодаря внедрению ИИ существенно сократилось время рассмотрения заявки на кредит. С момента отправки анкеты в банк до получения ответа проходит не несколько дней, а несколько минут. ИИ прогнозирует загрузку банкоматов, сколько денег внесут, а сколько снимут, что впоследствии уменьшает расходы на инкассацию.
Их всегда … Ключевые тенденции-2024 в области ИИ 22. Что же ждет нас в 2024-м? Когда наступил 2023 г. Теперь, когда пыль улеглась, пришло время заглянуть в новый год и посмотреть на тенденции, которые будут определять прогресс ИИ в 2024-м. Более сильная киберзащита, более изощренные злоумышленники ИИ уже дает огромные преимущества нашим киберзащитникам, позволяя им улучшать возможности, сокращать трудозатраты и лучше защищать от угроз, говорит Фил Венаблс, CISO Google Cloud. С другой стороны, Венаблс ожидает, что злоумышленники будут использовать генеративный ИИ и LLM для персонализации и постепенного масштабирования своих деструктивных кампаний: «Они будут использовать все возможное, чтобы размыть границу между доброкачественными и вредоносными приложениями ИИ, поэтому защитники должны действовать быстрее и эффективнее». ИИ становится мультимодальным Самым важным трендом в области ИИ в 2024 г.
Крупные производители электроники всё чаще внедряют в свои продукты технологии искусственного интеллекта. Согласно исследованию, то, как тот или иной смартфон обрабатывает фотографии и видео или помогает работать с текстом, часто становится «фишкой» при выборе. По набору умных сервисов в смартфоне мужчины и женщины имеют схожие предпочтения. Новые тренды ИИ-технологий в смартфонах приведут к поддержке искусственного интеллекта на уровне платформы и развитию больших языковых моделей, способных работать без передачи запросов в облако. Например, новая операционная система MagicOS 8. Раньше для таких взаимодействий требовалось несколько касаний экрана, а теперь технологии ИИ способны понимать тип контента, контекст, учитывать пользовательские привычки и сокращать длинную последовательность нажатий до одного действия. Продвинутая камера играет важную роль при выборе смартфона, а использование ИИ в процессе съемки стало повсеместным. Отцы и дети Традиционно считается, что молодежь, особенно поколение Z до 26 лет , является наиболее продвинутыми пользователями технологий.
Вы находитесь здесь: итоги 2023 года в сфере ИИ
Конец года — время подводить итоги. Редакция проекта «Мир 2051» подготовила для вас целую серию видео про технологические достижения, впечатлившие нас в 2023. Наработки в области искусственного интеллекта в ближайшие годы могут принести государству триллионы рублей. В статье узнаете, какие возможности сегодня появились благодаря ИИ в сфере EdTech, как искусственный интеллект может помочь преподавателям и учащимся повысить эффективность и результативность учебного процесса в 2024 году.
Его превосходительство ИИ: в каких направлениях искусственного интеллекта РФ опережает Запад
Считаю, мы справились». Наталья Соколова, управляющий партнер Brand Analytics: «Применение ML-технологий для обработки естественного языка — одно из ключевых направлений в развитии индустрии аналитики соцмедиа, лидером которой является Brand Analytics. Мы хорошо понимаем, что участникам рынка важно не только отслеживать новости в области ИИ, но и иметь перед глазами навигатор компаний и решений в этой важнейшей для нашего с вами будущего отрасли. Представленный билайном совместно с Brand Analytics рейтинг ИИ претендует как раз на место такого навигатора. Проект получился интересным. Рейтинг одновременно учитывает и медийную активность игроков, и внимание к теме и компаниям со стороны СМИ, и «народное» обсуждение в социальных медиа, в данном случае — в Telegram-каналах. Смотреть на ситуацию с трех сторон кажется очень перспективным подходом.
Искусственный интеллект и машинное обучение представляют собой серьезные проблемы с внедрением. Генеративный искусственный интеллект в маркетинге и СМИ Компании стремятся завоевать лояльность клиентов, постоянно создавая высококачественный контент для маркетинговых каналов.
