В этом случае уран на 90% перерабатывается в энергию и после облучения и окончания цикла отработанное топливо выгружается из реактора и перерабатывается. Западные источники утверждают, что снаряды с наконечником из обедненного урана не представляют собой никакой угрозы окружающей среде. "Одно из крупнейших месторождений урана в мире перешло под контроль "Росатома", "Путин стал хозяином казахстанского урана", "сделка с Россией привела к конфликту между.
Гексафторид урана: «спящая» смерть от Росатома
Помимо 92 протонов, этот новый изотоп урана имеет только 122 нейтрона в ядре атома. Исследователи выстрелили ядрами урана-238 в ядра платины-198. Некоторые взрывы звёзд могут происходить благодаря делению ядер урана, как в атомных бомбах. В цехе Уральского электрохимического комбината (УЭХК, предприятие топливной компании Росатома "ТВЭЛ") произошла разгерметизация баллона с обедненным гексафторидом урана. Эксперт пояснил, почему Гринпис заблуждается и какую опасность на самом деле может представлять обедненный уран.
"Росатом" опроверг сообщение о возможном прекращении поставок урана в США
Уран относится к классу элементов периодической таблицы, известных как «актиниды», у них число протонов составляет от 89 до 103. Все актиниды радиоактивны, но уран — один из четырех наиболее радиоактивных элементов, наряду с радием, полонием и торием. Кривая периода полураспада, показывающая радиоактивный распад. Изображение предоставлено Нандалалом Саркаром Ученые измерили массы 19 различных изотопов актинидов с высокой точностью до уровня одной части на миллион, идентифицировав, в итоге, новый изотоп урана.
Фото Новое исследование впервые выявило жизненно важную роль углекислого газа CO2 в определении продолж... Да, в самое ближайшее время - 44.
Несмотря на то, что ученые рассматривали Нептун в качестве будущей цели, в планы он в итоге не попал. Уран занял более высокое место, потому что сейчас это достижимо в технологическом плане. Миссия будет запущена на борту коммерческой ракеты Falcon Heavy, которая уже находится в эксплуатации. Запуск может состояться уже в 2031 году, когда спроектируют и построят космический корабль. Миссия к Нептуну, который находится дальше от Земли, чем Уран, вероятно, потребует более крупной ракеты. Гигантская планета — большая цена Если NASA все-таки решится на запуск миссии к Урану, она обойдется агентству в 4,2 млрд долларов. В то же время на выручку придут партнеры в лице Европейского космического агентства ЕКА. В 2021 году ЕКА опубликовало долгосрочное исследование приоритетов, в котором ученые предложили найти товарища для изучения ледяной планеты-гиганта. Второй по значимости приоритет для флагманской планетарной миссии после Урана — это зонд к спутнику Сатурна Энцеладу, на котором наблюдаются водяные шлейфы, выбрасываемые из подземного океана.
В результате столкновения образовалось большое количество фрагментов, в том числе 19 тяжелых изотопов, содержащих от 143 до 150 нейтронов. Каждый из них был измерен с помощью времяпролетной масс-спектрометрии, которая включает определение массы движущегося иона путем отслеживания времени, затраченного на прохождение заданного расстояния. Большинство образовавшихся в результате эксперимента изотопов никогда раньше не измерялись.
Ученые России обнаружили что ядра водорода в тысячи раз тверже ядер урана и плутония.
Четыре крупнейших спутника Урана, вероятно, содержат слой океана между ядром и ледяной коркой. Альфа-излучение (ядра гелия-4), хоть и наиболее характерно для урана, – задерживается кожей и, в случае внешнего воздействия, не опасно. Фото урановых скважин Горнорудный дивизион Росатома показал фотографии законсервированных скважин уранового месторождения Добровольное в Курганской области.
Секреты ледяного царства: почему ученых поразили новые снимки Урана
Господство ГАЗПРОМА закончено: Молдова переходит американский СПГ? В США впервые обогатили уран. Борис Марцинкевич. Добыча золота является первым, подготовительным этапом для создания инфраструктуры по добыче урана, отмечается в пресс-релизе. При попадании нейтрона, ядро урана делится на две части, которые разлетаются с большой скоростью. Дело в том, что огромный объем тепла, которое выделяет уран, заставляет жидкую часть земного ядра двигаться.
