Чем меньше площадь опоры тем давление производимое одной и той же. потому что распределяется на БОЛЬШУЮ площадь. не то что есть разница между 1 и 30 этажами, а в пределах этажа и то есть разница - прибор фиксиует. Чем больше площадь опоры, тем меньше давление, производимое одной и той же силой на эту опору. _. Давление обратно пропорционально площади поверхности воздействия: чем больше площадь, тем меньше давление.
Чем выше тем давление меньше или больше
А мы установили, что чем больше площадь опоры, тем меньше давление, производимое одной и той же силой на эту опору. Мы знаем, что, чем больше площадь опоры, тем меньше давление, производимое данной силой, и наоборот, с уменьшением площади опоры (при неизменной силе) давление возрастает. Мы знаем, что, чем больше площадь опоры, тем меньше давление, производимое данной силой, и, наоборот, с уменьшением площади опоры (при неизменной силе) давление возрастает. Чем меньше площадь опоры, тем больше давление, производимое одной и той же силой на эту опору. Между силой давления и давлением существует прямо пропорциональная зависимость, то есть чем больше сила, тем больше давление и наоборот, чем меньше сила, тем меньше давление.
Чему равно давление жидкости?
Верблюдов называют кораблями пустынь. По сыпучим пескам пустыни без специальных приспособлений далеко не уйдешь. На фото видно, что ноги верблюда заканчиваются широкими ступнями, а сама подошва толстая, без роговых копыт. Именно это позволяет значительно уменьшить давление на почву. Его масса огромна, и если бы не четыре массивные ноги с крупными подошвами, нелегко бы ему пришлось при ходьбе. Слоны — отличные ходоки и бегуны, они способны взбираться на скалистые склоны и не боятся даже болот. Все это возможно благодаря особому строению ступни: под кожей подошвы у них имеется желеобразная прослойка с эластичными волокнами. Когда слон наступает, эта пружинящая масса принимает на себя вес тела и расширяется, площадь увеличивается и давление на землю при этом уменьшается. При вытягивании из трясины ступня снова сжимается, что облегчает ходьбу.
Слайд 2 Как легче идти по рыхлому снегу: на лыжах или без них? Слайд 3 По рыхлому снегу человек идёт с большим трудом Но, надев лыжи, человек может идти почти не проваливаясь в снег Слайд 4 Результат действия силы зависит не только от её модуля, направления и точки приложения, но и от площади той поверхности, перпендикулярно которой она действует.
Последний заключался в том, что длинную около метра стеклянную трубку, запаянную с одного конца, наполняли ртутью и, плотно закрыв, опускали ее незапаянный конец в чашу, в которой также была ртуть. После того как трубку открывали, часть ртути из нее выливалась и над поверхностью оставшейся в трубке ртути образовывалась пустота. Торричелли объяснил это явление тем, что в трубке должен остаться столб ртути, давление которого уравновесит давление воздуха, а образовавшийся над ртутью вакуум получил название «Торричеллиева пустота». Ртуть в трубке поднимается и опускается в соответствии с изменениями погодных условий. Слайд 9 Сифонный барометр В сифонном барометре изменения уровня ртути в открытом конце трубки посредством грузика W с противовесом C передаются стрелке, которая указывает на надписи круговой шкалы, предсказывающие погоду. Слайд 10 Конструкции всех современных ртутных барометров основываются на принципе Торричелли. Изменение высоты столба ртути в трубке прибора изменяет и ее уровень в чаше. Перед считыванием показаний нулевая отметка подвижной шкалы совмещается с уровнем ртути в чаше 0 В 1810 г.
Для этого ее дно изготавливалось из гибкой кожи, степень прогиба которой можно было менять при помощи специального винта, добиваясь большей точности совмещения уровня ртути с нулевой отметкой шкалы.
С другой стороны, при малой площади поверхности малой силой можно создать большое давление. Поэтому лезвия и острия режущих и колющих инструментов ножей, ножниц, игл, пил остро затачивают. Также их приходится делать из прочного материала, способного выдерживать большие давления. Например, вдавливая в стену кнопку с площадью острия S.