Различные типы контента могут быть созданы с помощью таких методов, как обучение в стиле передачи или общие состязательные сети в генеративных сетях искусственного интеллекта. Ожидается, что в 2023 году его значимость в сфере контент-маркетинга значительно возрастет. Однако влияние генеративного ИИ не ограничивается маркетинга ; потенциально это может произвести революцию во всей медиаиндустрии. Безграничные возможности включают создание новых фильмов, восстановление старых до качества высокой четкости и улучшение спецэффектов. Тем не менее, влияние генеративного искусственного интеллекта не ограничивается только маркетингом; у него есть потенциал изменить весь медиа-ландшафт. Диапазон потенциальных применений практически безграничен и охватывает такие области, как: Производство новых фильмов и восстановление старых в высоком разрешении. Развитие спецэффектов и визуальных эффектов в индустрии развлечений. Создание аватаров для использования в метавселенная.
Возрастающая важность платформ управления моделями Инструменты и модели машинного обучения имеют широкий диапазон сложности, что представляет собой проблему для различных заинтересованных сторон в любой корпорации. Дилемма заключается в достижении консенсуса относительно полного жизненного цикла инструмента или модели ML. То, что руководство воспринимает как жизненный цикл модели, может отличаться от точки зрения ИТ-команды, а то, что ИТ-команда считает жизненным циклом, может не совпадать с ожиданиями команды управления рисками и т. Однако ситуация меняется. В 2022 году платформы управления моделями появились как решение для гармонизации разнообразных функций и точек зрения, связанных с использованием модели в различных подразделениях организации. Эта разработка создает централизованный центр, позволяющий компаниям эффективно контролировать свои модели ML и определять их сквозной жизненный цикл без необходимости участия руководителей отдельных отделов. Ожидается, что эта тенденция сохранится и в 2023 году. Более широкое распространение адаптивного искусственного интеллекта Крупные ритейлеры вкладывают значительные средства в технологии искусственного интеллекта, чтобы улучшить взаимодействие с клиентами, повысить операционную эффективность и вовлеченность.
Ожидается, что эта тенденция сохранится как минимум до 2023 года. Одним из ключевых результатов этих инвестиций станет разработка бесконфликтных шоппинг , что стало возможным благодаря таким технологиям, как компьютерное зрение и периферийные системы искусственного интеллекта, которые могут значительно сократить время ожидания. В ближайшем будущем розничные магазины смогут предлагать персонализированные рекомендации по продуктам и беспрепятственный путь покупателя благодаря аналитике и данным в реальном времени. Адаптивный искусственный интеллект будет играть ключевую роль в преобразовании розничных магазинов из транзакционных центров в центральные центры, чтобы повысить узнаваемость бренда и улучшить качество покупок. Возрастающая роль периферийного искусственного интеллекта Edge AI — это тип искусственного интеллекта, который работает на устройствах, а не полагается на облачную обработку. Цель использования алгоритмов и данных искусственного интеллекта на устройствах — повысить производительность систем на базе искусственного интеллекта и создать персонализированный опыт работы в реальном времени.
Третий тренд - развитие безопасного искусственного интеллекта. Речь идет о переходе от клиентоцентричной к человекоцентричной модели, когда приоритетами для государства и бизнеса становятся интересы конкретного человека. И здесь важно понимать, что при дальнейшем развитии ИИ всё большее значение приобретают вопросы этики искусственного интеллекта. За два года к Кодексу этики искусственного интеллекта присоединилось порядка 330 организаций, в том числе 23 зарубежные и около 60 российских органов исполнительной власти.
Четвертый тренд - стремление научных исследователей в различных технологических областях использовать всё более мощные большие языковые модели и генеративный ИИ. По экспертным оценкам, в ближайшие 10 лет такие технологии добавят около 7 трлн долларов к мировому ВВП. В идеале, обратил внимание Дмитрий Чернышенко, каждый специалист должен использовать ИИ как своего помощника для прокачки своих возможностей и навыков. И пятый тренд - рост экономического эффекта от использования ИИ. По экспертным оценкам, к 2030 году в мировой экономике он превысит 15 трлн долларов. Принципиально важной стала смена парадигмы в том, что касается внедрения ИИ. В ее рамках была обновлена национальная Стратегия.
Помимо сложного процесса внедрения, эксперты выделили множество проблем, препятствующих усилиям по защите окружающей среды на основе ИИ.