Росатом завершил первый цикл эксплуатации уран-плутониевого РЕМИКС-топлива на Балаковской АЭС
На данный момент устанавливаются причины произошедшего. Ранее телеканал «Санкт-Петербург» сообщал , что в ходе рабочей поездки вице-губернатор Санкт-Петербурга Кирилл Поляков обсудил с руководством завода по производству гидравлического оборудования.
Степень обогащения одной газовой центрифуги невелика, поэтому их объединяют в последовательные каскады, в которых обогащенное сырье с выхода каждой центрифуги подается на вход следующей, а обедненное - на вход одной из предыдущих. При достаточном количестве центрифуг в каскаде можно получить очень высокую степень обогащения. Правда, четверть века спустя в США все-таки решили перейти с газовой диффузии на центрифуги. Первая попытка не удалась — в 1985 году, когда были установлены первые 1300 машин, разработанные в Оук-Риджской национальной лаборатории, правительство США закрыло программу.
По плану смонтировать 96 каскадов по 120 «волчков» предполагалось еще в 2005 году, но и к концу 2012 года проект все еще не запущен в коммерческую эксплуатацию. Лазерное разделение изотопов урана основано на том, что молекулы, содержащие различные изотопы, имеют немного различные энергии возбуждения. Облучив смесь изотопов лазерным лучом строго определенной длины волны, можно ионизовать только молекулы с нужным изотопом, после чего разделить изотопы с помощью магнитного поля. Лазерная сепарация имеет низкое энергопотребление, низкую стоимость и высокую степень обогащения поэтому она используется сейчас для получения малых количеств сверхчистых изотопов , однако пока существуют проблемы с производительностью, со сроком службы лазеров и отбором обогащенного материала без остановки процесса. Секретные иголки А тем временем в СССР, в малоприметном местечке Верх-Нейвинск на Среднем Урале, в обстановке строжайшей секретности монтировалась первая опытная линия разделительных газовых центрифуг. Исаак Кикоин еще в 1942 году сталкивался с газовой центрифугой конструкции Ланге и даже испытывал ее в своей лаборатории в Свердловске.
Тогда эксперименты желаемых результатов не дали, и академик скептически относился к самой возможности создания промышленных газовых центрифуг. Главной бедой самых первых установок была их недолговечность. И хотя вращались они поначалу со скоростью «всего» 10000 оборотов в минуту, совладать с огромной кинетической энергией ротора было далеко не просто. Чтобы они еще и размножались?! При центрифужном методе разделения за счет высокой скорости вращения создается центробежная сила, превышающая силу тяготения Земли в сотни тысяч раз. За счет этого более тяжелые молекулы гексафторида урана-238 «сбиваются» на периферии вращающегося цилиндра, а более легкие молекулы гексафторида урана-235 концентрируются возле оси ротора.
Через раздельные выводные трубопроводы типа трубок Пито, о которых говорил советский инженер Сергеев немцу Штеенбеку газ, содержащий изотопы U-238, выводится «в отвал», а обогащенная фракция с возросшим содержанием урана-235 перетекает в следующую центрифугу. Каскад таких центрифуг, содержащий сотни и тысячи машин, позволяет быстро увеличивать содержание легкого изотопа. Условно говоря, их можно назвать сепараторами, на которых превращенное в газ урановое сырье гексафторид урана, UF6 с низким содержанием изотопа U-235 последовательно переводят из консистенции парного молока в сливки и сметану. Но к концу 1980-х на четырех советских комбинатах «насепарировали» столько оружейного урана, что его запасы на складах и в готовых ядерных зарядах были признаны избыточными, и производство высокообогащенного урана для военных целей было прекращено. По первоначальным расчетам, толщина наружных стенок корпуса центрифуги должна была быть 70 мм — как танковая броня. Попробуй такую махину раскрути… Но методом проб и ошибок нашли-таки компромиссное решение.
Был создан специальный сплав — прочнее и легче стали.