§ 175. Распределение атмосферного давления по высоте
Сила давления: как она действует на плоские поверхности и почему это важно | Давление тем меньше площадь.** которую действует сила.И |
Давление. Способы изменения давления - презентация онлайн | Их давление зависит от площади: чем больше площадь, тем меньше давление. |
Физикон - Давление твёрдых тел | Как давление зависит от площади? * Чем больше площадь, тем больше давление Чем больше площадь, тем давление меньше Чем меньше площадь, тем меньше давление. Created by milkymouse76. fizika-ru. |
разница атмосферного давления между 1-м и 30-м этажами - Конференция | Таким образом, чем больше площадь, тем меньше давление, и наоборот. |
Что такое атмосферное давление
- Чем меньше площадь опоры тела тем?
- Связанных вопросов не найдено
- ГДЗ Физика 7 класс Перышкин
- Дополнительные материалы по теме: Давление в динамике.
- Физика 16. Формула давления твёрдых тел — Академия занимательных наук
- Чем выше тем давление меньше или больше
Основные понятия физического закона
- Открытие и измерение
- ГДЗ учебник по физике 7 класс Перышкин. §36. Упражнение 15. Номер №2
- Чем больше площадь давления, тем меньше
- § 175. Распределение атмосферного давления по высоте
- Остались вопросы?
§ 42. Барометр-анероид презентация
Таким образом, физический закон, утверждающий, что чем больше площадь, тем меньше давление, играет важную роль в нашей жизни. давление больше когда на коньках, потому что площадь поверхности меньше именно по этому когда спасают кого-то, то ложатся на лед, чем больше площадь, тем давление меньше там есть формула силы давления, но т.к. я проходила это лет 10 назад, я не помню приверно так. Давление тем больше, чем меньше площадь поверхности при одинаковой силе давления. Чем больше высота, тем меньше плотность воздуха. Это значит, что первоначальное давление Р₁ в 4 раза больше давления Р₂, то есть давление уменьшится в 4 раза, если мы площадь поверхности увеличим в 2 раза, а вес тела уменьшим в 2 раза.
Чем больше площадь тем меньше давление?
Таким образом, Используется также другие единицы давления: гектопаскаль гПа и килопаскаль кПа. Рассчитать давление, производимое на пол мальчиком, масса которого 45 кг, а площадь подошв его ботинок, соприкасающихся с полом, равна 300 см 2. Запишем условие задачи и решим её. Тяжелый гусеничный трактор производит на почву давление равное 40 — 50 кПа, т. А мы установили, что чем больше площадь опоры, тем меньше давление, производимое одной и той же силой на эту опору.
В зависимости от того, нужно ли получить малое или большое давление, площадь опоры увеличивается или уменьшается. Например, для того, чтобы грунт мог выдержать давление возводимого здания, увеличивают площадь нижней части фундамента. Шины грузовых автомобилей и шасси самолетов делают значительно шире, чем легковых. Особенно широкими делают шины у автомобилей, предназначенных для передвижения в пустынях.
Тяжелые машины, как трактор, танк или болотоход, имея большую опорную площадь гусениц, проходят по болотистой местности, по которой не пройдет человек. С другой стороны, при малой площади поверхности можно небольшой силой произвести большое давление. Например, вдавливая кнопку в доску, мы действуем на нее с силой около 50 Н. Для сравнения, это давление в 1000 раз больше давления, производимого гусеничным трактором на почву.
Можно найти еще много таких примеров. Лезвие режущих и острие колющих инструментов ножей, ножниц, резцов, пил, игл и др. Заточенный край острого лезвия имеет маленькую площадь, поэтому при помощи даже малой силы создается большое давление, и таким инструментом легко работать. Режущие и колющие приспособления встречаются и в живой природе: это зубы, когти, клювы, шипы и др.