В настоящее время сложно идти в ногу с инновациями в программном обеспечении для ИИ, что может замедлить усилия по внедрению. Еще один недостаток попыток перейти на ИИ заключается в потенциальной предвзятости алгоритмов, которая может испортить весь процесс. Один из способов обойти это фиаско - использовать всеобъемлющие наборы данных и строгие процедуры проверки. Звездный дебют в сфере общественного здравоохранения В то время как некоторые исследователи делают ставку на теоретические исследования, другие уже пожинают плоды практического использования.
Отцы и дети
- Курсы валюты:
- Будущее искусственного интеллекта: перспективы и выгоды
- Новости национального портала искусственного интеллекта и нейросетей в РФ
- Искусственный интеллект, нейросети - новости со всего мира -
- Курсы валюты:
- Как мы это сделали
Массовая безработица и безграничные возможности? Как сегодня поживает искусственный интеллект
Без них никак не обойтись, потому что они ключевые. Искусственный интеллект ИИ — это общее понятие, которое описывает машинные алгоритмы и технологии, направленные на создание интеллектуальных систем. Машинное обучение Machine Learning, ML — это класс методов ИИ, позволяет компьютерам обучаться на основе больших объемов данных, извлекая из них закономерности. Используется в основном для решения различных задач классификации и прогнозирования. Нейронные сети Neural Networks, NN — это одна из технологий машинного обучения, которая моделирует работу мозга человека. Нейронные сети могут использоваться для решения множества различных задач: для распознавания образов например, автомобильных номеров на фотографии , перевода голосового сообщения в текстовое, генерации изображений по тексту, создания моделей чего-либо, текстов, картин и т. То есть нейронные сети — это один из способов реализации машинного обучения.
Вообще специалисты стараются меньше употреблять словосочетание «искусственный интеллект». Они предпочитают термин «машинное обучение». Это связано с тем, что существуют два принципиально разных способа использовать компьютер для решения задач. Классический заключается в том, что есть исходные данные. И есть формула алгоритм , которая обеспечивает преобразование исходных данных в выходные результат. Второй способ применяют, когда у человека не получается разработать алгоритм самому.
Есть входные и выходные данные, а алгоритм неизвестен. И вот чтобы компьютер мог решить задачу например, распознавания лиц людей или товаров в магазине , применяются методы машинного обучения. Вы скажете, зачем нам сдались все эти определения?! Но я попрошу не торопиться. Ведь все, что скрывается за написанными выше понятиями, очень помогает нам в повседневной жизни. Повторюсь, почти у каждого из нас есть смартфон, компьютер.
Мы регулярно забиваем свои запросы в поисковые системы, и они выдают нам нужные ответы. Например, тот же прогноз погоды. Или когда мы используем навигатор, управляя машиной, — он ведь тоже подстраивается под наши привычки и предпочтения. Я, например, в течение месяца, выезжая в дальнее Подмосковье, заправлялась на одной и той же заправке и останавливалась взбодриться кофе в конкретном месте. Но буквально на днях, следуя в том же направлении с полным баком топлива и со своим кофе в термосе, я не планировала остановок. Однако навигатор упорно предлагал мне заправиться и перекусить в уже «знакомых» ему местах.
И еще много чего предлагал. То есть он уже сам за меня начал «думать». Наверное, многие давно заметили: стоит только поговорить о покупке какой-то вещи — и буквально через несколько часов уже ваш смартфон предлагает вам разные варианты этого предмета. Он ведь «подслушивает» все разговоры. Еще один пример. Несколько лет назад на всех станциях метро в Москве заработала система оплаты проезда с помощью распознавания лица.
По официальным данным, только за прошлый год ею воспользовались 32 млн раз. А появление и широкое использование дронов, которые уже много чего могут делать самостоятельно? Вы думаете, что так и должно было быть и это естественные процессы? Это результат машинного обучения, работы нейронных сетей, которые стремительно развиваются. Но все те примеры, которые я привела выше, лишь малюсенький кусочек «айсберга». Ведь мы с вами живем в ошеломительное, революционное во всех отношениях время.
Этот «интеллектуальный» прорыв произошел именно за последнее десятилетие. Человечество вышло на этот качественно новый уровень благодаря... Тайна «черного ящика», или «Ларчик просто открывался»? Я прослушала много выступлений и дискуссий, где участвовал директор по развитию технологий ИИ компании Яндекс Александр Крайнов. Он считает, что искусственный интеллект ничего не знает. Он не знает окружающий мир, слова, явления или еще что-нибудь.