Вокруг этой мечты возникла паранаука алхимия, в которой практические знания о реакциях между веществами перемешаны с мистическим учением. Например, алхимики пытались создать философский камень, который не только облагораживает металл, но и при приеме внутрь лечит любые болезни и возвращает молодость. С трансмутацией металлов у алхимиков не вышло — в лучшем случае они создавали сплав, окрашенный под золото с помощью серы.
Зато из их опытов возникла научная химия, которая вывела незыблемую аксиому о сохранении вещества. В формулировке химика XVIII века Лавуазье она звучит так: «Ничто не творится не создается из ничего ни в искусственных процессах, ни в природных, и можно выставить положение, что во всякой операции химической реакции имеется одинаковое количество материи до и после, что качество и количество начал элементов остались теми же самыми, произошли лишь перемещения, перегруппировки. На этом положении основано все искусство делать опыты в химии». В более простой формулировке это означает, что в конце реакции остаются те же атомы и в том же количестве, что и в начале.
Если при сгорании водорода в кислороде внутри сосуда появилось что-то, кроме воды, значит, это примесь извне. Этому учат до сих пор на первых уроках школьной химии. Лавуазье бы сильно удивился, услышав доклад нобелевского лауреата Нильса Бора на открытии Пятой Вашингтонской конференции по теоретической физике 26 января 1939 года. Тот заявил, что при бомбардировке нейтронами ядер урана они могут превращаться в два ядра бария, чья масса примерно вдвое меньше.
Как рассказывал физик Эдвард Теллер, за день до конференции ему позвонил к оллега Георги й Гамов, который знал о содержании выступления , и сказал ем у: «Бор сошел с ума. Говорит, уран делится». Однако в ходе выступления Бор изложил простой способ, с помощью которого каждый может получить экспериментальное доказательство его тезиса. Пока он говорил, один из слушателей шепнул другому: «Мне нужно срочно поместить новый образец в ускоритель».
Когда Бор закончил, физики побежали к телефонам, чтобы дать коллегам в лабораториях инструкции. Некоторые ученые решили сразу покинуть конференцию, чтобы самостоятельно проверить, правда ли уран способен делиться.
Если потери нейтронов в такой разветвленной цепи реакций будут меньше, чем число вновь образовавшихся, то выделение энергии будет нарастать лавинообразно. В одном акте деления урана высвобождается энергии в 4 раза больше, чем при естественном распаде, причем скорость энерговыделения очень велика. Самые известные примеры процессов такого типа — реакции в атомной бомбе и реакторах АЭС Сама идея атомного реактора в земных недрах возникла примерно в это же время — и почти за двадцать лет до открытия феномена Окло! В 1953 г. Везерилл и М. Ингрэм выдвинули смелую гипотезу, что в древнейшие времена в скоплениях радиоактивных элементов, главным образом урана и тория, могли протекать цепные ядерные реакции.
Поиски геореакторов, подобных оклоскому, предпринимались впоследствии и в других древних месторождениях, но они успехом не увенчались. Может быть, африканский реактор — это шутка Бога, результат случайного стечения обстоятельств и он действительно уникален? Даже если это так, идея, что в Земле могут идти — причем и в далеком прошлом, и в настоящее время! Красноречивый гелий Признаки работы природных реакторов ищут не только в земной коре, но и в недрах планеты. Одна из причин упорства исследователей заключается в том, что Земля излучает тепла примерно в 2,5 раза больше, чем должна отдавать в результате естественного распада радиоактивных элементов в коре радиогенное тепло и первичного нагрева. Тепловая энергия, получаемая от Солнца, в этом балансе не учитывается. Если такую большую разницу пытаться объяснить только радиогенным теплом из внутренних областей планеты, то Земля в целом должна иметь нереально большие запасы радиоактивных элементов. Но вот в цепных ядерных реакциях как раз выделяется тепла в несколько раз больше, чем при естественном радиоактивном распаде.
Цепной механизм выделения энергии мог бы объяснить и упомянутый тепловой дисбаланс, и многие другие необычные явления. И если гипотетические реакторы расположены глубоко в недрах, то понятно, почему следы их активности не удалось найти в урановых месторождениях за исключением Окло. Искали где ближе, но, может, стоит «копнуть вглубь»? Итак, предположим, что где-то в теле Земли действует такой реактор. По каким признакам его можно обнаружить? Один из методов поиска — анализ продуктов деления, мигрирующих из зоны реакции и достигающих земной поверхности. В частности, очень интересен изотопный состав «солнечного элемента» — гелия. Природный гелий состоит из двух стабильных изотопов: 4He и 3He.