Читать еще: Вакцина от давления Мы уже знаем, что газы, в отличие от твердых тел и жидкостей, заполняют весь сосуд, в котором находятся. Например, стальной баллон для хранения газов, камера автомобильной шины или волейбольный мяч. При этом газ оказывает давление на стенки, дно и крышку баллона, камеры или любого другого тела, в котором он находится. Давление газа обусловлено иными причинами, чем давление твердого тела на опору.
Известно, что молекулы газа беспорядочно движутся. При своем движении они сталкиваются друг с другом, а также со стенками сосуда, в котором находится газ. Молекул в газе много, поэтому и число их ударов очень велико. Например, число ударов молекул воздуха, находящегося в комнате, о поверхность площадью 1 см 2 за 1 с выражается двадцатитрехзначным числом.
Хотя сила удара отдельной молекулы мала, но действие всех молекул на стенки сосуда значительно, — оно и создает давление газа. Итак, давление газа на стенки сосуда и на помещенное в газ тело вызывается ударами молекул газа. Рассмотрим следующий опыт. Под колокол воздушного насоса поместим резиновый шарик.
Он содержит небольшое количество воздуха и имеет неправильную форму. Затем насосом откачиваем воздух из-под колокола. Оболочка шарика, вокруг которой воздух становится все более разреженным, постепенно раздувается и принимает форму правильного шара. Как объяснить этот опыт?
В нашем опыте движущиеся молекулы газа непрерывно ударяют о стенки шарика внутри и снаружи. При откачивании воздуха число молекул в колоколе вокруг оболочки шарика уменьшается. Но внутри шарика их число не изменяется. Поэтому число ударов молекул о внешние стенки оболочки становится меньше, чем число ударов о внутренние стенки.
Шарик раздувается до тех пор, пока сила упругости его резиновой оболочки не станет равной силе давления газа. Оболочка шарика принимает форму шара. Это показывает, что газ давит на ее стенки по всем направлениям одинаково. Иначе говоря, число ударов молекул, приходящихся на каждый квадратный сантиметр площади поверхности, по всем направлениям одинаково.
Одинаковое давление по всем направлениям характерно для газа и является следствием беспорядочного движения огромного числа молекул. Попытаемся уменьшить объем газа, но так, чтобы масса его осталась неизменной. Это значит, что в каждом кубическом сантиметре газа молекул станет больше, плотность газа увеличится. Тогда число ударов молекул о стенки увеличится, т.
Это можно подтвердить опытом. На рисунке а изображена стеклянная трубка, один конец которой закрыт тонкой резиновой пленкой. В трубку вставлен поршень. При вдвигании поршня объем воздуха в трубке уменьшается, т.
Резиновая пленка при этом выгибается наружу, указывая на то, что давление воздуха в трубке увеличилось. Наоборот, при увеличении объема этой же массы газа, число молекул в каждом кубическом сантиметре уменьшается. От этого уменьшится число ударов о стенки сосуда — давление газа станет меньше. Действительно, при вытягивании поршня из трубки объем воздуха увеличивается, пленка прогибается внутрь сосуда.
Это указывает на уменьшение давления воздуха в трубке. Такие же явления наблюдались бы, если бы вместо воздуха в трубке находился бы любой другой газ. Итак, при уменьшении объема газа его давление увеличивается, а при увеличении объема давление уменьшается при условии, что масса и температура газа остаются неизменными. А как изменится давление газа, если нагреть его при постоянном объеме?
Известно, что скорость движения молекул газа при нагревании увеличивается. Двигаясь быстрее, молекулы будут ударять о стенки сосуда чаще. Кроме того, каждый удар молекулы о стенку будет сильнее. Вследствие этого, стенки сосуда будут испытывать большее давление.
Следовательно, давление газа в закрытом сосуде тем больше, чем выше температура газа, при условии, что масса газа и объем не изменяются.
Чем глубже находится точка на дне, тем больше вес воды над ней и, следовательно, тем больше сила давления. Это объясняется тем, что вода находящаяся выше создает дополнительный вес, который давит на нижние слои воды и дно сосуда.