Он оперирует всегда с числами. Получив множество чисел на входе, ИИ выдает множество чисел на выходе.
Через несколько месяцев после запуска им пользовались 100 млн человек в месяц. Сегодня 100 млн — это недельная аудитория ChatGPT. Это позволило компании занять третье место среди самых дорогих в истории стартапов после SpaceX и ByteDance.
Хорошо, OpenAI за год значительно подорожала и нарастила клиентскую базу. А что с самим ChatGPT? За это время чат-бот научился пользоваться актуальной информацией первое время нейросеть ограничивалась данными по состоянию на сентябрь 2021 года , проникла в корпоративный сегмент и поселилась на Android и iOS в виде отдельного приложения. Дальнейшие планы по развитию ChatGPT кого-то могут напугать. То есть останется чат-бот «для всего», но любой желающий сможет «натренировать» персональную нейросеть для выполнения узкоспециализированных задач.
При этом от пользователя не требуется знание программирования — конструктор составлен так, что построить собственный чат-бот можно за несколько минут, используя естественные языковые команды. Например, можно создать бот, который будет сочинять подходящие для засыпания сказки с авантюрным сюжетом, определенным стилем речи рассказчика, да еще с возможностью добавлять в сюжет пользовательские идеи. Боту можно поручить взять интервью у конкретного специалиста — нейросеть изучит все публикации, которые есть в сети об этом специалисте, и сама сгенерирует список вопросов. Он сможет посоветовать рецепты блюд, приготовить которые можно из имеющихся в холодильнике продуктов. Для них OpenAI создает особую каталогизированную платформу, которую сегодня уже сравнивают с App Store не только по функциональности, но и по масштабам влияния на индустрию.
Вы сможете открыть страницу магазина с сотнями тысяч таких узкоспециализированных чат-ботов и купить нужные. Искусственный интеллект уже используется в управлении компаний, а в ближайшие годы с ним познакомятся даже те, кто до сих пор умудрился ничего не слышать про ИИ и нейросети. Потому что производители продуктов и устройств, рассчитанных на максимально широкую аудиторию, прямо сейчас вступают в гонку ИИ. В экс-Twitter вот-вот появится свой чат-бот Grok, Google интегрирует ИИ во все свои сервисы, генеративный искусственный интеллект в ближайшие месяцы ждут в новых флагманских смартфонах Samsung, да и Apple работает в том же направлении. Крупнейшие мировые корпорации вступили в колоссальную «гонку вооружений» и вкладывают миллиарды долларов в ИИ.
Плоды всего этого появятся уже в ближайшие полгода-год. Но и сейчас компаниям есть чем похвастаться. На днях стало известно о том, что Airbnb купила стартап, занимающийся развитием ИИ. Сервис хочет использовать нейросети для помощи в планировании клиентами своих поездок.
В процессе исследования ученые КФУ будут изучать поведение человека, анализируя разнообразные продукты его виртуальной активности, в первую очередь авторские тексты, которые пользователи размещают на различных онлайн-платформах LiveJournal, «ВКонтакте», «Дзен» и др. По словам заведующего кафедрой информационных систем ИВМиИТ Фаиля Гафарова и заведующего кафедрой высшей математики и математического моделирования ИМиМ Александра Агафонова, на помощь психологам придут инструменты, связанные с методами искусственного интеллекта, — машинное обучение, искусственные нейронные сети, когнитивные архитектуры, большие языковые модели. С их помощью исполнители проекта хотят попробовать «разобрать» поведение человека, чтобы понять, из чего же оно состоит и что на него может оказывать влияние. В итоге ученые КФУ планируют существенно расширить исследовательские возможности современной психологии и разработать цифровые модели, которые имитировали бы содержание поведенческих действий человека, позволяя проводить разнообразные экспериментальные исследования как особенностей поведения человека, так и стимулов, которые их вызывают.