Гелий-4 попадает в атмосферу в результате естественного распада урана и тория. В воздухе на миллион атомов гелия-4 приходится всего полтора атома гелия-3. Но в базальтах срединно-океанических хребтов изотопа 3He больше уже в 8 раз, а в некоторых изверженных магматических горных породах — в 40! Как объяснить происхождение гелия с высоким содержанием изотопа 3He? Какие физические процессы могут быть ответственны за это? Обычный радиоактивный распад явно не годится, так как он продуцирует исключительно гелий-4. Попробуем привлечь на помощь ядерные реакции деления. Известно, что при работе реактора тяжелые ядра, поглощая нейтрон, становятся неустойчивыми и могут делиться на два крупных осколка с испусканием легких заряженных частиц и 2—3 нейтронов.
В конечном продукте совокупности таких реакций доли обоих изотопов гелия хотя и отличаются, но представляют собой величины одного порядка. Напомним, что в «стандартном» атмосферном гелии их концентрации различаются на шесть порядков! Таким образом, относительно высокое содержание гелия-3, наблюдаемое в магматических породах, поднявшихся на поверхность из земных недр, может служить косвенным свидетельством работы глубинного геореактора. Уран выпал в осадок? Прежде чем продолжить разговор, хочется еще раз подчеркнуть принципиальное различие между естественным радиоактивным распадом и ядерной реакцией деления, ибо разница эта не всегда очевидна на неискушенный взгляд. Обычная радиоактивность — это самопроизвольный распад атомных ядер; для реакции деления обязательно требуется взаимодействие с внешней частицей нейтроном. По этой причине для осуществления ядерной реакции нужна достаточная концентрация активного вещества; для спонтанного распада концентрация не имеет никакого значения. Если в недрах Земли действительно идут цепные реакции, значит, там должны присутствовать скопления радиоактивных элементов актиноидов.
Как и где именно они образовались? На этот счет существует множество разных точек зрения: от мантии до геометрического центра Земли. Анисичкин с соавторами предложили обоснованную гипотезу, согласно которой местом критической концентрации урана и тория могла быть поверхность твердого внутреннего ядра Земли. Эта концепция во многом базируется на работах по растворимости диоксида урана UO2 , проведенных в конце 1990-х гг. В экспериментах на аппарате высокого давления типа «разрезная сфера» А. Туркиным было показано, что растворимость UO2 в расплавах на основе железа с ростом давления уменьшается. Исследуемый диапазон давлений составлял 5—10 ГПа для сравнения: в центре Земли давление около 360 ГПа. Поскольку в природе уран встречается преимущественно в виде оксидов, то логично сделать вывод: чем глубже, тем хуже будет растворяться уран!
Этот важный экспериментальный факт наводит на мысль, что миграция актиноидов в теле Земли могла быть следующей.
Росатом предоставил ТАСС свежие фото законсервированных урановых скважин
А вблизи ее южной границы можно увидеть несколько ярких штормов. И это тоже удивительно. Ведь когда-то считалось, что любые атмосферные процессы на Уране протекают невероятно медленно и мощности ледяных ветров не хватает для создания ураганов. Но оказалось, что, поскольку гигант вращается "на боку" с наклоном около 98 градусов, на нем свирепствуют самые экстремальные сезоны во всей системе. Почти четверть каждого уранианского года Солнце постоянно светит над одним полюсом. А другая половина планеты погружается в полярную ночь продолжительностью более 20 лет.
Но есть и еще одна причина, по которой астрономы так пристально изучают Уран. Дело в том, что он может служить своеобразным индикатором для изучения почти двух тысяч экзопланет тех, что находятся за пределами Солнечной системы аналогичного размера, которые были открыты за последние несколько десятилетий. Такая "домашняя экзопланета во дворе" даст шанс астрономам понять, как устроены миры подобного размера, какова их метеорология и как они сформировались. А это, в свою очередь, возможность осмыслить нашу собственную Солнечную систему в более широком контексте.
