На днях теория суперсимметрии получила еще один удар от Большого адронного коллайдера (БАК). Причём из теории суперсимметрии следует существование новых частиц — аналогов уже известных элементарных частиц. С ней должна уйти на покой теория расширения пространства, из которой происходят теории тёмной материи и энергии. суперсимметрия. Самая амбициозная теория – теория струны, претендующая на единое описание всех сил природы, требует суперсимметрии для непротиворечивости и устойчивости.
СУПЕРСИММЕ́ТРИ́Я
Данные, полученные на БАК, поставили под сомнение теорию суперсимметрии | Возвращаясь к эпизоду "Теории большого взрыва", предлагаемым объяснением наблюдаемого в настоящее время несоответствия является суперсимметрия. |
«Вселенная удваивается» | Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория. |
«Вселенная удваивается»
Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория. Теория суперсимметрии возникла в 1970-х годах как способ исправить существенные недостатки Стандартной модели физики высоких энергий. Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов. Иконка канала Математические теоремы: между теорией и практикой.
СУПЕРСИММЕ́ТРИ́Я
В чем заключается «кризис суперсимметрии», как «поделить» физику высоких энергий и для чего нужно строить у себя установки класса megascience, в интервью. Суперсимметрия является одним из основных кандидатов на роль новой теории в физике элементарных частиц за рамками Стандартной модели. Важные результаты в изучении низкоэнергетических следствий теории суперструн методами суперсимметричной теории поля получила в ходе цикла работ группа теоретиков из ОИЯИ. Однако Тара Шиарс отказалась полностью отвергнуть теорию суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта.
Откройте свой Мир!
Суперсимметрия и проблема калибровочной иерархии / Хабр | Иконка канала Математические теоремы: между теорией и практикой. |
Физики открыли пятую силу природы. Главное об эксперименте с мюоном g-2 | Напр., в теории С. происходит сокращение бесконечностей, которые присущи всем релятивистским теориям и представляют проблему, особенно в квантовой гравитации. |
Telegram: Contact @rasofficial | Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. |
Суперсимметрия и проблема калибровочной иерархии / Хабр | ОКО ПЛАНЕТЫ» Наука и техника» Новость дня» Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел. |
Суперсимметрия и суперкоординаты
Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов. Супервремя — понятие, возникшее как «игрушечная модель» в суперсимметричной теории поля — одномерный слепок суперпространства. Нужно построить теорию, которая будет инвариантна относительно преобразований суперсимметрии, а также относительно. Возвращаясь к эпизоду "Теории большого взрыва", предлагаемым объяснением наблюдаемого в настоящее время несоответствия является суперсимметрия. С ней должна уйти на покой теория расширения пространства, из которой происходят теории тёмной материи и энергии. Важные результаты в изучении низкоэнергетических следствий теории суперструн методами суперсимметричной теории поля получила в ходе цикла работ группа теоретиков из ОИЯИ.
Суперсимметрия
Киральная симметрия (от греч. cheir — рука) — инвариантность уравнений квантовой теории поля относительно преобразований, перемешивающих состояния частиц как с различными. Важное предсказание суперсимметрии – существование суперрасширения теории гравитации, супергравитации, и суперсимметричного партнера гравитона – гравитино, частицы со спином 3/2. Теория суперсимметрии предполагает, что физические законы должны оставаться неизменными при перестановке бозонных и фермионных частиц. Когда суперсимметрия задана как местный симметрия, теория Эйнштейна общая теория относительности включается автоматически, и результат называется теорией супергравитация. Суперсимметрия является одним из основных кандидатов на роль новой теории в физике элементарных частиц за рамками Стандартной модели.
[Перевод] Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
Основная теорема показывает, что для каждого собственного состояния одного гамильтониана, его гамильтониан-партнер имеет соответствующее собственное состояние с той же энергией. Этот факт можно использовать для вывода многих свойств спектра собственных значений. Это аналогично новому описанию SUSY, которое относилось к бозонам и фермионам. Можно представить «бозонный гамильтониан», собственными состояниями которого являются различные бозоны нашей теории. А SUSY-партнер этого гамильтониана будет «фермионным», а его собственными состояниями будут фермионы теории. У каждого бозона будет фермионный партнер с равной энергией. Суперсимметрия в физике конденсированного состояния[ править править код ] Концепции SUSY оказалась полезной для некоторых применений квазиклассических приближений.