Системы искусственного интеллекта активно применяются при оказании телекоммуникационных услуг, в автомобильной промышленности и финансовом секторе. Указанные технологии внедряются и в розничных сетях, при производстве FMCG пер. Технологии искусственного интеллекта широко используются в таких разных сферах бизнеса, как ритейл, строительство, информационные технологии, образование и т. В каждой из указанных бизнес-сфер применяются технологии управления поведением потребителей, изучения будущих тенденций рынка и автоматизации различных рутинных процессов. Рассмотрим сектора применения возможностей искусственного интеллекта. Беспилотные автомобили, использующие алгоритмы искусственного интеллекта с возможностью полного автономного вождения без вмешательства человека, могут существенно трансформировать транспортную систему. Машины с использованием ИИ анализируют трафик и альтернативные маршруты, сокращая время в пути [5]. Применение высокопроизводительных роботов способствует быстрому и качественному выполнению задач, более эффективной, чем у человека, деятельности. Благодаря использованию 3D-технологий и машинного зрения роботы способны в разы ускорить процесс производства в любой сфере. Автономные хирургические роботы, виртуальные помощники медицинского персонала и автоматическая диагностика изображений — это новейшие разработки, благодаря которым искусственный интеллект начинает играть решающую роль в технологическом прогрессе сферы здравоохранения, а также в развитии услуг телемедицины в трансграничном режиме [8] Ermakova, Kovyazin, 2002. Сфера развлечений. Машинное обучение на нейронных сетях позволяет предсказывать сценарии поведения пользователя и предоставлять рекомендации по подбору фильмов, музыки, телешоу и другого интересующего потребителя контента. ИИ в зависимости от предпочтений пользователя осуществляет персонализированный подбор рекламы, что способствует повышению эффективности маркетинга в аспекте таргетированной рекламы и увеличению объемов продаж. Предиктивный анализ и автоматизация, осуществляемая алгоритмами искусственного интеллекта, применяются в целях принятия бизнес-решений, продажи билетов и прогнозирования результатов спортсменов. Искусственный интеллект, применяемый в бизнесе, способствует улучшению показателей во всех сферах. К примеру, к процессам, в рамках которых ИИ решает определенные узконаправленные задачи, следует отнести следующие: 1. Искусственный интеллект осуществляет изучение статистики и выполняет прогностические функции, обрабатывая гигантские массивы информации в целях подбора наиболее оптимального распределения цен на конкретный вид продукции. Это позволяет в несколько раз повысить объемы выручки и доходов компании. Самообучающиеся нейронные сети анализируют поведение клиентов и вычисляют подозрительные операции, существенно снижая таким образом негативные последствия действий кибермошенников и киберпреступников, что приводит к значительному снижению финансовых потерь, повышенной защищенности системы и росту доверия пользователей [7] Dudin, Shkodinskiy, 2021. Маркетинговая сфера. Системы искусственного интеллекта на основе изучения предыдущих продаж и глубокого изучения рынков осуществляют прогнозирование сценариев развития событий. Алгоритмами изучаются контактные данные клиентов, суммы сделок и приобретенные ими товары или услуги [20] Shkor, Sevzyuk, 2020. Кроме того, ИИ анализирует поведение конкурентов в целях сопоставления эффективных и неудачных решений и действий. Это позволяет компании разрабатывать и реализовывать грамотную маркетинговую стратегию, которая с высокой степенью вероятности завершится финансовым успехом. Скорость обработки данных. Big Data большие данные — это основной инструмент работы искусственного интеллекта. ИИ позволяет быстро и эффективно анализировать большие объемы информации, разрабатывать пути реакции, а также осуществлять построение стратегического планирования. В качестве примера можно привести применение систем искусственного интеллекта при реализации биржевых операций. Следует отметить, что традиционные программные алгоритмы не в состоянии самостоятельно адаптироваться к быстро меняющимся условиям и данным без предварительного обучения. Алгоритмы искусственного интеллекта предоставляют такую возможность и повышают продуктивность работы на бирже [4] Babich, Kirillova, 2019.
Как использовать ИИ в онлайн-обучении в 2024 году
мы находим и публикуем самые свежие и интересные новости со всего мира - Aimatics. В статье узнаете, какие возможности сегодня появились благодаря ИИ в сфере EdTech, как искусственный интеллект может помочь преподавателям и учащимся повысить эффективность и результативность учебного процесса в 2024 году. Искусственный интеллект научился обрабатывать большие массивы данных, выстраивать их последовательность, выдавать результаты, генерировать идеи и даже делать предсказания. Актуальность данной статьи состоит в том, что в современном мире искусственный интеллект (ИИ) имеет довольно серьезную роль в выполнении множества процессов. Роль искусственного интеллекта в цифровой трансформации современной россии.
