это то, во что превращаются звёзды после своей гибели. В плане излучения пульсар отличен от других источником космического радиоактивного излучения. Пульсарам свойственна либо постоянная интенсивность галактики/радиогалактики, либо нерегулярные всплески радиоизлучения, например солнце или звезды.
Настоящие выжившие: планеты-пульсары
- Что такое пульсары?
- Пульсар | Большой новосибирский планетарий
- Открытие пульсаров британскими исследователями
- Что такое планеты-пульсары?
- Новые сведения о пульсарах
Пульсары и нейтронные звёзды / Звуки пульсаров / Как открыли и что это такое
Потом таких маяков стало известно довольно много. Оказалось, что они отличаются друг от друга периодичностью лучевых импульсов, составом излучения. Большинство пульсаров - так назвали эти вновь обнаруженные звезды - имело полную продолжительность периода от четверти секунды до четырех секунд. Сегодня число известных науке пульсаров составляет около 2000. И возможности новых открытий далеко не исчерпаны. Пульсары и есть нейтронные звезды. Трудно представить себе какой-то иной механизм, с железной точностью зажигающий и гасящий вспышку пульсара, нежели вращение самой звезды. С одной стороны звезды «установлен» источник излучения, и при каждом обороте ее вокруг оси исторгаемый луч на мгновение падает и на нашу Землю. Но какие же звезды способны вращаться со скоростью нескольких оборотов в секунду?
Нейтронные - и никакие другие. Наше , к примеру, совершает один оборот без малого за 25 суток; увеличьте скорость - и центробежные силы попросту разорвут его, разнесут на части. Восход солнца. Однако на нейтронных звездах , происходит сжатие вещества до плотности, невообразимой в обычных условиях. Каждый кубический сантиметр вещества нейтронной звезды в земных условиях весил бы от 100 тысяч до 10 миллиардов тонн! Роковое сжатие резко уменьшает диаметр звезды. Если в своей сияющей жизни звезды имеют диаметры в сотни тысяч и миллионы километров, то радиусы нейтронных звезд редко превосходят 20-30 километров. Такой небольшой «маховик», и к тому же накрепко склепанный силами всемирного тяготения , можно раскрутить и со скоростью в несколько оборотов в секунду - он не развалится.
Нейтронная звезда должна вращаться очень быстро. Видели ли вы, как крутится балерина, поднявшись на одном носке и плотно прижав руки к телу? Но вот она раскинула руки - ее вращение сразу же замедлилось. Физик скажет: увеличился момент инерции. У нейтронной звезды по мере уменьшения ее радиуса момент инерции, напротив, уменьшается, она как бы «прижимает руки» все ближе и ближе к телу. Скорость ее вращения при этом быстро возрастает. И когда диаметр звезды уменьшится до указанной выше величины, число ее оборотов вокруг оси должно оказаться как раз таким, какое обеспечивает «эффект пульсара». Физикам очень хотелось бы оказаться на поверхности нейтронной звезды и поставить несколько опытов.
Ведь там должны существовать условия, подобных которым нет больше нигде: фантастическая величина гравитационного поля и фантастическая напряженность поля магнитного. По расчетам ученых, если сжимавшаяся звезда имела магнитное поле весьма скромной величины - в один эрстед магнитное поле Земли, покорно поворачивающее синюю стрелку компаса на север, равно примерно половине эрстеда , то у нейтронной звезды напряженность поля может достигать и 100 миллионов и триллиона эрстед! В 20-х годах ХХ века, в период своей работы в лаборатории Э. Резерфорда, известный советский физик академик П. Капица поставил опыт получения сверхсильных магнитных полей. Ему удалось получить в объеме двух кубических сантиметров магнитное поле небывалой напряженности - до 320 тысяч эрстед. Конечно, сейчас этот рекорд превзойден. Путем сложнейших ухищрений, обрушив на единственный виток соленоида целую электрическую ниагару - мощность в миллион киловатт - и взрывая при этом вспомогательный пороховой заряд, ухитряются получить напряженность магнитного поля до 25 миллионов эрстед.
Существует это поле несколько миллионных долей секунды. А на нейтронной звезде возможно постоянное поле в тысячи раз больше! Строение нейтронной звезды Советский ученый академик В. Гинзбург нарисовал довольно подробную картину строения нейтронной звезды. Поверхностные ее слои должны находиться в твердом состоянии, и уже на глубине километра с повышением температуры твердая кора должна сменяться нейтронной жидкостью, содержащей в своем составе некоторую примесь протонов и электронов, жидкостью удивительнейшей по своим свойствам, сверхтекучей и сверхпроводимой. Строение нейтронной звезды пульсар. В земных условиях единственный пример сверхтекучей жидкости - это поведение так называемого гелия-2, жидкого гелия, при температурах, близких к абсолютному нулю. Гелий-2 способен мгновенно вытечь из сосуда сквозь мельчайшее отверстие, способен, пренебрегая силой тяжести, подниматься по стенке пробирки вверх.
Сверхпроводимость также известна в земных условиях лишь при очень низких температурах. Как и сверхтекучесть, она - проявление в наших условиях законов мира элементарных частиц. В самом центре нейтронной звезды, по мнению академика В. Гинзбурга, может находиться не сверхтекучее и не сверхпроводящее ядро. Два гигантских поля - гравитационное и магнитное, создают вокруг нейтронной звезды своеобразный венец. Ось вращения звезды не совпадает с магнитной осью, это и вызывает «эффект пульсара». Если представить, что магнитный полюс Земли, подробнее: Слишком уж необычным был. Главная его особенность, за что он и получил свое название — периодические вспышки излучения, причем со строго определенным периодом.
Этакий радиомаяк в космосе. Сначала предполагали, что это пульсирующая звезда, которая меняет свои размеры — такие давно известны. А обнаружила его Джоселин Белл, аспирантка Кембриджского университета, с помощью радиотелескопа. Что интересно, первый пульсар назвали LGM-1, что на английском означает «маленькие зеленые человечки». Однако постепенно выяснилось, что пульсары — естественные объекты нашей Вселенной, да и открыто их уже довольно много — под две тысячи. Самый близкий от нас находится на расстоянии 390 световых лет. Итак, что же представляет собой пульсар? Это очень маленькая, но очень плотная нейтронная звезда.
Такие звезды образуются после взрыва звезды — гиганта, гораздо большей, чем наше Солнце — карлик. В результате прекращения термоядерной реакции вещество звезды сжимается в очень плотный объект — это называется коллапсом, а во время этого электроны — отрицательные частицы, вдавливаются внутрь ядер и соединяются с протонами — положительными частицами. В конце концов, все вещество звезды оказывается состоящим из одних нейтронов, что и дает огромную плотность — нейтроны не имеют заряда и могут располагаться очень тесно, практически друг на друге. Так вот, вся материя огромной звезды умещается в одной нейтронной звезде, которая имеет размеры всего в несколько километров. Плотность ее такова, что чайная ложка вещества этой звезды весит миллиард тонн. Первый пульсар, открытый Джоселин Белл, посылал в космос электромагнитные вспышки с частотой 1. Другие пульсары имеют другие периоды, но частота их излучения остается постоянной, хотя и может лежать в различных диапазонах — от радиоволн до рентгеновского излучения. Почему так происходит?
Разница между характерным и истинным возрастом пульсара Возраст пульсара нельзя рассчитать по формуле, использующей период вращения нейтронной звезды и скорость ее замедления, поскольку это не даст вам истинного возраста пульсара. Формула даст вам то, что называется «характерным возрастом». НРАО Истинный возраст пульсара другой.
Это настоящий возраст Пульсара. Крабовый пульсар — часто приводимый пример пульсара разного возраста. Его характерный возраст составляет 1240 лет, но истинный возраст Пульсара составляет около 960 лет.
Вспышка сверхновой, породившая пульсар, произошла в 1054 году нашей эры в Суинберне. Почему пульсары вращаются? Пульсары вращаются, потому что звезды-предшественники нейтронных звезд тоже вращаются.
Когда звезда взрывается, сила взрыва увеличивает силу вращения объекта. Открытие пульсаров Первые пульсары были обнаружены Джоселин Белл Бернелл и доктором Энтони Хьюишем 28 ноября 1967 года, когда они начали получать сигналы из космоса. Джослин не получила должного признания в то время, но впоследствии была признана.
Двое первооткрывателей думали, что обнаружили сигналы от инопланетной формы жизни, пытающейся связаться с нами. Обнаруженный ими объект имел кодовое название LGM1, расшифровывающееся как Little Green Man 1, что теперь опровергнуто. Теория об инопланетянах была отвергнута, когда другой сигнал того же типа был обнаружен в другой части космоса.
Доктор Энтони Хьюиш был ее научным руководителем в то время. Сигналы были регулярными и казались искусственными, а не естественными, поэтому одно время их считали инопланетными сигналами. Дальнейшее расследование показало, что оно не было искусственным.
Гравитационные волны Открытие пульсаров подтвердило общую теорию относительности Эйнштейна. В теории говорилось, что две звезды, вращающиеся вокруг друг друга, будут сближаться. По мере того, как две звезды приближались друг к другу, они вращались вокруг друг друга все быстрее и быстрее, создавая гравитационные волны при столкновении.
Открытие планет-пульсаров экзопланет Хотя пульсары являются остатками мертвой звезды, было обнаружено, что у них есть планеты, вращающиеся вокруг них. Планеты, вращающиеся вокруг пульсаров, обычно называют пульсарными планетами. Когда звезда становится сверхновой, считается, что все планеты на ее орбите были бы уничтожены, но это может быть не так.
Есть три возможные причины того, как пульсар вращается вокруг планет. Выжившая планета. Планета могла пережить взрыв, если она была достаточно далеко и достаточно велика, чтобы были разрушены только ее внешние слои.
Планета может возродиться из материала, выброшенного звездой, который со временем консолидируется. Захваченная планета. Свободно плавающая планета, планета-изгой, возможно, подошла слишком близко к пульсару и была захвачена.
Доплеровское смещение частоты характерное для источника, совершающего орбитальное движение вокруг звезды обнаружено не было. В числе прочих теорий гипотеза Иосифа Шкловского и др. Однако вскоре астрофизики пришли к общему мнению, что пульсар, точнее радиопульсар , представляет собой нейтронную звезду. Она испускает узконаправленные потоки радиоизлучения, и в результате вращения нейтронной звезды поток попадает в поле зрения внешнего наблюдателя через равные промежутки времени — так образуются импульсы пульсара. На 2008 год уже известно около 1790 радиопульсаров по данным каталога ATNF. Ближайшие из них расположены на расстоянии около 0,12 кпк около 390 световых лет от Солнца. В 1971 году с помощью обсерватории Uhuru были открыты источники периодического рентгеновского излучения, названные рентгеновскими пульсарами.
Как и радио-, рентгеновские пульсары являются сильно замагниченными нейтронными звёздами. В отличие от радиопульсаров, расходующих собственную энергию вращения на излучение, рентгеновские пульсары излучают за счёт аккреции вещества звезды-соседа, заполнившего свою полость Роша и под действием пульсара постепенно превращающегося в белого карлика. Как следствие, масса пульсара медленно растёт, увеличивается его момент инерции и — за счёт передачи орбитального момента системы во вращение пульсара падающим на него веществом — частота вращения , в то время, как радиопульсары, со временем, наоборот, замедляются.
Кроме того, мы можем не улавливать эти сигналы, потому что неправильно воспринимаем. Некоторые задаются вопросом, могут ли пульсары — быстро вращающиеся нейтронные звёзды, периодически излучающие радиацию, быть источником инопланетных посланий? С этой целью SETI испробовала различные способы.
В настоящее время она использует антенную решётку Аллена, при помощи которой с октября 2007 г. В последнее время не было зафиксировано никаких сигналов, которые бы могли быть посланы разумными существами. Астрофизик Грегори Бенфорл из Калифорнийского Университета в Ирвайне и его брат физик Джеймс Бенфорд считают, что неудачи могут быть вызваны неправильно выбранным подходом, а не потому что аппаратура недостаточно хороша. Другим словами, развитая внеземная цивилизация, возможно, заинтересована в снижении затрат и оптимизации эффективности отправки сигналов в космос, как и мы на Земле. Братья предположили, что инопланетные сигналы могут быть не продолжительными и вещаемыми во всех направлениях, а пульсирующими и узкочастотными в интервале 1—10 гигагерц. Статья Бенфордов была опубликована в журнале Astrobiology в июне 2010 г.
Пульсар – космический объект
На сегодня теоретическая модель описывает космические пульсары как нейтронные звезды с небольшим и смещенным относительно оси вращения магнитным полем, что приводит к изменению доходящих к нам от них сигналов. Так как пульсар в космосе постоянно вращается с большой скоростью, то для наблюдателей испускаемые им потоки узконаправленного излучения приходят через примерно равные промежутки времени. Из-за этой равномерности некоторое время первый открытый пульсар считали искусственным космическим источником, чем-то вроде маяка для инопланетных кораблей, и даже держали его открытие в секрете. Позже стало ясно, что внеземные цивилизации к этому космическому объекту отношения не имеют.
Наука Объект, который ученые приняли изначально за черную дыру, на самом деле оказался самым ярким и странным пульсаром из всех, что мы когда-либо находили.
Мы думали, что объект с такой энергией просто обязан быть черной дырой». Обычно пульсары обладают массой от одной до двух солнечных. Новый пульсар предположительно попадает в ту же категорию, но светит примерно в 100 раз ярче, чем предполагает теория. Помимо своей странности, находка поможет ученым понять класс очень ярких рентгеновских источников, которые называются «ультраяркими рентгеновскими источниками» ULX.
Большой сюрприз «Это определенно было неожиданным открытием, — говорит Харрисон. В начале этого года астрономы в Лондоне зафиксировали впечатляющую вспышку сверхновой SN2014J , которая происходит только раз в сто лет, в сравнительно близкой к нам галактике Messier 82 M82 , или галактике Сигара, в 12 миллионах световых лет от Земли. Из-за редкости этого события телескопы по всему миру и космосу уставились в точку вспышки, чтобы в подробностях изучить ее последствия. Помимо сверхновой, M82 хранит в себе и ряд других ULX.
Строение пульсаров Пульсары образуются в результате сверхновых взрывов, когда звезда, превышающая в 1,4—3 раза массу Солнца, исчерпывает свой ядерный топливный ресурс и рушится под действием гравитационной силы. В результате происходит симватический коллапс, и звезда превращается в нейтронную звезду. Нейтронная звезда представляет собой сверхплотное тело, размером примерно с город, но с массой в несколько раз большей, чем у Солнца. Она состоит из нейтронов, атомных ядер и электронов, сильно сжатых под действием гравитации.
Силовое поле и радиоизлучение Источником радиоизлучения пульсаров является их сильное магнитное поле и быстрое вращение. Пульсары вращаются с невероятной скоростью, от нескольких оборотов в секунду до нескольких сотен оборотов в секунду. Благодаря этому вращению, пучки радиоизлучения регулярно направляются в стороны наблюдателя на Земле, создавая впечатление периодически мерцающего света.
Во время этого процесса аккреции пучок излучения исчезал, и пульсар чередовал свое излучение между: "высоким" режимом, характеризующимся излучением рентгеновских лучей, ультрафиолетового и видимого света. Такое поведение всегда восхищало исследователей, и вот теперь причина этих удивительных переходов раскрыта. Франческо Коти Зелати, соавтор исследования и научный сотрудник Института космических наук в Барселоне, пояснил: "Мы обнаружили, что смена режимов происходит в результате сложного взаимодействия между пульсарным ветром — потоком высокоэнергетических частиц, выбрасываемых из самого пульсара, и движущейся к нему материей". Секрет, раскрытый в новом исследовании С помощью моделирования спектральных распределений энергии исследователи показали, что эти вариации мод вызваны изменениями во внутренней области аккреционного диска. В частности, в "низком" режиме вещество, текущее к пульсару, выбрасывается через струю, перпендикулярную диску.
По мере приближения к пульсару это вещество попадает под ветер, выходящий из звезды, и нагревается. После этого система переходит в "высокий" режим, испуская рентгеновское, ультрафиолетовое и видимое излучение.
PSR J1744-2946
- Из Википедии — свободной энциклопедии
- Астрономы разобрались, почему необычный пульсар переключается между двумя режимами яркости / Хабр
- БОЙТЕСЬ СВОЕЙ СТИРАЛЬНОЙ МАШИНЫ
- Пульсар | Большой новосибирский планетарий
Солнце в диаметре Москвы: Что такое нейтронная звезда?
Что такое пульсар? Пульсары – это космические источники радио-, оптического, рентгеновского и/или гамма-излучений, приходящих на Землю в виде периодических всплесков (импульсов). Пульсар — это маленькая вращающаяся звезда. Единственный другой пульсар, у которого когда-либо было замечено излучение на уровне ТэВ — Крабовидный пульсар, находящийся на расстоянии более 6 000 световых лет от Земли, но даже он был ограничен на пике примерно 1 ТэВ. это то, во что превращаются звёзды после своей гибели. В плане излучения пульсар отличен от других источником космического радиоактивного излучения. Пульсарам свойственна либо постоянная интенсивность галактики/радиогалактики, либо нерегулярные всплески радиоизлучения, например солнце или звезды. Что такое пульсары? В новом ролике мы хотим рассказать все, что нужно знать про пульсары и нейтронные звезды.
Что такое пульсары?
Астрономы из Австралийской национальной обсерватории телескопов (ATNF) открыли новый миллисекундный пульсар. Единственный другой пульсар, у которого когда-либо было замечено излучение на уровне ТэВ — Крабовидный пульсар, находящийся на расстоянии более 6 000 световых лет от Земли, но даже он был ограничен на пике примерно 1 ТэВ. Если импульсы большинства пульсаров способны расти в плотности не более чем в 10 раз, то для пульсаров с гигантскими импульсами характерно скачкообразное увеличение плотности импульса в сотни и даже тысячи раз. Российские астрономы обнаружили в Млечном Пути пять новых пульсаров.
Пульсары и их история
Наиболее интересным фрагментом MSH 15-52 является струя, направленная к «запястью» в нижней области снимка. IXPE показал, что поляризация в начальном фрагменте струи низкая — здесь высокая турбулентность со сложными, запутанными магнитными полями. К концу струи линии магнитного поля выпрямляются, становятся всё более однородными, а поляризация сильно возрастает. Это значит, что в турбулентных областях вблизи пульсара частицы получают прирост энергии и свободно движутся там, где магнитное поле однородно: вдоль «запястья», отстоящего «большого» и прочих пальцев. Схожие схемы IXPE обнаружил и в других туманностях пульсаров, а значит, они могут оказаться распространёнными в подобных объектах. Астрономам удалось «услышать» низкочастотные гравитационные волны — слабую рябь ткани Вселенной, вызванную движением сверхмассивных объектов, которые растягивают и сжимают пространство. Визуализация гравитационных волн, производимых сверхмассивными чёрными дырами. Источник изображения: nanograv. В 2015 году эксперимент LIGO помог обнаружить гравитационные волны и доказать правоту Эйнштейна, но до сих пор они фиксировались лишь на высоких частотах. То были отдельные быстрые «щебетания», которые происходят только в определённые моменты, например, когда друг с другом сталкиваются относительно небольшие чёрные дыры и мёртвые звезды.
В последнем исследовательском проекте учёные пытались обнаружить гравитационные волны на гораздо более низких наногерцовых частотах — периоды этой медленной ряби могут составлять годы и даже десятилетия. Исходит она, вероятно, из самых больших объектов Вселенной — сверхмассивных чёрных дыр массой в миллиарды солнечных. Но есть и другие «подозреваемые»: космические струны, фазовые изменения Вселенной, быстрое расширение пространства после Большого Взрыва. Возможно, и сам Большой Взрыв, но длина гравитационной волны от него была бы размером во Вселенную, и для неё потребовался бы детектор сравнимых масштабов. Галактики во Вселенной постоянно сталкиваются и сливаются. Схожие процессы наблюдаются и у сверхмассивных чёрных дыр в ядрах галактик. Они сближаются, вращаются вокруг друг друга и в итоге тоже сливаются, испуская во время взаимодействия гравитационные волны. Если сравнить столкновение сверхмассивных чёрных дыр с брошенным в пруд камнем, то создаваемая им рябь на поверхности пруда — это низкочастотные гравитационные волны. Они расходятся одновременно во все стороны со скоростью света, сжимая и растягивая пространство и время.
Зафиксировать эту рябь напрямую доступными человеку инструментами невозможно — длина такой наногерцовой волны может измеряться световыми годами. Проще говоря, Земля слишком мала, и понадобился бы детектор галактических масштабов.
Позже стало ясно, что внеземные цивилизации к этому космическому объекту отношения не имеют.
Помогло открытие рентгеновских пульсаров, частота сигналов которых в сотни раз выше, чем у радиопульсаров. Причем частота со временем изменяется — у первых увеличивается, у вторых уменьшается. Самым редким на сегодня источником космических лучей являются пульсары, чье излучение обнаруживается в оптическом спектре электромагнитного излучения — их всего 6 из почти 7 десятков открытых.
Благодаря непрерывному мониторингу и накоплению данных ученые смогли выявить множество интересных закономерностей в поведении пульсаров, их эволюции и взаимодействии с окружающей средой. Исследования пульсаров позволяют ученым расширить знания об эволюции звезд, физике сильных магнитных полей и процессах ускорения заряженных частиц. Практическое применение Кроме фундаментальных научных знаний, пульсары находят практическое применение в навигации космических аппаратов и определении параметров космических объектов. Благодаря своей высокой стабильности в излучении, пульсары используются для создания метрологических сетей и точных измерений. Многолетние наблюдения и будущие перспективы Многолетние наблюдения пульсаров позволяют астрономам изучать их долговременные изменения, отслеживать процессы внутри нейтронных звезд и тщательно проверять теоретические модели. Будущие спутники и телескопы, такие как космический телескоп James Webb и космический аппарат LISA, планируют расширить наши познания о пульсарах и помочь в поиске новых элементарных частиц, темной материи и других загадочных объектов Вселенной.
Вам также может быть интересно.
Hubble 5 112 подписчиков Подписаться Смерть громадной звезды: что может быть более эпичным и впечатляющим? Но умирает ли она полностью? Не остается ли на месте титанического светила что-то еще более удивительное и непонятное?
Механизм действия пульсара.
- PSR J1023+0038: случай переходного миллисекундного пульсара
- Астрономы разобрались, почему необычный пульсар переключается между двумя режимами яркости / Хабр
- Иллюстрации
- ЧЕТЫРЕХМЕРНЫЙ ПУЛЬСАР И ОБЕРТОНЫЙ ПУЛЬСАР
- Пульсар — Википедия
- Подписка на дайджест
Новые сведения о пульсарах
Изначально все пульсары было принято обозначать специальным кодом из 4 арабских цифр и двух латинских букв: первые две цифры указывали часы, а вторые две — минуты прямого восхождения пульсара, а буквы — место открытия пульсара. В настоящее время все пульсары обозначают буквами PSR, за которыми следует более точное обозначение координат прямое восхождение и склонение. В настоящее время астрономам известно о существовании 1300 пульсаров. Помимо радиопульсаров, излучающих импульсы в радиочастотном диапазоне, существуют также рентгеновские пульсары, излучающие в диапазоне рентгеновских лучей.
Их регулярные сигналы сначала принимали за морзянку от инопланетян. Пульсары — точные часы, и потому с их помощью можно проверять общую теорию относительности и обнаруживать гравитационные волны. В 1967 году двое британских астрономов поймали необъяснимый космический сигнал. Радиотелескоп у них был довольно примитивный, и тем не менее им удалось сделать новый шаг в науке.
Их телескоп состоял примерно из 120 миль проволоки и 2000 детекторов, развешенных между 1000 деревянных столбов, как гигантская бельевая сушилка, растянувшаяся на четыре акра поля в Кембриджшире. Когда в июле 1967-го этот телескоп был направлен на небо, его самописец выдавал по 30 метров графиков в день. Аспирантка Джослин Белл под руководством физика Тони Хьюиша прочесывала эти графики в поисках квазаров, мерцающих из-за возмущений в нашей атмосфере. Но нашла она кое-что другое. Она была не похожа на остальные данные и исходила из одной точки в небе. Приглядевшись, Белл увидела, что полоса распадалась на повторяющиеся серии коротких радиоимпульсов через каждые 1,3 секунды. Белл и Хьюиш попытались вычислить, откуда приходит загадочный сигнал.
Хотя из-за его точности можно было бы заподозрить, что источник — искусственный, ученые не смогли найти никакого излучателя. Принятые сигналы не походили ни на какие известные звезды или квазары. Нобелевские противоречия За открытия пульсаров была вручена не одна Нобелевская премия. Тони Хьюиш получил ее в 1974 году, вместе с коллегой-радиоастрономом Мартином Райлом. Джослин Белл, как ни странно, не учли, хотя именно в ее диссертационном исследовании был открыт первый пульсар. В 1993-м Джо Тейлор и Рассел Халс получили еще одну Нобелевскую премию за открытие первой двойной системы пульсаров.
В 1993-м Джо Тейлор и Рассел Халс получили еще одну Нобелевскую премию за открытие первой двойной системы пульсаров. Маленькие зеленые человечки? Ученые, пусть и ненадолго, задумались о маловероятном: а что, если это сообщения внеземной цивилизации? В конце концов, решили, что сигналы не похожи на инопланетную морзянку, но Белл вспоминает, как злилась, что исследования идут не гладко. Астрономы не стали обнародовать данные, но продолжили наблюдения. Вскоре Белл обнаружила второй пульсирующий источник — названный пульсаром — с периодом в 1,2 секунды. А к январю 1968-го они с Хьюишем нашли четыре таких источника. С большей уверенностью в том, что они обнаружили новое астрономическое явление, Белл и Хьюиш опубликовали свое открытие в журнале Nature. Это свидетельства наличия разумной жизни на Земле, предназначенные для галактических цивилизаций, которые могут однажды их обнаружить; на пластинках расположение Земли указано относительно 14 пульсаров. Нейтронные звезды Астрономы кинулись искать объяснения находке Белл и Хьюиша. Их коллега по Кембриджу астроном Фред Хойл предположил, что эти импульсы может испускать нейтронная звезда, оставшаяся после взрыва сверхновой. Через несколько месяцев Томас Голд из Корнеллского университета предложил более развернутое объяснение: поток радиоволн от вращающейся нейтронной звезды пролетает мимо наблюдающего телескопа с каждым оборотом — так видно вспышку маяка с каждым поворотом лампы. Тем не менее, это впечатляет — нейтронная звезда может совершать полный оборот за секунду. Голд уверил, что это возможно, поскольку нейтронные звезды очень малы — лишь десятки километров в поперечнике. Сразу после взрыва сверхновой быстрое сжатие заставит их вращаться с высокой скоростью — как фигурист вращается быстрее, если прижмет руки к телу. У нейтронных звезд к тому же очень сильные магнитные поля. Именно они создают двойные радиопотоки, исходящие из полюсов звезды.
По мере их вращения сторонний наблюдатель с рентгеновским телескопом, расположенным под прямым углом, увидит вспышки мощного света, поскольку лучи периодически будут попадать в поле зрения наблюдателя, подобно свету маяка. Не черная и не дыра Причина, по которой большинство астрономов предполагали, что черные дыры являются источниками ультраярких рентгеновских источников, заключается в невероятной яркости этих самых источников. Черные дыры могут быть в десять или в миллиард раз больше Солнца по массе, что делает их гравитационную тягу намного сильнее, чем у пульсара. По мере того как вещество попадает в черную дыру, гравитационная энергия превращает его в тепло, что порождает рентгеновский свет. Чем больше черная дыра, тем больше у нее энергии, которая заставляет объект блестеть. Вспышки действительно были там, один импульс в каждые 1,37 секунды. Следующим шагом было выяснение того, какой источник рентгеновского излучения мог бы производить такие вспышки. Исследователи проанализировали данные NuSTAR и второго рентгеновского телескопа NASA «Чандра», чтобы исключить порядка 25 разных рентгеновских источников, и наконец остановились на ультраярком рентгеновском источнике M82X-2. После того как были определены пульсар и его местоположение в M82, осталось еще много вопросов без ответа.
Нестандартный пульсар
Пульсары Пульсары — это вращающиеся нейтронные звезды, которые под воздействием гравитации сжались до компактных размеров — всего 10-20 километров. При этом их масса сравнима с массой Солнца — для сравнения его диаметр составляет без малого 1 400 000 километров. То есть речь идет о невероятно плотных объектах. Пульсары — это разновидность нейтронных звезд, вращающихся вокруг своей оси и испускающих электромагнитное излучение в оптическом, радио- или иных диапазонах с участка поверхности.
В спектре Велы команда заметила резко растущий паттерн и явный разрыв между излучениями на уровне ТэВ и излучениями на более низком уровне.
Это означает, что очень энергичные фотоны не могут быть продолжением фотонов низкой энергии, которая постепенно возрастает, пока не достигает ТэВ. Это — космические лаборатории с невероятными характеристиками, которые мы не можем изучать на Земле», — говорит Джаннати-Атай. Даже история возникновения пульсаров впечатляет. Они являются вращающимися остатками звёзд, которые когда-то погибли при взрыве сверхновой.
Пульсары почти полностью состоят из нейтронов и испускают пучки излучения, которые иногда проносятся через нашу Солнечную систему. Эти пучки излучения, которые испускаются с опредёленной периодичностью, позволяют учёным составить спектры пульсаров. Экстремальность — это ещё одна причина, по которой учёные изучают пространство вокруг пульсаров, чтобы проверить некоторые основные физические концепции. В основном, астрофизики хотят увидеть, сохраняется ли теория общей относительности вокруг пульсаров, потому что эти объекты являются одними из самых сильно гравитационно-интенсивных объектов во Вселенной, а общая теория относительности — это объяснение гравитации самой по себе.
То есть за одну секунду делает почти 120 оборотов вокруг своей оси. PSR J1744-2946 находится в двойной системе с орбитальным периодом около 4,8 часа. Масса его компаньона — менее 0,05 солнечной массы. Если информация подтвердится, то PSR J1744-2946 станет первым пульсаром, обнаруженным в галактических радионитях — массивных структурах, излучающих преимущественно в радиодиапазоне.
Владимир Горбачев, «Концепции современного естествознания», 2003 г. Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов.
Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир.
Белый и горячий: пульсар Вела удивил учёных и раскрыл природу высокоэнергетических гамма-излучений
Тегиколлапсировать в сингулярность, луи стоуэлл что такое астрономия, почему нейтронные звезды называют пульсарами, нейтронная звезда и пульсар в чем разница, полярная звезда это пульсар новая звезда цефеида. О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Единственный другой пульсар, у которого когда-либо было замечено излучение на уровне ТэВ — Крабовидный пульсар, находящийся на расстоянии более 6 000 световых лет от Земли, но даже он был ограничен на пике примерно 1 ТэВ.