Кроме того, SUSY применяется к системам с усредненным беспорядком, как квантовым, так и неквантовым посредством статистической механики , уравнение Фоккера — Планка — это пример неквантовой теории. Использование метода суперсимметрии обеспечивает математически строгую альтернативу методу реплик , но только в невзаимодействующих системах, который пытается решить так называемую «проблему знаменателя» при усреднении по беспорядку.
В выводах, опубликованных в журнале Nature Physics, измерения не показали никакого правостороннего вращения. В конечном счете ученые получили результат, который был в соответствии со Стандартной моделью: прелестный кварк распадается только на верхний кварк, если имеет левосторонний спин. Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов. И тот факт, что ученые смогли проделать такие измерения а ранее они казались слишком сложными , впечатляет. Это как искать иголку в стоге сена», — говорит Сатклифф.
Данные и повседневный опыт исключают эту возможность. Нет никаких сэлектронов с массой электронов, и точка.
Так что точная суперсимметрия не является корректной теорией природы, и мы это знали ещё до того, как её задумывали. Конец суперсимметрии? Не так быстро.
Несмотря на кажущуюся катастрофу, изначальная теория суперсимметрии даёт нам простой и правдоподобный выход из ситуации. В физике распространена идея о том, что симметрии могут быть спрятаны от нашего взора физики говорят, спонтанно нарушаться, но это не очень хороший интуитивный пример — симметрия есть, её просто сложно распознать. Законы природы не зависят от того, каким образом будет ориентирован эксперимент см.
Это так и есть, но это сложно увидеть на Земле, где имеет значение, повёрнут ли ваш эксперимент нужной стороной вверх, или он находится вверх ногами, или он наклонён. Но в далёком космосе, далеко от планет, лун и звёзд, законы природы обладают вращательной симметрией. Ваш эксперимент даст один и тот же ответ вне зависимости от его ориентации.
Кстати, измерения света, испущенного очень удалёнными атомами, подтверждают эту теорию. Земля нас запутывает. Она заставляет нас думать, что направление вниз отличается от направления вверх или влево.
Но это явное различие не является свойством законов природы. Различие возникает из-за близости Земли, прячущей от нашего взора вращательную симметрию. Вопрос в том, что если какой-то аспект нашего мира не такой грубый, как Земля, но какой-нибудь незаметный, вроде поля Хиггса прячет от нашего взора суперсимметрию по всей Вселенной?
Что тогда? Оказывается, что довольно легко получить такой же мир, как наш, где суперпартнёры известных части существуют, просто стали тяжелее — слишком тяжёлыми для того, чтобы мы обнаружили их в экспериментах. Вы видите, что нарушение суперсимметрии то, что она прячется и её нелегко обнаружить увеличило масштаб масс всех суперпартнёров так, что вся массовая шкала находится выше массы верхнего кварка.
И это не так искусственно или глупо, как кажется — математика с готовностью принимает этот эффект. Существует множество точных примеров того, как это может произойти — но их слишком много для того, чтобы мы догадались, какой из них наиболее вероятен. И это не единственная схема, способная возникнуть при нарушении суперсимметрии!
Существует большое количество других возможностей, которые я буду называть вариантами суперсимметрии. Но представленный мною вариант — наиболее популярный среди теоретиков и экспериментаторов, особенно в Европе в США он менее популярен, про другие места я не знаю. Этой популярности есть веские причины; оказывается, что существует несколько независимых способов получить схему, сходную с этой.
Однако популярность всегда порождает предвзятость, а нам необходимо рассматривать все возможности, не делая предположений касательно этих аргументов.
Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания Выступая на международной физической конференции, которая проходит в индийском городе Мумбаи, ученый подчеркнула: "Мы провели на БАК серию экспериментов с элементарными частицами, в ходе которых проверили опытным путем фундаментальные выводы теории Суперсимметрии и верность описания ею физического мира. Однако необходимых подтверждений мы не получили". Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками.