Около 16% екатеринбуржцев не представляют свою жизнь без искусственного интеллекта
Apple разрабатывает собственный серверный процессор для искусственного интеллекта с использованием 3-нм техпроцесса TSMC. Искусственный интеллект (ИИ) — одна из самых перспективных областей в науке и технологиях. Искусственный интеллект находит широкое и все более значимое применение в различных областях и сферах деятельности, что приводит к новым технологическим революциям и повышению эффективности деятельности в различных отраслях. «Революция искусственного интеллекта в медицине: GPT-4 и дальше» Питера Ли, Кэри Голдберга и Исаака Кохана «Революция искусственного интеллекта в медицине: GPT-4 и далее» для тех, кто хочет быть.
Около 16% екатеринбуржцев не представляют свою жизнь без искусственного интеллекта
Какое будущее у нейросетей? За последние 20-30 лет мы несколько раз пережили смену технологической парадигмы: персональные компьютеры и интернет, смартфоны и приложения, данные и искусственный интеллект, ML модели и нейросети. Сейчас мы находимся в цикле доминирования нейросетей, ML моделей и АI. В трендах технологического развития 2023 год многое поменял. Нейросети открыли новые возможности перед человеком и бизнесом в области практических решений и монетизации. Объем данных достиг достаточного уровня, чтобы появился масштаб, возросла бизнес-ценность практических кейсов, и это выстрелило. Спрос [на ML-инженеров] вырос, а уровень квалификации снизился, так как российские специалисты с высокими компетенциями ушли на международный рынок. Рост спроса на ML-инженеров в России приводит к тому, что компании готовят специалистов со студенческой скамьи, квотируя ресурсы на стадии поступления будущих специалистов в ВУЗы. Их доход начинается на уровне 300 тыс. Ниже доход у тех, кто является бывшим аналитиком или только недавно переучился.
Спрос, однозначно, растет. Есть 2 источника пополнения ML-инженеров: бывшие аналитики данных и студенты. В B2B прогресс заметен в отрасли агрокультуре. В других бизнесах много специфики и отсутствует универсальная экспертиза B2B, поэтому здесь точно сложился дефицит специалистов, и нет готовых решений у интеграторов и цифровых экосистем. Евгения Дёмина Аккаунт-директор IT Test Отбор кандидатов с помощью нейросетей — именно так выглядит рынок аутстафа сегодня. Цифровизация и тренд на нейронные сети вносят свои изменения в сложившийся алгоритм работы в аутстаффинге. Если раньше данные обрабатывались вручную, то сейчас уже никого не удивишь тем, что прогоняешь резюме через нейросети, чтобы те сравнили информацию о кандидате с текстом вакансии. Наивно полагать, что, если напишешь «я опытный senior», то все навыки считаются по умолчанию: бездушная машина моментально откинет вашу кандидатуру. Конечно, рекрутеры не полностью отказываются от просмотра резюме и портфолио, но тем не менее нужно держать в голове, что информация о вас может до HR-специалистов и не дойти.
Позиции лидов и руководителей подразделений особенно сложно закрывать. И особенно в сфере разработки и тестирования. Любопытно, что вместе с тем заказчики предоставляют аутстаферам больше свободы. В IT Test нередки случаи, когда аутстаф-сотрудники приходят в команду заказчика на временное усиление, и, опираясь на свою экспертизу, предлагают нестандартные решения. Важно не стесняться проговаривать то, что можно улучшить, не бояться индивидуальных решений. Увеличение размера моделей и числа параметров привело к совершенно фантастическому результату — нейросеть оказалась способна решать задачи, которые ранее были под силу исключительно человеку. Ответы на вопросы, написание текстов, программирование и даже создание музыки — все оказалось в сфере компетенций нейросетей. Благодаря этому внезапно оказалось, что можно почти мгновенно и без квалификации достаточно лишь правильно написать подсказки для нейросети создавать то, для чего раньше требовались время, ресурсы и деньги. Однозначно, сохранится.