Следовательно, они также перемещаются по фазам вместе с ураном и плутонием. Поэтому исследователи пытаются найти другие механизмы и схемы выделения этих элементов. Технология представляет собой двухступенчатую схему: на первом этапе из топлива селективно экстрагируют уран, а затем извлекают минорные актиниды из азотнокислого раствора ОЯТ. Залог успеха — подобрать селективные экстракционные агенты с высокой емкостью. Ранее ученые химического факультета МГУ предложили на роль такого экстрагента соединение на основе фенантролина — азотсодержащего полициклического соединения. Одна из урановых частиц располагается в катионной положительно заряженной части комплекса, другая — в анионной отрицательно заряженной.
На меньших концентрациях урана в модельных образцах этого не происходит, и ни одна из научных групп не наблюдала такого эффекта ранее», — поясняет автор статьи. Ученые продолжают исследования в области комплексов схожего строения.
Нужного количества контейнеров для хранения у них нет. Главная причина — отсутствие контейнеров, позволяющих избежать радиационных инцидентов. Раньше такой уран использовал только Росатом для своих экспериментов, и емкости были только у него.
Все нужно отстраивать заново, а это — годы. Пока они построят — все уже устареет. Поэтому то, что бизнес согласился работать только на технологии будущего — закономерно. Ранее призыв восстановить эту промышленность от американского правительства уже звучал. Был сделан заказ на государственном уровне, откликнулись 20 фирм, но в итоге не взялась ни одна.
Их расчеты показали, что даже при условии государственного финансирования — не выгодно. Тогда сделали заказ на будущее, и одна фирма согласилась. Она произведет некоторое количество топлива, которое позволит запустить первый перспективный реактор. Но делать все это топливо в этом году нецелесообразно. Остальное, видимо, произведут ближе к тридцатым годам, если к тому времени не произойдет какого-то технологического прорыва, который сделает и этот проект не современным.
Когда-то США были первопроходцами в ядерной энергетике, они — первооткрыватели обогащения урана. Союз их сначала копировал, потом догонял.
Команда измерила массу созданных изотопов, наблюдая за временем, которое потребовалось полученным ядрам, чтобы пройти определенное расстояние через среду. В результате эксперимента было получено 18 новых изотопов, каждый из которых содержал от 143 до 150 нейтронов.
Перегрев планеты: После землетрясения в Турции в мире заговорили об опасности взрыва ядра Земли
Происходит это так: тепловыделяющие сборки ТВС разрезают, куски помещают в концентрированную азотную кислоту и получают раствор, содержащий уран, плутоний и многочисленные продукты деления. Авторы исследования Петр Матвеев и Светлана Гуторова Способ описан в науке довольно давно, но для его реализации не удавалось подобрать селективные экстракционные агенты с высокой емкостью, то есть способные захватывать большое количество химических элементов. Пока мы заняты теоретической частью проекта, продолжаем исследовать возможности этого механизма экстракции. Но я мечтаю о том, что мы доведем проект до конца в теоретическом плане и сможем на практике внедрить его в ядерный топливный цикл».
В перспективе это дает возможность отказаться от сложного и дорогостоящего глубинного захоронения отходов», — прокомментировал старший вице-президент по научно-технической деятельности АО «ТВЭЛ» Александр Угрюмов.
Она появилась в 2021 году как часть продуктового направления «Сбалансированный ядерный топливный цикл» и рассчитана до 2035 года. Программа включает задачи по выделению минорных актинидов в отдельные фракции, их промежуточное хранение, вовлечение в топливо быстрых реакторов, эксплуатацию такого топлива, послереакторные исследования и др. Еще один важный аспект — оптимизация реакторных установок для выжигания максимального количества минорных актинидов. Сбалансированный ядерный топливный цикл ЯТЦ — это продукт Госкорпорации «Росатом», основанный на инновационных практических решениях в области замыкания ядерного топливного цикла, позволяющих эффективно переработать облученное ядерное топливо и обеспечить рациональное обращение с продуктами переработки, как полезными уран, плутоний , так и направляемыми на захоронение продукты деления.