Супер ассиметричная модель вселенной попович
Долгое время её считали таким же незыблемым законом сохранения, как, скажем, закон сохранения энергии, которому подчиняются все процессы. Но в 1964 году был обнаружен редкий распад долгоживущего нейтрального К-мезона, свидетельствующий, что это не так. Сахаров сразу же отметил, что именно невыполнение СР-инвариантности на ранних стадиях образования горячей Вселенной могло привести к её барионной асимметрии — преобладанию вещества над антивеществом. Тогда всё сущее, в том числе, конечно, и мы сами, порождено нарушенной симметрией. Читайте также: Пока живу вселенная сияет Оставалось, однако, непонятным, как нарушение СР-инвариантности «втиснуть» в рамки бытовавших в то время теоретических представлений. Дело в том, что тогда ещё только-только была предложена американцами М. Гелл-Манном и Дж. Цвейгом систематизация упоминавшегося выше «зоопарка» адронов, основанная на представлении, что они состоят из кварков трёх типов — u, d и s и соответствующих антикварков. Но нарушению СР-инвариантности там места не было.
И тогда Кобаяши и Маскава обратили внимание на то обстоятельство, что несохранение СР-чётности можно описать весьма непринуждённо, если кроме упомянутых выше имеются как минимум ещё три кварка. Говоря точнее, если в природе существует не менее трёх поколений кварков. Их догадка блестяще подтвердилась, теперь мы знаем, что три поколения — это пары ud -, cs - и tb -кварков, которые, однако, «смешиваются» друг с другом. Последний, тяжёлый t-кварк третьего поколения, «поймали» в Национальной ускорительной лаборатории им. Более того, выяснилось, что при распадах нейтральных B-мезонов СР-чётность нарушается намного сильнее, чем в аналогичных процессах с участием К-мезонов, о которых упоминалось выше. В заключение заметим, что во всей этой захватывающей физике микромира ещё далеко не всё понятно. По существу, пока мы не знаем самого главного: в чём причина нарушения симметрии в слабых взаимодействиях? Дальнейшее тесно связано со свойствами хиггсовского бозона, существование которого предсказывается так называемой стандартной моделью см.
Если же выяснится, что его нет, это будет означать, что глубинную структуру материи мы понимаем в действительности намного хуже, чем кажется сейчас. Словарик к статье Адроны от греч. Киральная симметрия от греч. Это глобальная симметрия — она не зависит от координат пространства-времени. Киральная симметрия скомбинирована из двух различных симметрий, одна из которых — симметрия взаимодействия адронов относительно преобразований в группе частиц с очень похожими свойствами в так называемом изотопическом пространстве , другая — так называемая внутренняя чётность, которая характеризует поведение волновой функции частицы при инверсии пространственных координат. Нарушение киральной симметрии приводит к появлению связанных фермионов, подобно куперовским парам в сверхпроводниках. Когерентность — согласованное протекание во времени и в пространстве нескольких колебательных или волновых процессов. Мезоны от греч.
Существует множество мезонов с самой разной массой, временем жизни, квантовыми характеристиками, заряженных и нейтральных. Все мезоны состоят из кварка и антикварка. Фермионы — частицы, подчиняющиеся принципу Паули: два фермиона не могут одновременно находиться в одном квантовом состоянии. К фермионам относятся нуклоны, нейтрино, кварки и другие частицы с полуцелым спином. Названы в честь Э. Ферми, который одновременно с П. Дираком исследовал их свойства. Бозоны — частицы с нулевым или целым спином.
В отличие от фермионов в одном квантовом состоянии может находиться любое количество бозонов. Названы в честь Д. Бозе и А. Эйнштейна, рассмотревших их свойства. Кварки — по современным представлениям, шесть «истинно элементарных», то есть бесструктурных частиц, из которых состоят адроны.
Образно можно сказать, что преобразование суперсимметрии может переводить материю во взаимодействие или в излучение , и наоборот.