Кривая Гартнера для новых технологий гласит, что технология будет расти до предела популярности, чтобы далее испытать резкое снижение интереса и выход на плато эффективного использования. В настоящий момент рынок наблюдает исключительно положительные результаты от использования нейросетей: повышение эффективности, снижение издержек, цифровизацию. Чтобы интерес стал снижаться, должна накопиться «критическая масса» негативных сценариев, когда применение нейросетей оказалось неэффективным или вообще неудачным. Однако такие кейсы на рынке сейчас отсутствуют, соответственно, в 2024 году интерес будет лишь расти. В течение длительного времени этот рынок испытывает нехватку квалифицированных специалистов, в особенности уровня senior. Поэтому можно сказать, что спрос на такие кадры остался на прежнем, очень высоком уровне. На ИТ-рынке весь год прошел под знаком роста зарплат, и интерес к нейросетям и ML только усилил данную тенденцию. Скорее всего, в следующем году зарплаты в этой сфере продолжат повышаться, а недавно наметившийся тренд на «перекупку» наиболее ценных специалистов и команд может дополнительно ускорить этот рост, усиливая кадровый дефицит в сегменте ML и DS, в особенности в отношении квалифицированных сотрудников. Также крайне важны навыки в области моделей и алгоритмов ML — знание разных видов моделей, а также опыт применения и совершенствования алгоритмов машинного обучения.
Немаловажны и умение работать с большими массивами данных, в том числе предобрабатывать их, владение средствами визуализации данных, знание баз данных и языка SQL, а также навыки использования облачных сервисов Azure, AWS, Google Cloud. Во-первых, все более актуальной становится задача по адаптации нейросетей общего назначения та же ChatGPT и ее аналоги к применению в узких областях, таких как эффективное написание программного кода. Во-вторых, одним из предполагаемых трендов ближайшего будущего станут нейросети узкого назначения — например, для управления рисками, управления объектами IIoT в промышленности и так далее. И если на рынке в целом наблюдается нехватка ИТ-специалистов, то в узкопрофильных областях она будет еще более ощутима. Напоминаем, что вы можете задать свой вопрос экспертам, а мы соберём на него ответы, если он окажется интересным.
Промышленность и сельское хозяйство. В промышленности искусственный интеллект позволяет делать работу более автоматизированной. Искусственный интеллект используется для контроля за состоянием растений, уровнем влажности, наличием в почве питательных веществ и надлежащего ухода за посадками.
Дорожные службы Во многих странах умение искусственного интеллекта обрабатывать огромные объемы данных используется для того, чтобы облегчить проблему пробок Дорожные службы Во многих странах умение искусственного интеллекта обрабатывать огромные объемы данных используется для того, чтобы облегчить проблему пробок. Искусственный интеллект в быту Типичным примером использования ИИ в быту станут системы умных домов, которые получают все большее распространение. Искусственный интеллект и перспективы его развития Искусственный интеллект и перспективы его развития Люди станут по-другому работать, отдыхать, развлекаться, изменятся представления о сознании, интеллекте и о самом будущем человечества. Легко понять, что появление интеллекта, превосходящего человеческий, может нанести серьёзный ущерб свободе, самоопределению и существованию людей. Все эти аспекты могут оказаться под угрозой. Поэтому исследования, касающиеся искусственного интеллекта, должны проводиться с осознанием их возможных последствий. Анкетирование Анкетирование было проведено среди студентов техникума Анкетирование Анкетирование было проведено среди студентов техникума.
Платформа Syntelly, разработанная учеными Сколтеха и НТУ «Сириус», позволяет в разы сократить сроки разработки медицинских препаратов. Например, группа компаний ЦРТ разработала решение Voice2Med для голосового заполнения медицинских протоколов. Эта разработка была отмечена премией правительства РФ и сегодня используется уже в 60 регионах страны. Большой Брат следит... Однако 2023 год оказался особенным: начались массовые поставки систем автопилотирования тракторов на основе искусственного интеллекта в российские агрохозяйства. Более 100 машин вышли в апреле на поля 15 российских регионов, разработчиком стала компания Cognitive Pilot, «дочка» Сбера и Cognitive Technologies. Умная система управления тракторами объединяет возможности компьютерного зрения и спутниковой навигации и может в автономном режиме выполнять практически все основные операции: обработку почвы, культивацию, сев, опрыскивание, внесение удобрений, уборку трав, уход за пропашными культурами и многое другое. Причем не только днем, но и ночью Наибольшую популярность в России завоевали технологии «точного земледелия», основанные на применении беспилотников, космических спутников и анализе больших массивов данных. Искусственный интеллект помогает мониторить состояние почв, поддерживать в них необходимое