Сбалансированный ЯТЦ ставит своей основной задачей принципиальное снижение объема и активности радиоактивных отходов, направляемых на захоронение. Сбалансированный ЯТЦ позволяет: повысить безопасность обращения с отходами ядерной энергетики и снизить экологические риски; решить проблему будущих поколений и обеспечить устойчивую модель потребления и производства; минимизировать объемы и степени опасности подлежащих захоронению отходов; повторно вовлечь ценное сырье в ЯТЦ — рециклировать ядерные материалы.
Внешний вид, геометрия твэлов и топливных кассет соответствуют проектным критериям, замечания отсутствуют. Опытно-промышленная эксплуатация продлится еще два топливных цикла. Все это время на станции будут контролировать нейтронно-физические и ресурсные характеристики нового топлива.
Период полураспада нового 214U очень короткий и составляет 0,5 миллисекунды. Нарушения альфа-распада Новый изотоп урана интересен еще и по другой причине: в ходе измерений ученые обнаружили, что 214U демонстрирует аномалии в альфа-распаде. Во время этой реакции распада радиоактивное атомное ядро испускает ядро гелия, состоящее из двух протонов и двух нейтронов. С новым изотопом урана эти альфа-частицы высвобождаются быстрее и легче, чем они должны на самом деле, если основываться на известные модели ядерной физики. Изотоп урана 214U показывает аномалии при альфа-распаде. За этим могут стоять пока еще малоизученные взаимодействия между основными строительными блоками атомов. Физики-ядерщики давно подозревали, что ядро очень тяжелых элементов имеет субструктуры, в которых ядра гелия постоянно образуются непосредственно под поверхность ядра — сгустки сильнее взаимодействующих протонов и нейтронов.
Ученые впервые за 40 лет открыли «богатый нейтронами» изотоп урана
В «Росатоме» заявили, что инцидент на Уральском электрохимическом комбинате, где произошла разгерметизация баллона с обедненным гексафторидом урана. РИА Новости, 17.03.2023. Росатом завершил первый цикл эксплуатации уран-плутониевого РЕМИКС-топлива на Балаковской АЭС.
«Росатом»: ЧП с обедненным гексафторидом урана на Урале не угрожает населению
При расщеплении ядра урана-235 выделяется огромное количество энергии (цепная реакция). Учёные химического факультета МГУ нашли новый способ для эффективного извлечения соединений урана из отработавшего ядерного топлива. Фото урановых скважин Горнорудный дивизион Росатома показал фотографии законсервированных скважин уранового месторождения Добровольное в Курганской области.
Ученые открыли новый изотоп урана
Свердловская область «Росатом» создал комиссию для расследования инцидента на Уральском электрохимическом комбинате. В «Росатоме» заявили, что инцидент на Уральском электрохимическом комбинате, где произошла разгерметизация баллона с обедненным гексафторидом урана, был оперативно локализован и «не создает рисков для населения». Сейчас проводится санитарная обработка помещения цеха, где произошло ЧП, предприятие работает в штатном режиме.
В результате этого процесса два изотопа подверглись многонуклонному переносу, в ходе которого они обменялись нейтронами и протонами. Команда измерила массу созданных изотопов, наблюдая за временем, которое потребовалось полученным ядрам, чтобы пройти определенное расстояние через среду. В результате эксперимента было получено 18 новых изотопов, каждый из которых содержал от 143 до 150 нейтронов.
Об этом сообщается в статье, опубликованной в журнале Physical Review Letters. Исследователи выстрелили ядрами урана-238 в ядра платины-198. Такие взаимодействия приводят к многонуклонному переносу, при котором изотопы меняют местами нейтроны и протоны.
Они также отметили, что один из них, уран-241, никогда ранее не наблюдался и что впервые с 1979 года был обнаружен нейтронно-избыточный изотоп урана. Исследователи также подсчитали, что период полураспада урана-241, вероятно, составляет всего 40 минут. Техника, используемая командой, представляет собой путь к лучшему пониманию формы больших ядер, связанных с тяжелыми элементами, что может привести к изменениям в моделях, используемых для создания атомных электростанций и оружия, а также в теориях, описывающих поведение взрывающихся звезд. Исследовательская группа отмечает, что их метод открытия может быть использован для получения дополнительных сведений о других тяжелых изотопах, а также, возможно, для открытия новых.