По состоянию на начало 2008 года суперсимметрия является физической гипотезой, не подтверждённой экспериментально. Совершенно точно установлено, что наш мир не является суперсимметричным в смысле точной симметрии, так как в любой суперсимметричной модели фермионы и бозоны, связанные суперсимметричным преобразованием, должны обладать одинаковыми массой, зарядом и другими квантовыми числами за исключением спина. Данное требование не выполняется для известных в природе частиц. Предполагается, тем не менее, что существует энергетический лимит, за пределами которого поля подчиняются суперсимметричным преобразованиям, а в рамках лимита — нет.
Большой адронный коллайдер подорвал позиции теории суперсимметрии 17:46, 3 ноября 2021 г. Наука Фото: ShutterStock В данных, собранных детекторами Большого адронного коллайдера, не было обнаружено подтверждений гипотезы суперсимметрии, которая, в частности, предполагает, что у каждой элементарной частицы существует суперсимметричный «двойник».
Новые результаты, детализированные в двух статьях, не исключают эту гипотезу полностью, но устанавливают новые пределы для ее обнаружения. Теория суперсимметрии под угрозой Сотрудники Европейского центра ядерных исследований ЦЕРН , работающие на Большом адронном коллайдере, обнаружили чрезвычайно редкий случай распада элементарных частиц. Это наблюдение наносит значительный урон теории суперсимметрии. Она основана на предположении, что существует гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие и наоборот.
Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной.
К бозонам подобные аргументы не применимы. Бозон Хиггса, к примеру, имеет нулевой собственный момент импульса, так что ни в каком смысле мы не можем говорить о том, что он вращается влево или вправо.
Но из соображений суперсимметрии массы бозонов соответствуют массам фермионов. Поэтому если масса хиггсино равна нулю или мала , точно такой же должна быть согласно теории суперсимметрии масса его партнера — бозона Хиггса — даже с учетом квантово—механических поправок. Мы пока не знаем, верно ли это довольно изящное объяснение стабильности иерархии и компенсации поправок к массе хиггса.
Но если суперсимметрия действительно решает проблему иерархии, то мы многое можем сказать о том, каких результатов следует ожидать на БАКе. В этом случае мы знаем, какие именно новые частицы должны существовать, потому что у каждой известной частицы должен быть суперсимметричный партнер. Мало того, мы можем оценить массы новых частиц.
Разумеется, если бы суперсимметрия в природе соблюдалась в точности, мы бы сразу знали и массы всех суперпартнеров. Они были бы попросту идентичны массам соответствующих известных частиц. Однако ни одну частицу—суперпартнер до сих пор обнаружить не удалось.
Это свидетельствует о том, что суперсимметрия, даже если она реально существует в природе, не может быть строгой. Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. Согласно теории нарушенной суперсимметрии у каждой частицы по—прежнему есть суперпартнер, но массы этих суперпартнеров отличаются от масс оригинальных частиц Стандартной модели.
Однако если суперсимметрия нарушена слишком сильно, она не сможет разрешить проблему иерархии, потому что мир при сильно нарушенной симметрии выглядит в точности так же, как если бы этой симметрии вовсе не было. Суперсимметрия должна быть нарушена ровно настолько, чтобы мы до сих пор не могли наблюдать ее признаков, но чтобы масса Хиггса была тем не менее защищена от больших квантово—механических вкладов, которые сделали бы ее слишком большой. Это говорит о том, что суперсимметричные частицы должны иметь массы масштаба слабого взаимодействия.
Будь они легче — и мы бы их уже обнаружили; будь они тяжелее — и следовало бы ожидать более тяжелого хиггса. Мы не можем точно сказать, какими будут эти массы, ведь и масса Хиггса известна нам лишь очень приблизительно. Но мы знаем, что если эти массы окажутся слишком большими, то проблема иерархии никуда не денется.