содержание микроэлементов, оперативно и точечно решать проблемы с болезнями растений и распространением вредителей. Анализируя свежие снимки и многолетние данные, такие системы помогают выявить риски и спланировать оптимальный севооборот. К ним относятся облачный сервис «История поля» от компании «Геомир» его использует уже более двух тысяч агрохозяйств , приложение «СкайСкаут» от компании «ИнтТерра» разработчики обещают сократить расходы на 30 процентов за счет правильной расстановки приоритетов и оптимизации процессов , система «Агротроник» от ГК «Ростсельмаш» и многие другие. Например, на птицефабрике в Татарстане всеми процессами сбора и движения яиц с 2020 года управляет искусственный интеллект на базе программного решение Amaks. Искусственный интеллект и нейросети позволяют примерно в десять раз ускорить селекционную работу. Например, буквально накануне выхода данной публикации генетики из ИППИ РАН, Сколтеха и МФТИ сообщили о разработке алгоритма, который упростит предсказание функций генов у сельскохозяйственных растений, создавать новые сорта с необходимыми характеристиками с его помощью станет намного проще и быстрее. ИИ строит станки и машины Машиностроение — одна из ключевых отраслей промышленности, здесь особенно важно тщательно контролировать и синхронизировать все производственные процессы. При создании станков и агрегатов приходится учитывать множество параметров — от рыночной конъюнктуры и перспектив развития предприятий-потребителей до качества сырья и отдельных компонентов. Искусственный интеллект позволяет автоматизировать огромную часть рутинной, но необходимой работы. Например, прежде чем запустить любую деталь в производство, нужно провести множество испытаний. Тесты на реальных прототипах требуют больших затрат времени и ресурсов. Искусственный интеллект помогает ускорить этот этап: умная система может сама провести сотни тысяч виртуальных симуляций, для испытаний офлайн останутся только самые важные этапы проверки Такие системы особенно активно развиваются в оборонной промышленности, авиа- и судостроении, автопроме и других отраслях, где в финале опытные образцы приходится тестировать людям. Нейросети отлично справляются и с управлением складскими процессами, планируя спрос и загрузку, прогнозируя потребность в сырье и его количество на складах Искусственный интеллект способен выстраивать логистические цепочки, учитывать сезонность, особенности хранения и множество других факторов.
Чем больше данных обучает сеть, тем лучше она распознает закономерности и делает точные прогнозы машинное обучение. Нейронные сети имеют несколько приложений в различных областях, включая распознавание изображений и речи, обработку естественного языка и прогнозное моделирование. Цель нейронной сети — находить закономерности в данных и делать прогнозы на основе выявленных корреляций. Во время обучения в сеть подается большое количество размеченных данных, а веса связей между нейронами корректируются до тех пор, пока сеть не сможет точно предсказать правильный результат для заданного ввода. Нейронные сети оказались невероятно эффективными в широком спектре приложений. Специалисты в области экономики считают, что, в финансах их можно использовать для прогнозирования цен на акции или обнаружения мошенничества. Разработчики программ в сфере медицины также замечают, что в здравоохранении их можно использовать для анализа медицинских изображений и выявления заболеваний. Рабочие процессы медицинских учреждений неразрывно связаны со сбором, обработкой и анализом различных медицинских изображений к которым относятся рентген, КТ, цифровые гистологические исследования и так далее. А также, искусственный интеллект в медицине использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе большого объема сложных медицинских данных. Исходя из этого можно сделать вывод, что нейронные сети и искусственный интеллект всегда были и являются сквозными технологиями. В области лингвистики специалисты считают, что нейронные сети и искусственный интеллект можно использовать для улучшения распознавания речи и обработки естественного языка [2]. Одним из ключевых преимуществ нейронных сетей является их способность обучаться и адаптироваться к новым данным. После того, как нейронная сеть была обучена на определенном наборе данных, она может продолжать обучение и улучшать свои прогнозы по мере поступления новой информации. Это делает нейронные сети особенно полезными в приложениях, где данные постоянно меняются, например, на фондовом рынке или в анализе социальных сетей. Мы предлагаем практическое применение искусственного интеллекта в роли чат-бота в телеграмме, который внедрен в обслуживающие программы компании для психологической помощи и поддержки сотрудников, которые сталкиваются с проблемами и трудностями при выполнении работы. Как пример, приведем первоначальную реализацию чат-бота на Python. Если их не инициализировать, то код не будет работать. Message : await message. Если этого не сделать, то мы не получим ответы бота.