Пример 2: Давление воздуха на поверхность тела Воздух оказывает давление на поверхность нашего тела. Это объясняет ощущение сопротивления, когда мы двигаемся в воде или находимся на большой высоте. Чем выше мы поднимаемся, тем меньше давление воздуха, так как воздух становится менее плотным.
Это также объясняет, почему при погружении в воду ощущается увеличение давления на тело, так как вода плотнее воздуха. Пример 3: Давление гидравлической жидкости в системе В гидравлической системе сила давления создается гидравлической жидкостью, которая передается через трубки и шланги. Например, в гидравлическом прессе, сила давления гидравлической жидкости применяется к плоской поверхности, чтобы создать сжатие или сгибание материала.
Это лишь несколько примеров, которые помогают наглядно представить, как сила давления действует на плоские поверхности в различных ситуациях. Важно понимать, что сила давления зависит от площади поверхности и давления, и эти факторы необходимо учитывать при проектировании и использовании гидравлических систем. Свойства силы давления на плоские поверхности Сила давления на плоскую поверхность имеет несколько важных свойств, которые необходимо учитывать при анализе и применении гидравлических систем: Зависимость от площади поверхности Сила давления на плоскую поверхность пропорциональна площади этой поверхности.
Чем больше площадь поверхности, на которую действует давление, тем больше сила давления.
При увеличении высоты он снижается, поэтому для каждой местности характерна своя норма. Однако могут быть случаи, когда давление выходит далеко за рамки нормального. Самое высокое атмосферное давление было зарегистрировано в 2001 году в Монголии и составило 814,27 мм рт. Самое низкое давление — 637,55 мм рт.
Хотя после изобретения первого ртутного барометра прошло 380 лет, он и сегодня считается одним из самых точных и надёжных приборов для измерения атмосферного давления. Поэтому барометры с ртутью используются на метеостанциях хотя в некоторых странах отходят от их использования из-за токсичности вещества , однако в быту распространены более удобные барометры-анероиды. Внутри них металлический короб с разреженным воздухом, который расширяется или сжимается при изменении давления, приводя в движение стрелку. Воздушные вихри с пониженным давлением в центре и радиусом, длина которого может достигать тысяч километров, называются циклонами. Их разделяют на два вида.
Тропические циклоны образуются вблизи экватора благодаря сильному нагреву и подъёму влажного воздуха над самыми прогретыми частями океанов и обычно имеют радиус в несколько сотен километров. В их центре — низкое давление, а из-за быстрого подъёма воздуха ветер у поверхности может достичь очень высоких скоростей, и циклон перерастёт в ураган. Внетропические циклоны возникают в умеренных и полярных широтах, а их размеры достигают нескольких тысяч километров в диаметре.
Последний заключался в том, что длинную около метра стеклянную трубку, запаянную с одного конца, наполняли ртутью и, плотно закрыв, опускали ее незапаянный конец в чашу, в которой также была ртуть.
После того как трубку открывали, часть ртути из нее выливалась и над поверхностью оставшейся в трубке ртути образовывалась пустота. Торричелли объяснил это явление тем, что в трубке должен остаться столб ртути, давление которого уравновесит давление воздуха, а образовавшийся над ртутью вакуум получил название «Торричеллиева пустота». Ртуть в трубке поднимается и опускается в соответствии с изменениями погодных условий. Сифонный барометр В сифонном барометре изменения уровня ртути в открытом конце трубки посредством грузика Сифонный барометр В сифонном барометре изменения уровня ртути в открытом конце трубки посредством грузика W с противовесом C передаются стрелке, которая указывает на надписи круговой шкалы, предсказывающие погоду.
Конструкции всех современных ртутных барометров основываются на принципе Конструкции всех современных ртутных барометров основываются на принципе Торричелли. Изменение высоты столба ртути в трубке прибора изменяет и ее уровень в чаше. Перед считыванием показаний нулевая отметка подвижной шкалы совмещается с уровнем ртути в чаше 0 Барометр Фортина В 1810 г. Для этого ее дно изготавливалось из гибкой кожи, степень прогиба которой можно было менять при помощи специального винта, добиваясь большей точности совмещения уровня ртути с нулевой отметкой шкалы.