Поэтому мы делаем вывод о том, что если суперсимметрия существует в природе и решает проблему иерархии, то должно существовать множество новых частиц с массами в диапазоне от нескольких сотен гигаэлектронвольт до нескольких тераэлектронвольт. Это именно тот диапазон, в котором БАК должен будет вести поиск. При энергии столкновения 14 ТэВ коллайдер должен выдавать эти частицы даже с учетом того, что кваркам и глюонам, порождающим при столкновении новые частицы, достается лишь небольшая часть исходной энергии протонов.
Проще всего будет получить на БАКе суперсимметричные частицы, несущие сильный или цветовой заряд. Эти частицы при столкновении протонов или, точнее, при столкновении кварков и глюонов в них могут рождаться в изобилии. Иными словами, при штатной работе БАКа могут возникать новые суперсимметричные частицы, участвующие в сильном взаимодействии.
Если это так, они оставят в детекторах очень заметные и характерные следы. Эти сигнатуры — экспериментальные свидетельства, оставляемые частицей — зависят от того, что происходит с частицей после возникновения. Большинство суперсимметричных частиц будут быстро распадаться.
Причина в том, что, как правило, для каждой такой тяжелой частицы существует более легкая частица такая как частицы Стандартной модели с точно таким же полным зарядом. Если это так, то тяжелая суперсимметричная частица распадется на частицы Стандартной модели таким образом, чтобы сохранился первоначальный заряд, и эксперимент обнаружит только частицы Стандартной модели. Вероятно, этого недостаточно, чтобы распознать суперсимметрию.
Однако почти во всех суперсимметричных моделях суперсимметричная частица не может распадаться исключительно на частицы Стандартной модели. После ее распада должна остаться другая более легкая суперсимметричная частица. Причина в том, что суперсимметричные частицы появляются или исчезают только парами.
Поэтому на месте распада одной суперсимметричной частицы должна остаться другая суперсимметричная частица. Следовательно, самая легкая из таких частиц должна быть стабильной.
Поиски суперсимметрии на коллайдере принесли новую интригу
Они измерили скорость распада частицы под названием мезон Bs на две частицы - мюоны. Впервые такой распад наблюдался в искусственных условиях, и по подсчетам ученых, на каждый миллиард распадов этого мезона приходится всего три распада такого рода. Если бы сверхпартнеры обычных частиц существовали в реальности, число таких распадов было бы куда выше. Это важнейший тест правильности всей теории суперсимметрии, которая является весьма популярной среди многих физиков-теоретиков. Профессор Вал Гибсон, руководитель группы исследователей из Кембриджа, которая участвует в эксперименте LHCb, заявил, что новые результаты ставят в опасное положение тех его коллег, кто работает с теорией суперсимметрии. Эти результаты на самом деле полностью укладываются в Стандартную модель.
Суперчастицы до сих пор не обнаружены и другими детекторами на других ускорителях. Загадка темной материи Если теория суперсимметрии не в состоянии объяснить существование темной материи, теоретикам придется искать другие объяснения несоответствий в Стандартной модели. Пока что физики, которые спешат предложить свои варианты новой физической теории, терпят неудачу.
Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе.
И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов.
Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия. Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось.
Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса.
Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная.
В этом году ему должно было исполниться 80 лет. Двадцатипятилетним молодым человеком приехал в Харьков Дмитрий Волков и на протяжении 45 лет его деятельность была связана с этим городом. В 1951 году он приехал сюда с группой студентов из разных вузов страны он — из Ленинградского университета по приказу Министерства высшего образования для продолжения учебы в Харьковском университете на вновь организованном отделении ядерной физики при физико-математическом факультете. Родился Д.
Волков 3 июля 1925 года в Ленинграде в семье рабочего-слесаря и учительницы. В семье было двое сыновей: старший Левушка и младший Митенька, названные так в честь героев произведений Л. Толстого, большой поклонницей которого была мать, Ольга Ивановна. Она занималась духовным воспитанием детей, прививая им любовь к литературе, музыке. Отец, Василий Николаевич, старался закалить их физически, занимаясь с ними спортом, но он всячески поощрял стремление мальчиков и к знаниям. Великая Отечественная война 1941-1945 гг. Дмитрий окончил восьмой класс средней школы, отец, не подлежавший мобилизации по возрасту, ушел добровольцем в народное ополчение и в феврале 1942 года пропал без вести.
Старший брат Лева, став курсантом Ленинградского воинского подразделения, в декабре 1941 года был ранен и умер. Но горе, обрушившееся на семью Волковых, не сломило их. Участвовал в боях на Карельском и на 1-м Дальневосточном фронтах в качестве связиста, радиста, артиллерийского разведчика. За проявленное в боях мужество награжден несколькими медалями, в 1965 г. После войны Дмитрий Волков возвращается в родной Ленинград с твердым намерением учиться. В течение года он экстерном сдает экзамены за 9-й и 10-й классы и в 1947 году поступает на физический факультет Ленинградского университета. В процессе учебы профессорско-преподавательский коллектив не только дал ему знания и сформировал интерес к профессии, но и привил глубокое уважение и любовь к науке.
И эту любовь Волков пронес через всю жизнь. В Харьковском университете ему тоже повезло. Здесь читали лекции известные всему научному миру физики, академики А. Вальтер, К. Синельников, А. Ахиезер — ведущие ученые УФТИ. В 1956 году по окончании аспирантуры Д.
Здесь он сложился и вырос как ученый, защитив кандидатскую 1958 г. Научные интересы Дмитрия Васильевича охватывают широкий круг исследований в теоретической физике. Довольно рано сформировался его научный стиль, отличающийся глубоким и оригинальным подходом к исследуемым вопросам. Уже в первых его работах проявилась нестандартность подхода к фундаментальным проблемам квантовой теории поля. Международное признание ученый получил сразу — открытая им парастатистика, названная впоследствии статистикой Грина-Волкова и обобщая известные статистики Бозе-Эйнштейна и Ферми-Дирака, сыграла важную роль в развитии представлений о кварковой структуре адронов. В 1960 году Д. Волков, молодой еще физик, в составе советской делегации впервые принимал участие в конгрессе по физике элементарных частиц в США.
Обмениваясь в аэропорту с американскими коллегами новостями науки, глава делегации М. Марков спросил: «Что у вас нового? Ли ответил: «Это у вас новости! Результативными были и последующие годы. Мировую известность Волкову принесло открытие нового типа симметрии — суперсимметрии — и построение на ее основе теории супергравитации, обобщающей теорию тяготения Эйнштейна. Концепция суперсимметрии определила основное направление развития физики элементарных частиц на десятилетия. Волковское открытие в области суперсимметрии цитировалось как основополагающее в трудах многих крупных международных конференций.
В 1962 г. Волков открыл совместно с В. Грибовым новое явление, получившее название «заговор полюсов», что стимулировало целый поток теоретических и экспериментальных работ в области физики высоких энергий. Дмитрий Васильевич был не только талантливым ученым, но и удивительно трудолюбивым человеком, он работал много и упорно, предъявляя высокие требования к качеству выполняемой работы, ее логическому научному завершению. По воспоминаниям коллег, он был открытым человеком. Обсуждать с Волковым ту или иную проблему было большим удовольствием. Он быстро вникал в суть дела и высказывал, как правило, оригинальные соображения и идеи.
Ему был дан редкий дар видеть важный физический результат за сложными математическими выкладками, используя в расчетах современную математику. Дмитрий Васильевич не останавливался в поиске, для исследований он выбирал наиболее сложные научные проблемы, выдвигая новые идеи и фундаментальные подходы. Он постоянно следил за достижениями в различных областях физики и математики, старался расширять круг своих интересов. Этому способствовали научные командировки в международные центры Европы и Америки и общение с выдающимися учеными. Ездил он туда регулярно — с 1958 г. Каждая поездка завершалась подробным отчетом, где давался глубокий анализ не только основных теоретических исследований, проводимых в ЦЕРНе, но и организации научной работы; отмечались ее преимущества, давались конкретные рекомендации. В 1994 г.