Барометр Фортина Барометр Фортина — это чашечный барометр, в котором нуль шкалы устанавливается путем вращения винта Барометр Фортина Барометр Фортина — это чашечный барометр, в котором нуль шкалы устанавливается путем вращения винта А до соприкосновения костяного острия T c поверхностью ртути; для более точного отсчета по шкале предусмотрен верньер нониус. Альтернативные жидкости Для измерения атмосферного давления можно использовать любую жидкость Альтернативные жидкости Для измерения атмосферного давления можно использовать любую жидкость.
Калькуляторы по физике
- Физика 16. Формула давления твёрдых тел — Академия занимательных наук
- Физика (7 класс)/Давление
- Сила давления: как она действует на плоские поверхности и почему это важно
- Физика 16. Формула давления твёрдых тел — Академия занимательных наук
- Давление атмосферы на разных высотах
Давление в динамике.
§ 42. Барометр-анероид | Таким образом, давление газа тем больше, чем выше его температура и меньше объём при неизменной массе. |
Как давление зависит от площади? * Чем больше площадь, тем больше давление Чем б... | Чем больше площадь поверхности, тем больше давление. Давление не зависит от величины площади поверхности, на которую оказывает действие сила. |
Как с высотой изменяется атмосферное давление. Формула, график | Чем меньше площадь опоры, тем больше давление, производимое одной и той же силой на эту опору. |
разница атмосферного давления между 1-м и 30-м этажами - Конференция | Чем больше высота, тем меньше давление. Поэтому для Москвы характерны одни показатели, для высокогорных городов Боливии и Перу — другие, а для высочайшей горы мира Эвереста — третьи. |
Давление. Атмосферное давление. Закон Паскаля. Закон Архимеда
Чем больше площадь соприкосновения, колеса с дорогой, тем меньше давление на дорогу(закон физики). Чем больше площадь соприкосновения, колеса с дорогой, тем меньше давление на дорогу(закон физики). Это объясняется тем, что чем больше площадь, тем меньше сила, действующая на определенную единицу площади, то есть давление. Мы знаем, что, чем больше площадь опоры, тем меньше давление, производимое данной силой, и, наоборот, с уменьшением площади опоры (при неизменной силе) давление возрастает.
Вставьте в текст подходящие по смыслу слова. «Чем … площадь опоры, тем … давление, производи…
Что такое атмосферное давление и как оно влияет на погоду? | Мы знаем, что, чем больше площадь опоры, тем меньше давление, производимое данной силой, и наоборот, с уменьшением площади опоры (при неизменной силе) давление возрастает. |
Что такое атмосферное давление и как оно влияет на погоду? | Таким образом, давление газа тем больше, чем выше его температура и меньше объём при неизменной массе. |
Вставьте в текст подходящие по смыслу слова. «Чем … площадь опоры, тем … давление, производи…
Урок 16. Формула давления твёрдых тел. Как вы наверное помните из прошлой передачи, вес — это сила, с которой тело давит на опору. Почему же один и тот же человек, идя по снегу в ботинках проваливается, а идя на лыжах — нет? Чтобы разобраться в этом вопросе профессор Даниил Эдисонович научит вас формуле давления твёрдых тел. Трактор весит гораздо больше автомобиля, а в рыхлой почве не вязнет.
Но им ли, ученым, не знать, что самолет поднимают в воздух два простых физических эффекта? Читайте подписи под картинками, чтобы разобраться.
Чтобы взлететь, самолету нужна скорость. Именно он определяет подъемную силу. У самолета есть крыло, а у крыла в свою очередь правая и левая консоли. Профиль крыла несимметричен: верхняя поверхность крыла имеет большую площадь, чем нижняя, и у них разные формы. Встречный воздух движется вдоль верхней поверхности крыла быстрее, чем вдоль нижней.
При этом зависимость будет не линейная, а примет вот такой вид при условии, что температура постоянна : Зависимость давления от объема называется законом Бойля-Мариотта. Она экспериментально проверяется с помощью такой установки: Объем шприца увеличивают с помощью насоса, а манометр измеряет давление. Эксперимент показывает, что при увеличении объема давление действительно уменьшается. В ходе эксперимента газ нагревали в большой колбе, соединенной с ртутным манометром в виде узкой изогнутой трубки. Незначительным увеличением объема колбы при нагревании можно пренебречь, как и столь же незначительным изменением объема при смещении ртути в узкой манометрической трубке.
Таким образом, объем газа можно считать неизменным. Подогревая воду в сосуде, окружающем колбу, ученый измерял температуру газа термометром, а давление — манометром. Эксперимент показал, что давление газа увеличивается с увеличением температуры. Это связано с тем, что при нагревании молекулы газа движутся быстрее, из-за чего чаще ударяются о стенки сосуда. С температурой все проще. Зависимость давления от температуры при постоянных объеме и массе будет линейной: Эта зависимость называется законом Шарля в честь ученого, открывшего ее. Основное уравнение МКТ Основная задача молекулярно-кинетической теории газа заключается в том, чтобы установить соотношение между давлением газа и его микроскопическими параметрами: массой молекул, их средней скоростью и концентрацией. Это соотношение называется основным уравнением молекулярно-кинетической теории газа или кратко — основным уравнением МКТ.
Неорганизованная плазма окружает гиперзвуковую ракету, например, и в каждой точке траектории ракеты существует лишь мгновение. Речь о "плазменном коконе". Неорганизованные плазмы непрозрачны ни для звука, ни для эл. Аксиома: «Все жидкости и газы на Земле имеют вес тяжесть и находятся под давлением веса собственных и выше расположенных слоёв» Архимед. Это Архимед путём сравнения "плавания малых твёрдых тел в воде и в воздухе" речь о частицах мути и пыли, то есть о взвешенных или броуновских частицах открыл, что у воздуха есть вес; что воздух - это не хаос, а вещество с послойным расположением весомых и малоподвижных равноудалённых частиц. Так что, кристаллы бывают твёрдые, жидкие и... Сейчас в узких кругах продвинутых физиков известно, что даже очень горячие и излучающие свет газы - это преимущественно так называемые "самоорганизованные плазмы", хотя само явление "мгновенной самоорганизации высокотемпературной плазмы, находящейся под давлением" было официально открыто не так давно - в 1986 году на токамаке. Температура и давление таких плазм могут быть очень высокими, а хаотического поступательного движения частиц и "длины свободного пробега частицы" в них нет вообще. Отсюда: температура - это опосредованное мерило интенсивности атомных вибраций, а также величины и частоты тепловых индукционных импульсов; а давление - это показатель напряжения взаимного отталкивания равноудаленных вибрирующих частиц. Так что, кинетическая теория теплоты и давления- это ещё один пример "великой глупости людской" из ваших учебников. Аксиома: «Давление в любой точке водоёма или атмосферы равно напряжению взаимного отталкивания равноудаленных и условно неподвижных вибрирующих частиц, которое равно весу всех частиц, находящихся над данной точкой». Уберите атмосферное давление, и аквариум с водой словно взорвётся, а вся вода из него разлетится на молекулы. Сила обычного теплового взрыва тоже в суммарном напряжении взаимного отталкивания равноудаленных возбуждённых частиц, а не в кинетической энергии хаотических частиц в пограничном слое. Встречный индуктивный теплообмен между соседними вибрирующими частицами вещества и способность атомов к "безконтактному" движению взаимного отталкивания - это именно то, что существует в природе и буквально убивает МКТ наповал. Тепловизор позволяет нам видеть температуру сравнительно холодных тел, а температуру горячих твердых тел, жидкостей и газов мы можем наблюдать визуально через их свечение. А свет - это что? Это как раз и есть импульсы тепловой индукции определённого диапазона частот, имеющие, как пока говорят, электромагнитную, а не гравитационную природу. Просто о "гравитационном моменте атома" и об атомных синхронностях, проявления которых и есть так называемый эл. Теорема 1: «Любой поток жидкости или газа — естественный или принудительный - всегда движется только в сторону меньшего давления и стремится к расширению, поэтому давление в самом потоке всегда уменьшается и стремится к выравниванию с внешним давлением на него». Здесь и далее рассматриваются такие потоки, причинность которых нельзя объяснить только силой тяжести, то есть водопады нас не интересуют. Теорема 2: «Чем больший перепад давления мы имеем или создаём, тем больше будет здесь и скорость самого потока». Скорость потока зависит от давления, а не давление в потоке зависит от скорости, как на картинке из ваших учебников вверху. К примеру, очень большая скорость реактивной струи есть результат большого перепада давлений. И ракету толкает не струя, не закон сохранения импульса, а асимметричное давление непрерывного взрыва в асимметричной камере сгорания: вперёд давление давления газов на ракету есть, а взад его нет - там "дырка". Тяга реактивного двигателя равна давлению в камере сгорания, помноженному на площадь критического сечения, плюс давление расширяющегося газа на раструб сопла. Там, где есть простая арифметика, там, скорее всего, есть и реальная физика, и простая истина. Теорема 3: «Давление в принудительном потоке в протяжённой горизонтальной или в вертикальной трубе постоянного сечения всегда уменьшается по мере приближения к расширителю потока, а скорость несжимаемого потока всегда одинаковая - и в начале, и в конце протяжённой трубы». Или "Давление в начале потока всегда больше, чем в конце, а скорость потока может быть одинаковой". Теорема 4: «Давление потока на параллельную потоку поверхность или стенки трубы всегда тем меньше давления в самом потоке, чем больше скорость потока; а давление потока на поперечную поверхность всегда тем больше давления в самом потоке, чем больше скорость потока». Теорема 5: «Давление потока на отрицательно наклонную поверхность или верхнюю поверхность атакующего плоского крыла всегда тем меньше, чем больше скорость потока или крыла; а давление потока на положительно наклонную поверхность или нижнюю поверхность плоского атакующего крыла всегда тем больше, чем больше скорость потока или крыла". Положительная разница или асимметрия атмосферных давлений на крыло - это и есть "подъёмная сила крыла». Теорема 6: «Идеальный или самый эффективный аэродинамический профиль крыла — это «беспрофиль» то есть плоское, как лезвие безопасной бритвы, крыло. Вообще-то, это аксиома, так как Природа это знает со времён первых крылатых насекомых и летающих ящеров. Теорема 7: «Существенная подъёмная сила возникает и при нулевом угле атаки беспрофиля, если его верхняя поверхность испещрена мельчайшими неровностями, а нижняя — максимально гладкая». Это тоже знает Природа. Теорема 8: «Скорость потока в зауженном участке трубы всегда больше, а давление потока на стенки трубы всегда меньше по причине трения и возрастающего хаоса в пограничном слое кристаллического потока: чем больше скорость, тем больше хаос". Как уже говорилось, в логическом трактате справедливость первых теорем и даже самих аксиом доказывается очевидной справедливостью последней. Справедливость восьмой теоремы трактата и всех аксиом как раз и показали поверхностные трубчатые манометры в опытах Даниила Бернулли см. И ещё, пожалуй. Давление в потоке выдуваемого из лёгких воздуха не может быть меньше атмосферного, но давление этого потока на внутренние стороны параллельных бумажных листов может быть меньше атмосферного, поэтому листы и сближаются под действием превосходящего атмосферного давления на их внешние стороны. Как видим, всё проще простого. И нечего было математику Леонарду Эйлеру свой огород городить и называть опыт с двумя подвешенными параллельно листами «Великим парадоксом». Просто не надо было в формулировке закона потоков причину и следствие путать местами и нужно было уметь отличать «давление в потоке» от «давление потока». Увы, истинная простота впервые даётся познанию людей труднее всего, поэтому на каждого мудреца всегда довольно запредельной для него простоты. Реальный мир проще простого, а теоретики и математики создают свой собственный мир, в котором всё только усложняют. Развиваясь в попятном то есть в обратном направлении, наука превращается в научность, которую уже никто не понимает. Думаю, я смело могу утверждать: "Даже закон Архимеда уже не понимает никто! Профессору на засыпку". Статическое давление в самом потоке измеряется только мобильными манометрами или датчиками давления, движущимися внутри потока вместе с потоком. И зачем математикам нужно с помощью придуманных формул вычислять то, что можно измерить?.. А теперь смотрим на расправленное крыло любой птицы: сверху оно бархатистое и может играть всеми цветами радуги, что физику говорит о дисперсии света на мельчайших неровностях на отражающей поверхности; а снизу крыло любой птицы всегда плотное, гладкое и со стальным отливом. Смотрим на современный пассажирский «Боинг»: сверху он словно матовый, а снизу — зеркальный. И пусть та положительная разница или асимметрия атмосферных давлений на крыло, что обусловлена только различным качеством покрытий его противоположных аэродинамических поверхностей, будет и недостаточной для полёта, но именно она и позволит самолёту или божьей твари лететь горизонтально с наименьшим углом атаки и, значит, с наименьшим лобовым сопротивлением, экономя топливо и силы. А сколько на этих эффектах экономит, скажем, стрекоза?.. А она на них уже не экономит, а просто летает. Кстати, стрекоза плоскими крыльями не машет и почти вертикально вверх не планирует, но теоретики "трещательного полёта" стрекозы старательно не замечают. Думаю, теперь вы сами сможете составить трактат "О подъёмной силе", если начнёте его следующей аксиомой: "Всё, что летает, делает это благодаря совсем небольшой положительной разнице или асимметрии огромной силы под названием "атмосферное давление". И запомните, составление логического трактата - это единственный истинный путь познания истины. А математики всегда начинают считать, не успев подумать, и могут сосчитать даже то, что невозможно себе представить. Поэтому "Математика - это единственный совершенный метод водить себя за нос" Эйнштейн... С эжекцией и инжекцией математики тоже намудрили. Однако с ними вы легко разберетесь сами, приняв за основу "Любой поток всегда движется только в сторону меньшего давления"... Так кратко можно было сказать лишь тем, кто, как говорится, уже в теме. А для всех остальных "Наука должна быть весёлая, увлекательная и простая. Таковыми же должны быть и учёные" П. Но более всего наука должна быть честная. И "Ни один человек не должен покидать стены наших университетов без понимания того, как мало он знает" Роберт Оппенгеймер... А чтобы так оно и было, нужно срезать профессора математической лженауки на первой же лекции. И прежним занудой он уже не будет, а зачёты и экзамен ваша группа сдаст "автоматом". Знаю, что говорю. И вообще, приколоться над учёными сам Бог велел... О парадоксальном законе Бернулли Курс лекций по гидродинамике и аэродинамике начинается с закона Бернулли... Первый вопрос профессору на засыпку: "Что именно измеряют или показывают три трубчатых манометра на картинке вверху - давление в потоках, или давление потоков? Правильный ответ: неподвижные поверхностные манометры на картинке вверху показывают давление потоков, так как для измерения давления в самих потоках нужны такие манометры или датчики давления, которые находились бы внутри потоков и двигались вместе с ними. Давление внутри потоков, знаете ли, почти всегда статично. Но таких мобильных манометров, которые могли бы быть неподвижными относительно ламинарных потоков, нет в опытах к теме "Закон Бернулли". Однако вывод сделан такой, словно они есть, словно давление внутри потоков уже измерено. Сосчитать то, чего нет, может каждый... С маленькой лжи, как правило, начинается ложь большая. Вот почему "Никаким количеством экспериментов нельзя доказать теорию, но достаточно одного эксперимента, чтобы её опровергнуть"; " Теория - это когда всё известно, но ничего не работает" А.