Волков был приглашен на Международную конференцию авторов оригинальных идей и открытий XX века в физике элементарных частиц в Эриче Италия , где выступил с докладом «Supergravity before 1976». Последний раз он докладывал на конференции «Суперсимметрия-95» SUSY-95 во Франции, где выдвинул новую концепцию обобщенного принципа действия для суперструн и супермембран. К Дмитрию Васильевичу всегда тянулась молодежь, потому что он щедро делился идеями и открытиями и искренне радовался успехам и достижениям своих учеников и коллег. Созданная им в Харькове научная школа пользуется заслуженной мировой известностью. На его научных идеях и под его непосредственным руководством подготовлено около 20 кандидатских и докторских диссертаций. Много сил и энергии Д. Волков отдавал научно-организационной работе.
Он входил в состав ряда проблемных научных Советов, редколлегий, научных журналов и сборников. Достижения Д. Волкова неоднократно отмечались орденами и медалями.
Победителями были признаны скептики — ученые, не поверившие в обнаружение новых частиц. Расчеты обещают быть простыми благодаря равному числу победителей и проигравших — по 20.
Издание отмечает, что на мероприятии присутствовал знаменитый британский физик Стивен Хокинг, который в свое время воздержался от участия пари.
Данные, полученные на БАК, поставили под сомнение теорию суперсимметрии
Однако необходимых подтверждений мы не получили". Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. Данная теория позволяла ответить на вопрос, почему наша Вселенная имеет значительно большую массу, нежели ее дает сложение всех наблюдаемых в ней космических объектов.
Минимальное суперсимметричное расширение Стандартной модели называется «минимальная суперсимметричная Стандартная модель» MSSM. В MSSM необходимо добавить дополнительные поля так, чтобы построить суперсимметричный мультиплет с каждым полем Стандартной модели. Для материальных фермионных полей — кварков и лептонов — нужно ввести скалярные поля — скварки и слептоны, по два поля на каждое поле Стандартной модели. Для нарушения электрослабой симметрии в MSSM нужно ввести 2 хиггсовских дуплета в обычной Стандартной модели вводится один хиггсовский дуплет , то есть в MSSM возникает 5 хиггсовских степеней свободы — заряженный бозон Хиггса 2 степени свободы , лёгкий и тяжёлый скалярный бозон Хиггса и псевдоскалярный бозон Хиггса.
В любой реалистической суперсимметричной теории должен присутствовать сектор, нарушающий суперсимметрию. Наиболее естественным нарушением суперсимметрии является введение в модель так называемых мягких нарушающих членов. В настоящее время рассматриваются несколько вариантов нарушения суперсимметрии. SUGRA — нарушение суперсимметрии , основанное на взаимодействии с гравитацией; GMSB — нарушение за счёт взаимодействия с дополнительными калибровочными полями с зарядами по группе Стандартной модели ; AMSB — нарушение, также использующее взаимодействие с гравитацией, но с применением конформных аномалий. Достоинства идеи суперсимметрии Теории, включающие суперсимметрию, дают возможность решить несколько проблем, присущих Стандартной модели: Решение проблемы иерархии.
При суперсимметрии для каждого бозона должен существовать фермион и для каждого фермиона — бозон. К сожалению, экспериментально существование таких частиц не подтверждено. Суперсимметрия является математической зависимостью между элементами физических уравнений. Она была обнаружена в другой области физики, а ее применение привело к переименованию в теорию суперсимметричных струн или теория суперструн, популярным языком в середине 1970 годов. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные.
Без суперсимметрии уравнения приводят к физическим противоречиям, таким как бесконечные значения и воображаемые энергетические уровни. Поскольку ученые не наблюдали частицы, предсказанные суперсимметрией, она все еще является гипотезой. Эти частицы могли существовать в ранней вселенной, но так как она остыла, и после Большого взрыва энергия распространилась, эти частицы перешли на низкоэнергетические уровни. Другими словами, струны, вибрировавшие как высокоэнергетические частицы, утратили энергию, что превратило их в элементы с более низкой вибрацией. Ученые надеются, что астрономические наблюдения или эксперименты с ускорителями частиц подтвердят теорию, выявив некоторые из суперсимметричных элементов с более высокой энергией. Дополнительные измерения Другим математическим следствием теории струн является то, что она имеет смысл в мире, число измерений которого больше трех. В настоящее время этому существует два объяснения: Дополнительные измерения шесть из них свернулись, или, в терминологии теории струн, компактифицировались до невероятно малых размеров, воспринять которые никогда не удастся. Мы застряли в 3-мерной бране, а другие измерения простираются вне ее и для нас недоступны. Важным направлением исследований среди теоретиков является математическое моделирование того, как эти дополнительные координаты могут быть связаны с нашими. Последние результаты предсказывают, что ученые в скором времени смогут обнаружить эти дополнительные измерения если они существуют в предстоящих экспериментах, так как они могут быть больше, чем ожидалось ранее.
Понимание цели Цель, к которой стремятся ученые, исследуя суперструны — «теория всего», т. В случае успеха она могла бы прояснить многие вопросы строения нашей вселенной. Объяснение материи и массы Одна из основных задач современных исследований — поиск решения для реальных частиц. Теория струн начиналась как концепция, описывающая такие частицы, как адроны, различными высшими колебательными состояниями струны. В большинстве современных формулировок, материя, наблюдаемая в нашей вселенной, является результатом колебаний струн и бран с наименьшей энергией. Вибрации с большей порождают высокоэнергичные частицы, которые в настоящее время в нашем мире не существуют. Масса этих элементарных частиц является проявлением того, как струны и браны завернуты в компактифицированных дополнительных измерениях. Например, в упрощенном случае, когда они свернуты в форме бублика, называемом математиками и физиками тором, струна может обернуть эту форму двумя способами: короткая петля через середину тора; длинная петля вокруг всей внешней окружности тора. Короткая петля будет легкой частицей, а большая — тяжелой. При оборачивании струн вокруг торообразных компактифицированных измерений образуются новые элементы с различными массами.
Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Свернутые измерения здесь гораздо сложнее тора, но в принципе они работают также. Возможно даже, хотя это трудно представить, что струна оборачивает тор в двух направлениях одновременно, результатом чего будет другая частица с другой массой.
Со временем, поскольку суперпартнёры не появились, суперсимметрия стала менее красивой.
По популярным моделям, чтобы избежать обнаружения, частицам-суперпартнёрам приходиться быть сильно тяжелее своих двойников, и вместо симметрии появляется какое-то кривое зеркало. Физики выдвинули огромное количество идей о том, как симметрия может быть сломана, и породили тысячи версий суперсимметрии. Но нарушение суперсимметрии — это новая проблема. Большинство специалистов по физике частиц в 1980-х считали, что суперпартнёры будут лишь немного тяжелее известных частиц.
Но на Теватроне, ускорителе в Fermilab, ныне отстранённом от работы, ничего подобного не нашли. И в то время, как БАК тестирует всё более высокие энергии, не находя и следа суперсимметричных частиц, некоторые физики утверждают, что теория мертва. В настоящее время большинство рабочих версий суперсимметрии предсказывают настолько тяжёлых суперпартнёров, что они бы пересилили эффекты от своих лёгких близнецов, если бы не точно настроенные взаимоуничтожения воздействий между различными суперпартнёрами. Но тонкая подстройка, предназначенная для нейтрализации проблем теории и решения проблемы иерархии, не нравится многим.
Некоторые теоретики ломятся дальше, и утверждают, что, несмотря на красоту изначальной теории, в природе может существовать уродливая комбинация частиц-суперпартнёров и капельки подстроек. В иных моделях суперпартнёры не тяжелее существующих частиц, но менее стабильны, из-за чего их труднее обнаружить. Эти теории будут и далее проверяться на БАК после апгрейда. Если ничего нового не найдут — а о таком развитии событий говорят, как о «кошмарном сценарии» — физикам останутся всё те же пробелы, что путали им всю картину Вселенной три десятка лет назад, до того, как их аккуратно закрыла суперсимметрия.
Нобелевская премия по физике 2008 года. Нобелевская асимметрия
Теория Суперсимметрии имеет дело с Суперпространством, в котором трехмерие дополняется принципиально ненаблюдаемыми измерениями. Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН). Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН).