Вопрос гинекологу: Здравствуйте, пол года назад были обнаружены белки теплового шока к хламидиям, КП 11,69, мазок чистый, иные антитела были отрицательные. Открытие белков теплового шока в начале 1960-х годов объясняет на молекулярно-биологическом уровне, почему люди обратились к термальной терапии, чтобы очистить тело, очистить разум и найти связь с более высокой силой во времени и странах (1). Оказывается, белки теплового шока управляют аутофагией, не давая клетке принять радикальные меры там, где достаточно легкой починки.
Что такое белки теплового шока
Купить билеты на слэм 29 мая в Москве — Максим Шевцов рассказывает, почему в последние годы радикально изменились подходы к лечению. Ключевые слова: белки теплового шока, метаболический синдром, сахарный диабет 2-го типа, малые белки теплового шока, полиморфизм, сердечно-сосудистые заболевания. "Белка теплового шока". Дело в белке теплового шока.
РОЛЬ БЕЛКА ТЕПЛОВОГО ШОКА 70 В ПАТОГЕНЕЗЕ СЕРДЕЧНО-СОСУДИСТОЙ ПАТОЛОГИИ
РАН Российские ученые нашли лекарство от рака в космосе. Специальный белок вырастили в капиллярных трубках на МКС. Разработчики лекарства от рака уверены, что препарат с рабочим названием «Белок теплового шока» будет способен бороться со злокачественными опухолями даже на последних стадиях заболеваний. Замдиректора Государственного института особо чистых препаратов Федерального медико-биологического агентства ФМБА , профессор Андрей Симбирцев сообщил в интервью газете « Известия », что препарат уже протестировали на мышах и крысах, у которых развивались меланомы и саркомы. То есть уже можно с уверенностью сказать, что белок обладает необходимой для лечения рака биологической активностью».
Энгельгардта на базе Института биологии гена. Финальный этап конструирования выполнит компания-партнёр «Евроген». Задача на этот год — получить и прогенотипировать такое животное, после чего сможем приступить к следующему этапу — технологии выделения в чистом виде белка теплового шока, его верификации и фармакологическим исследованиям для фармацевтических целей, — подчеркнул профессор Покровский. Отвечая на вопрос заместителя директора по науке, главного научного сотрудника ФГБНУ «ВНИВИ патологии, фармакологии и терапии» Вячеслава Котарева, учёные пояснили, почему для реализации проекта были выбраны именно кролики. В частности, директор объединённого центра генетических технологий НИУ «БелГУ» Алексей Дейкин отметил, что выбор животного-продуцента рекомбинантного белка зависит от потребностей в его объёме. Поскольку речь идёт о получении белка для особого класса нейропротекторных препаратов, учёные рассчитали, что достаточно ограничиться его получением от кролика.
Из-за сложности работы с не полностью свернутыми белками существует сравнительно мало структурных данных о характере взаимодействия Hsp70 со своими клиентами. Помимо этого, большая часть современного понимания работы Hsp70 основана на моделях с очищенными компонентами, изолированными от остального клеточного содержимого, в том числе от партнерских шаперонов. Таким образом, существует настоятельная необходимость в дальнейшем углублении знаний о работе Hsp70. Самых непослушных — в клетку! Для перевоспитания Однако в клетке есть белки, которым и такой заботы недостаточно. Например, это компоненты клеточного скелета — актины и тубулины, а также регуляторы клеточного цикла, такие как Cdc20 и p53 [39—42]. Подобные белки не могут достигнуть своих функциональных состояний на Hsp70 и после нескольких циклов на нем они переносятся в специальные бочкообразные супершапероны — шаперонины. Все они немного отличаются по структуре друг от друга, но при этом поразительно похожи по общей сути. Это мультимерные состоящие из большого числа простых мономеров цилиндрические комплексы, похожие на большие бочки рис. Такая замысловатая структура полностью определяется принципом их работы — временной изоляции отдельных белков внутри полости шаперонина, чтобы они могли складываться, не поддаваясь агрегации [43] , [44]. Рисунок 10. Структура шаперонина TRiC в открытом состоянии два рисунка справа. Разные цвета показывают 16 отдельных мономеров. Слева показана структура такого мономера. Внутри у шаперонинов, как в норвежской тюрьме, налажена благоприятная среда для перевоспитания. Внутренняя стенка высокогидрофильная, с определенным расположением положительно и отрицательно заряженных групп [46—48]. Пептид чувствует себя внутри бочки безопасно, что позволяет ему, никого не стесняясь, принять свою функциональную конформацию. Вполне возможно, что шаперонин в ходе работы изменяет положение своих стенок, тем самым как бы сминая белковую молекулу внутри и способствуя более продуктивному фолдингу. В конце «бочка» открывается, и окончательно свернутый белок выходит на свободу. Рисунок 11. Рабочий цикл шаперонина TRiC начинается с узнавания недоструктурированного белка. Затем этот белок «проглатывается» во внутреннюю полость, которая закрывается механизмом, напоминающим диафрагму камеры или радужку глаза [49]. После структурных преобразований белка-клиента шаперонин открывается, высвобождая готовый белок. Кроме того, особое расположение аминокислотных радикалов на внутренней поверхности шаперонина направляет пептид на правильный путь фолдинга и значительно ускоряет этот процесс [51]. Многие исследователи отмечают влияние шаперонинов на развитие некоторых патологических состояний. Например, известно, что TRiC предотвращает накопление токсичных агрегатов полиглутаминового хантингтина, белка болезни Хантингтона [52—54]. Поэтому нарушения в работе TRiC способствуют прогрессированию заболевания. Также мутации в некоторых субъединицах комплекса TRiC связаны с сенсорной нейропатией [55] , [56]. Подобные данные накоплены и для митохондриального Hsp60. Мутации в кодирующих этот комплекс генах могут вызывать нарушения миелинизации нервных волокон и нейродегенеративные состояния [57] , [58]. Постепенное расширение перечня патологических процессов, в которых задействованы шаперонины, подчеркивает их глобальное значение в поддержании протеома и правильной клеточной физиологии. Шаперонины — современная и перспективная область исследований, где предстоит еще много чего изучить. К тому же, тонкости механизма, по которому шаперонины внутри себя способствуют фолдингу пептида, тоже пока плохо понятны. Полагаю, можно в скором времени ожидать ответы на эти важные вопросы, так как внимание ученых эти шапероны-левиафаны уже точно привлекли. Hsp90 — эволюционный конденсатор Ниже по течению от Hsp70 действует еще одна система шаперонов — Hsp90. Это большие белки, живущие почти в каждом компартменте эукариотических клеток [59]. Хотя, кристаллические структуры Hsp90 уже давно получены, подробный механизм их работы окончательно не выяснен рис. Рисунок 12. Структура Hsp90. Это семейство шаперонов функционирует в форме димера — комплекса из двух субъединиц показаны разными цветами. Субъединицы удерживаются вместе благодаря «соединяющим» доменам. На другом конце каждого мономера расположен регуляторный домен, который обеспечивает замыкание димера в кольцо для удержания белка-клиента во время работы над ним. Хоть для фолдинга большинства обычных белков Hsp90 не требуются, они невероятно важны в качестве шаперонов для сигнальных белков-переключателей, характеризующихся конформационной нестабильностью. Посредством слабых взаимодействий Hsp90 сохраняют эти нестабильные сигнальные белки готовыми к активации. Благодаря многочисленным взаимодействиям Hsp90 обеспечивает правильное протекание различных клеточных процессов, таких как регуляция клеточного цикла и апоптоз программируемая клеточная гибель , поддержание теломер, везикулярный транспорт, врожденный иммунитет, целевая деградация белка и т. Поражает то, что Hsp90 способен точно взаимодействовать с таким широким ассортиментом белков-партнеров. По этой причине Hsp90 иногда называют одним из самых «липких» белков в клетке. Рисунок 13. Благодаря широкому разнообразию белков-клиентов, шапероны Hsp90 могут влиять на множество клеточных процессов рисунок автора статьи Примечательно, что эволюционное развитие клеточных сигнальных путей во многом могло быть обязано белкам системы Hsp90 [62]. Теория эволюции гласит, что материалом для эволюции являются мутации. Ученые полагают, что белки Hsp90 способны сглаживать структурные эффекты мутаций и тем самым защищать мутантные белки от деградации. Таким образом, Hsp90 могут позволить наследственным изменениям существовать в природе, находясь в молчащем состоянии [63—65]. Hsp90 балансируют проявления этих изменений, способствуя накоплению мутаций в нейтральных условиях среды. Когда этот баланс нарушается, генетические изменения начинают проявляться, и естественный отбор может привести к распространению и закреплению новых признаков. Особенно интересна роль Hsp90 при изменениях, связанных с процессами онкогенеза образования опухолевых клеток. На молекулярном уровне повышенная активность шаперонов Hsp90 может помогать опухолевым клеткам взламывать свою внутреннюю сигнальную систему и, таким образом, избегать гибели-апоптоза [66]. Это облегчает их выживание и рост, делая их неподвластными нормальному контролю и устойчивыми к защитным механизмам хозяина [67]. Тем не менее ввиду своей функции, Hsp90 играет более сложную роль в онкогенезе, чем просто ингибирование апоптоза. По мере изучения Hsp90, возрастал интерес к фармакологическому воздействию на функции этих шаперонов с целью лечения рака [68] , [69]. Несколько низкомолекулярных препаратов, нацеленных на Hsp90, были идентифицированы как потенциальные противораковые агенты. Интерес к Hsp90 как к противоопухолевой мишени сохраняется и по сей день [70] , однако опыт последних десятилетий говорит, что модуляторы Hsp90 вряд ли окажутся полезными в качестве первичных лекарств. Скорее они будут актуальны в качестве усилителей эффекта других терапевтических воздействий. Малые белки теплового шока в поддержании большого протеома Многие белки нуждаются в конформационной поддержке на протяжении всего срока их работы, ведь в клетке им приходится не сладко. Белки часто работают на пороге стабильности, и их состояние может быть поставлено под сомнение в условиях стресса. Кроме того, как уже говорилось ранее, многие белки особенно сигнальные содержат по своей природе неструктурированные области, важные для их функции. Такая белковая динамичность вынуждает клетку содержать сеть поддерживающих шаперонов. Помимо уже рассмотренных Hsp70 и Hsp90, важную роль здесь играют так называемые малые белки теплового шока small heat shock proteins, sHsp. Это широко распространенные и разнообразные белки, часто формирующие крупные олигомерные сборки [71]. Мономеры в них связываются нековалентными взаимодействиями. Количество мономеров в конечном олигомере бывает разным, в среднем 12—24 рис. Рисунок 14. Художественное изображение олигомерного комплекса, составленного из 24 мономерных белков семейства sHsp рисунок автора статьи Еще одно свойство — неумение связывать и гидролизовать AТФ, но зато они могут узнавать и захватывать ненативные белки. Таким образом, sHsp создают и стабилизируют резервуар неправильно свернутых белков для последующего рефолдинга. Предполагается, что образование мультимерных комплексов играет регуляторную роль [72]. В зависимости от условий, какие-то компоненты уходят из комплекса, какие-то приходят. Такие перестановки позволяют настраивать связывающие способности всего комплекса. Особенно значимы sHsp в те моменты, когда сеть протеостаза перегружена и не успевает оперативно обрабатывать все расхлябанные белки. Они начинают агрегировать, и с этими сборками связываются sHsp, что помогает последующей обработке ненативных белков [74] , [75]. Малые белки теплового шока очень разнообразны: каждый член семейства обладает уникальными свойствами [76]. Благодаря этому, sHsp задействованы во множестве клеточных процессов, а различные мутации в этих белках коррелируют с развитием ряда врожденных заболеваний, например катаракты, различных типов миопатии и некоторых нейродегенеративных нарушений. Утилизация путем деградации Жизнь белков в клетке полна интриг. Как бы сеть протеостаза ни старалась, всё равно белки время от времени теряют свою нативную конформацию. Грустно об этом говорить, но после неудачных попыток рефолдинга этих белков может возникнуть необходимость в их утилизации. Такие бракованные белки подвергаются деградации в основном по двум механизмам: через убиквитин-протеасомную систему UPS или аутофагию. Убиквитин-протеасомная система устроена остроумно [77]. Ее работу можно условно поделить на две части. Первая заключается в том, чтобы неправильно сложенный белок пометить специальной «черной меткой». Вторая часть обеспечивает химическое разрезание помеченного белка. Удивительный убиквитин В качестве «черной метки» выступает по-настоящему удивительный белок убиквитин от англ. Ученые долго не могли выявить его функцию, пока в 1980 г. Присоединение убиквитина к белку-мишени называется убиквитинилированием [80]. Это довольно сложный биохимический процесс, осуществляемый комплексом из трех ферментов — белков Е1, Е2 и Е3, которые работают циклично друг за другом рис. Е1 активирует убиквитин, проводя химические модификации. Затем он передает его в руки E2, который выступает в качестве своеобразного «держателя» для фермента убиквитинлигазы — E3. Последняя катализирует образование ковалентной химической связи убиквитина с белком-мишенью. Рисунок 15. Присоединение убиквитина осуществляют три фермента рисунок автора статьи Казалось бы, зачем такая сложность? Во-первых, такая каскадная система позволяет тонко регулировать убиквитинилирование сразу на нескольких стадиях. Во-вторых, использование нескольких белков открывает пространство для эволюционного творчества. Так, на фоне консервативных Е1 и Е2, убиквитинлигазы Е3 очень вариативны, что обеспечивает широкую адаптацию под самые различные белки-мишени. Интересно то, что убиквитин присоединяется к мишени посредством особой изопептидной связи. Она похожа на пептидную, которой соединяются аминокислоты в белках. Присоединять убиквитин к белку-мишени через остаток лизина — это канонический вариант. На самом деле, присоединение может происходить и по другим аминокислотам серин, треонин, цистеин , а также через свободную аминогруппу на N-конце белка [82]. При всем при этом, убиквитинилирование с целью деградации белка должно произойти многократно с образованием длинной цепочки из последовательно соединенных убиквитинов рис. Такой процесс называется полиубиквитинилированием. Тут аналогично, Е3 присоединяет С-концевой глицин следующего убиквитина к лизину предыдущего убиквитина. Поэтому на самом деле, именно цепочка из убиквитинов и есть та самая «черная метка». Рисунок 16. Благодаря наличию в составе убиквитина остатков аминокислоты лизина появляется возможность многократного убиквитинилирования. Последовательное присоединение убиквитинов друг за другом наращивает полиубиквитиновую цепочку. Благодаря горячему интересу ученых, было показано, что по-разному собранные полиубиквитиновые метки выполняют различные «мирные задачи», не связанные с утилизацией. Это свойство убиквитина позволяет ему быть мощным молекулярным инструментом модификации белков [83]. Сейчас в этом направлении активно ведутся исследования. Однако в контексте нынешней статьи мы рассматриваем работу убиквитина лишь в качестве «черной метки». Вполне логично, что убиквитинилирование синхронизировано с сетью протеостаза. Известно, что системы шаперонов Hsp70 и Hsp90 тесно вовлечены в эти процессы рис. Рисунок 17. В случае неудачи при обработке клиента, шаперон может обратиться за помощью к ферментам убиквитинилирования, которые любезно навесят полиубиквитиновую цепь на неправильный белок рисунок автора статьи Белковый шредер Минимум четыре убиквитина, последовательно связанные через лизин-48, распознаются грозой всех неправильных белков — протеасомой. Это еще одна бочкообразная участница сети протеостаза рис. Размер ее значительно больше, чем у шаперонов — около 2000 кДа. Соответственно размеру, протеасома обладает внушительной сложностью строения. Рисунок 18. Протеасома — «белковый шредер» из множества субъединиц. Центральная часть кор цилиндрическая, на ее внутренних стенках располагаются активные сайты. Белок-жертва в линейной форме протаскивается через полость кора, а активные сайты разрезают пептидные связи, в результате чего белок разбирается на короткие фрагменты. Шапки представляют собой мультибелковые комплексы, контролирующие работу протеасомы [85]. После узнавания на шапке, белок-жертва АТФ-зависимо разворачивается специальным молекулярным моторчиком. Примерно тут же с жертвы снимается полиубиквитиновая метка [86]. Не уничтожать же понапрасну убиквитин! После всех этих подготовительных этапов белок-жертва направляется в полость кора. Коровые субъединицы очень разнообразны, в сумме они составляют полый цилиндр, составленный из четырех колец, каждое из которых содержит по семь субъединиц. Развернутые белковые жертвы попадают внутрь коровой частицы протеасомы через канал, работающий как затвор на фотоаппарате [87]. Этот канал специально узок, чтобы позволять проходить только развернутым линеаризованным полипептидам. Кульминация в устройстве протеасомы — центральная протеолитическая камера, образованная субъединицами внутренних колец [88]. В составе каждого из них есть протеолитические субъединицы, чьи рабочие домены направлены внутрь полости. Эти субъединицы осуществляют протеолиз — разрезание белков на мелкие пептиды посредством разрыва пептидных связей рис. Центральная камера эффективно улавливает белки до тех пор, пока они не укоротятся до пептидов длиной около 7—9 аминокислот [89].
Состоялся научный семинар «Диагностический и прогностический потенциал белков теплового шока при ожирении» Состоялся научный семинар «Диагностический и прогностический потенциал белков теплового шока при ожирении» 25 апреля 2024 Новости Центра 25 апреля 2024 года в ФГБУ «НМИЦ ТПМ» Минздрава России прошел научный семинар «Диагностический и прогностический потенциал белков теплового шока при ожирении», на котором обсуждалась возможность проведения НИР, посвященных исследованию доступных иммуноферментных биомаркеров из группы белков теплового шока БТШ, HSP у больных с ожирением, в том числе на фоне диетотерапии. В ходе семинара с докладом «Биохимия клеточного стресса» выступил руководитель лаборатории изучения биохимических маркеров риска ХНИЗ имени Н. Перовой отдела фундаментальных и прикладных аспектов ожирения к.
Как клетки выбирают путь спасения при стрессе
Белок теплового шока | Хламидийный белок теплового шока ответственен за развитие различных иммунопатологических процессов, которые могут привести к хроническому инфекционному заболеванию. |
Белки теплового шока | Новости и СМИ. Обучение. |
Белки теплового шока (стресс-белки) | Белки Теплового Шока ДЖАФАРОВ РАШИД ДЖАХАНГИР Общие представления Что же такое БТШ? Главной задачей живых клеток является выживание. Для выживания клетки в период воздействия вредных условий вовлекаются несколько механизмов. Одним из наиболее. |
Новые методы лечения рака: белки теплового шока | Во время ишемического инсульта активизируются белки теплового шока, которые помогают белкам тканей мозга снова принять нужную геометрическую структуру и предотвращают их слипание. |
Стресс-белки и белки теплового шока
- Антитела к белку теплового шока HSP60 Chlamydia trachomatis, IgG (Anti-cHSP60-IgG), кач. в Москве
- СВЯЗАТЬСЯ С РЕДАКЦИЕЙ
- Белки теплового шока | это... Что такое Белки теплового шока?
- Тепловой шок и старение -
Как «работает» лекарство, и какие виды рака можно будет лечить с его помощью
- Ген белка теплового шока ассоциирован с боковым амиотрофическим склерозом
- Последние новости
- Об Университете
- Genes: тяжесть инсульта зависит от типа белка теплового шока
Белки теплового шока (стресс-белки)
Показано, что при культивировании in vitro клеток глиобластомы человека А172 и фибросаркомы человека НТ1080 в среде накапливаются различные белки теплового шока (БТШ): hsp72, hsc73 и hsp96. Учёные из Института цитологии РАН в ходе серии экспериментов выяснили, что белок теплового шока Hsp70, который начинает репродуцироваться организмом при повышении температуры тела или при стрессе, подавляет рост новообразований. Hsp70 относится к классу белков теплового шока, которые есть в клетках всех живых организмов. Потому что белки теплового шока уже не первое десятилетие изучаются учеными во всем мире.
Ген белка теплового шока ассоциирован с боковым амиотрофическим склерозом
Казалось бы, есть простой выход — использовать для экспериментов культуры клеток человека, однако наш организм — это больше, чем простая совокупность разных клеток и тканей. Так что до недавнего времени было неясно, как можно на отдельных клетках изучать сложный многоуровневый процесс старения целостного организма. Решение этой проблемы подсказали результаты недавно опубликованной работы , согласно которым возраст человека довольно точно отражает так называемый транскриптом — совокупность всех молекул РНК , синтезируемых клеткой на данный момент. Для тех, кто забыл: рибонуклеиновая кислота РНК — ближайшая «родственница» ДНК — служит матрицей для синтеза белка и выполняет ряд других служебных функций, а множество разнообразных некодирующих РНК являются главными регуляторами генов и генетических ансамблей. Поэтому исследователи из крупнейшего в Европе медицинского университета — шведского Каролинского института, обратились к базе данных проекта Genotype-Tissue Expression , содержащей набор транскриптомов тканей доноров разного пола и возраста.
С помощью методов машинного обучения они создали компьютерный алгоритм, способный различить «молодой» и «старый» транскриптомы, а также оценить геропротекторный потенциал тех или иных веществ при их воздействии на клетку. Применив этот инструмент к результатам экспериментов по воздействию на культуры клеток человека 1309 различных соединений, им удалось выявить три десятка кандидатов в геропротекторы, в том числе ранее известные. Все кандидатные вещества были испытаны на все тех же нематодах круглых червях C.
Следовательно, нагревание до адекватных температур может вызвать восстановление коллагена и эластина в фасциальном каркасе, что приводит к повышению его эластичности и плотности. Миогенез скелетных мышц — это процесс образования мышечной ткани, управляемый множеством различных внутренних и внешних факторов. На ранних стадиях миогенеза моноядерные миогенные клетки делятся митотически, затем выходят из клеточного цикла, становясь миобластами, в последствии сливаясь в многоядерные миотрубки, которые дифференцируются во взрослые мышечные волокна.
Исследования, проведенные Sugiyama et al. Экспрессия HSPB2 и HSPB3 наблюдалась во время мышечной дифференцировки под контролем MyoD, что позволяет предположить, что они представляют собой дополнительную систему, жестко регулируемую миогенной программой, тесно связанной с мышечной дифференцировкой. Также стоит отметить, что в миобластах HSPB1 не наблюдалось, что позволяет предположить возможное участие этих sHSP в начальной организации сборки миофибрилл в миотрубках. В скелетных мышцах взрослого человека HSPB5 экспрессировался в медленных и быстрых мышцах и локализовался в Z-полосах3. Участие sHSP в миогенезе было исследовано на модельном организме — Danio rerio рыбка данио с использованием «нокдауна» HSPB1 с морфолино-антисмысловыми олигонуклеотидами в развивающихся эмбрионах рыбок данио. Первоначально считалось, что у рыбок данио истощение этого белка не влияет на морфологию и функционирование скелетной или сердечной мышц.
Однако детальный анализ морфантов показал, что HSPB1 принимает участие в регуляции развития черепно-лицевых мышц. Его истощение влияет на оптимальный рост черепно-лицевых миоцитов, а не на определение или пролиферацию миогенных предшественников. Это наблюдение позволяет предположить, что рыбка данио-рерио HSPB1 может не участвовать в морфогенезе скелетной и сердечной мышц или в организации миофиламента, а ее физиологическая роль может быть скорее связана с защитой миоцитов от механического или окислительного стресса. Аналогичные результаты были получены и для мышиной модели, в которой подавление экспрессии HSPB1 также не вызывало изменений фенотипа. Для проверки этого предположения были проведены эксперименты с двойным нокаутом. Эти данные свидетельствуют о том, что sHSP могут быть специфическими миофибрилл-стабилизирующими белками4.
Чтобы определить, защищают ли sHSP клетки скелетных мышц от окислительного стресса, Escobedo et al. Было показано, что повышенный уровень HSPB1 связан с повышенным уровнем GSH и уменьшением опосредованного перекисью водорода повреждения клеток, а также окисления белка. Эти данные указывают на то, что HSPB1 защищает скелетные миобласты от окислительного стресса и может играть ключевую роль в регулировании системы GSH и резистентности к АФК в клетках скелетных мышц5. Также исследовано участие sHSP в стабилизации саркомерных единиц у беспозвоночного Drosophila melanogaster. Во время мышечного сокращения некоторые белки, такие как филамин, претерпевают обратимое раскрытие и повторное сворачивание. Эти периодические конформационные изменения делают его подверженным сбоям, что впоследствии может привести к образованию токсических агрегатов и нарушению миофибриллярной структуры.
Для предотвращения неблагоприятного накопления подвергшийся стрессу белок соединяют с комплексом, образованным, в частности, кошапероном BAG3 Starvin у D. Члены упомянутого выше комплекса например, HSPB8 локализуются в Z-полосе мышечной ткани, что предполагает их участие в поддержании Z-диска5. Как sHSP защищают мышцы во время тренировки Данные исследования доказывают, что sHSP играют важную роль в качестве белков, защищающих цитоскелет при эксцентрических упражнениях сокращение с активным удлинением мышц. Это наблюдение подтверждает, что sHSP могут помочь стабилизировать клетки скелетных мышц и ограничить их цитоскелетное разрушение в мышечных клетках за счет восстановления структур, поврежденных во время физических упражнений, которые также могут генерировать АФК, которые могут неблагоприятно влиять на клеточные компоненты6. Во время интенсивной физической активности происходит повреждение мышечных волокон вследствие и значительного повышения температуры. В связи с этим также постулируется участие некоторых sHSP в миогенезе и поддержании организации цитоскелета в условиях гипертермии.
Например, было показано, что HSPB5 предотвращает тепловое развертывание и агрегацию миозина II, что позволяет поддерживать ферментативные свойства миозина и, таким образом, сократительную активность мышц6. Процедура предварительной обработки обеспечивала маркировку сателлитоцитов в красный цвет, мионуклеи — в синий цвет и клеточных мембран отдельных мышечных волокон — в зеленый цвет.
В перспективе данный белок может использоваться в качестве мишени для лекарственных препаратов, защищающих растения. Набор микрофотографий, иллюстрирующих эффект влияния малого белка теплового шока и белка деления FtsZ в пучки при разных температурных условиях Ахолеплазму относят к классу бактерий Mollicutes.
Это одни из самых маленьких микроорганизмов в мире, способных к самостоятельному воспроизведению без участия систем организма-хозяина. Бактерии вида Acholeplasma laidlawii — единственные из микоплазм, которые могут жить свободно в почве или воде, однако в основном они паразитируют на растениях и животных. В частности, ахолеплазма поражает значимые для сельского хозяйства растения, такие как рис и горох посевной. Жизнедеятельность данных бактерий может приводить к значительным потерям урожая.
При этом ахолеплазма, как и другие микоплазмы и фитоплазмы, демонстрирует устойчивость к ряду антибактериальных препаратов, которые широко применяются в сельском хозяйстве для защиты растений. Поэтому сегодня ученые ведут всесторонние исследования микоплазм для поиска новых эффективных способов борьбы с этими опасными микроорганизмами.
Clinical hemorheology and microcirculation 37 1-2 : 19—35. PMID 17641392. Journal of the American College of Surgeons 201 1 : 30—6. PMID 15978441. Circulation 111 14 : 1792—9. PMID 15809372.
PMID 18579210. Int J Pharm 354 1-2 : 23—7. PMID 17980980. EMBO Rep. PMID 18451878. Cell 130 6 : 1005—18.
Белки теплового шока и клетки-сателлиты: физиология
- Как клетки выбирают путь спасения при стрессе
- Новый подход в борьбе с деменцией: как белки теплового шока могут помочь
- Как клетки выбирают путь спасения при стрессе
- Ген белка теплового шока ассоциирован с боковым амиотрофическим склерозом
- Стресс-белки и белки теплового шока
- Малые белки теплового шока и убиквитин-протеасомная система при злокачественных опухолях
Anti-cHSP60-IgG (Антитела класса IgG к белку теплового шока Chlamydia trachomatis)
Как российские ученые работали над новым методом лечения болезни Альцгеймера? | БЕЛКИ ТЕПЛОВОГО ШОКА: ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ, РАЗВИТИЕ ТРОМБОТИЧЕСКИХ ОСЛОЖНЕНИЙ И ПЕПТИДНАЯ РЕГУЛЯЦИЯ ГЕНОМА (обзор литературы и собственных данных). |
Белки теплового шока — Википедия с видео // WIKI 2 | Если стрессорным фактором является тепловой шок, такие белки называют белками теплового шока (БТШ, англ. |
БЕЛКИ ТЕПЛОВОГО ШОКА • Большая российская энциклопедия - электронная версия | Специалисты МГМУ впервые в России предложили использовать белки теплового шока для борьбы с нейродегенерацией, что может привести к остановке развития таких заболеваний, как болезнь Альцгеймера, болезнь Паркинсона и боковой амиотрофический склероз. |
EMFace: влияние белков теплового шока на ремоделирование миофасциального каркаса | Портал | Так как белки теплового шока производятся организмом только в специфических ситуациях, они имеют ряд отличий от продуцируемых нормально соединений. |
РОЛЬ БЕЛКА ТЕПЛОВОГО ШОКА 70 В ПАТОГЕНЕЗЕ СЕРДЕЧНО-СОСУДИСТОЙ ПАТОЛОГИИ
Функциональное состояние компонентов белков теплового Шока Глутатионредуктазы и глутатионовой редокс-системы при перегревании и охлаждении. Раковые клетки часто содержат высокий уровень белков теплового шока (heat shock protein или Hsp), а одним из наиболее распространенных является Hsp70. Белки теплового шока в этой ситуации выступают не только как шапероны, но и как потенциальные антиоксиданты. ность и сложность состава низкомолекулярных (15—30 кДа) полипептидов, негомологичных соответствующим БТШ других организмов.
Снижение активности белка теплового шока привело к удлинению клеток
Дальнейшие эксперименты с ингибированием экспрессии Hsp90 показали, что этот белок-шаперон в значительной степени ответственен за морфологию дрожжевых клеток и их удлинение. И по мнению ученых, сниженную регуляцию Hsp90 можно считать адаптивным признаком многоклеточных, из-за которого увеличивается соотношение сторон клеток и, следовательно, размер и приспособленность многоклеточных. Причем такая регуляция Hsp90 происходила конвергентно, способствуя эволюции макроскопической многоклеточности. Также выяснилось, что сниженная регуляция Hsp90 влияет на каталитическую субъединицу циклинзависимой киназы дрожжей Cdc28, которая действует как главный регулятор митотического клеточного цикла и выступает мишенью для Hsp90. Ось Hsp90-Cdc28 реализуется путем задержки кинетики клеточного цикла, позволяя клеткам подвергаться длительному поляризованному росту в процессе митоза, что приводит к их удлинению. По словам ученых, это открытие показывает, как эпигенетические изменения в древних клеточных системах могли способствовать крупным эволюционным переходам. В дальнейшем необходимо изучение совместной эволюции генетических и эпигенетических механизмов, лежащих в основе происхождения и поддержания новых многоклеточных признаков.
Узнать о новых тенденциях в антропологии, которые приносят открытия археологов и палеоантропологов, можно в серии книг Александра Маркова и Елены Наймарк «Эволюция человека» издательство «Corpus».
Есть ли контроль одного процесса со стороны другого? Существует ряд работ, посвященных этой проблеме. Например, недавно была показана роль HSP70 в развитии аутофагии в клетках сердца кардиомиоцитах см. Attenuating heat-induced cellular autophagy, apoptosis and damage in H9c2 cardiomyocytes by pre-inducing HSP70 with heat shock preconditioning. Судя по всему, БТШ могут смягчать проявления аутофагии в определенных условиях. В этой работе, как и в некоторых других, в качестве индуктора аутофагии выступало повышение температуры. Однако, как было сказано, вероятнее всего в процессе эволюции аутофагия развилась как приспособление к недостатку питательных веществ.
В таком случае между БТШ и аутофагией нет очевидной связи. Удивительно, но только недавно появилась работа исследователей из США и Дании, которые занялись исследованием этого вопроса. Один из важных белков теплового шока — HSP70. Он играет важную роль в «спасении» клетки при повышении температуры, а также при отравлении тяжелыми металлами, которые также нарушают структуру белков. Сначала исследователи проверили, может ли HSP70 влиять на аутофагию в культуре клеток. В качестве индуктора аутофагии использовали голод: клетки росли в среде, не содержащей питательных веществ. Аутофагию можно зафиксировать, наблюдая за белком LC3 он один из участников этого процесса и родственник убиквитина. При развитии аутофагии происходит модификация этого белка.
Количество модифицированного белка можно определить методом иммуноблоттинга. Уже через 2 часа в голодающих клетках аутофагия становилась хорошо заметной рис. Но если в таких клетках увеличить количество HSP70, то аутофагия замедлялась. Таким образом, HSP70 предотвращает развитие аутофагии при голодании. Этот результат удалось подтвердить и другим методом, когда аутофагию отслеживали по изменению локализации LC3 в клетках рис. При запуске аутофагии в клетках появляются характерные органеллы — аутофагосомы. Белок LC3 локализуется на их поверхности. Положение LC3 можно определить, если покрасить клетки флуоресцирующими светящимися при определенных условиях антителами против него см.
Флуоресцентный иммуноанализ. Клетки, в которых запущена аутофагия, не окрашены равномерно. LC3 собирается на поверхности аутофагосом, поэтому клетка выглядит пятнистой. И снова, если в голодающих клетках увеличена экспрессия белка HSP70, аутофагия в них развивается медленнее. Таким образом, белок HSP70 ингибирует аутофагию в культуре клеток. Аутофагия может быть вызвана не только голоданием, но и ингибированием белка mTOR. В зависимости от условий он запускает процессы запасания или расходования энергии. Если mTOR активен, то аутофагия не запускается.
HSP70 является только одним звеном в развитии ответа на тепловой шок. Точнее, он — непосредственный исполнитель, который участвует в стабилизации структуры других белков и ее исправлении. Чтобы проверить, участвует ли он в развитии аутофагии в условиях стресса, исследователи подавили экспрессию HSF-1 при помощи миРНК короткой молекулы РНК — около 20 нуклеотидов, комплементарной участку мРНК определенного гена в данном случае, HSF-1 , и способной вызывать «выключение» конкретного гена рис.
Контрольная группа состояла из 20 здоровых лиц без сопутствующей и ЛОР патологии. Материалом для иммунологического исследования служили сыворотка крови и назальный секрет здоровых и больных ХГРС до и после лечения. После 30 минутной инкубации при комнатной температуре планшет трижды отмывали дистиллированной водой, затем вводили 200 мкл исследуемой сыворотки или смыва полости носа, разведенных в соотношении 1:100 забуференным физиологическим раствором и после инкубации вновь трижды отмывали лунки планшетов. Полученные результаты выражали в единицах оптической плотности. Традиционный метод включал назначение системного антибиотика, антигистаминных препаратов, сосудосуживающих капель в нос, ирригационную терапию и по показаниям пункцию гайморовой пазухи или «ЯМИК - метод».
За основу предлагаемой нами схемы лечения был взят запатентованный способ Н. Логиной «Способ лечения хронических рецидивирующих заболеваний слизистой носа и околоносовых пазух методом эндоназальной аутолимфоцитотерапии» патент RU 2403071 С1 , включающий получение аутологичных лимфоцитов из венозной крови больного, их культивирование совместно с иммуномодулятором и введение в придаточные пазухи носа, посредством установленного ЯМИК-катетера, после предварительной эвакуации содержимого. Ввиду сложности и дороговизны процесса получения аутологичных лимфоцитов было предложено некоторое упрощение указанной методики. Ежедневно, на протяжении всего курса лечения, у пациентов в утренние часы забирали кровь из локтевой вены в пробирки с гепарином. При помощи микродозатора из пробирок забирали две верхние фракции - плазму крови и слой лейкоцитов, разводили физиологическим раствором в соотношении 1:10 и вводили пациентам в околоносовые пазухи. Необходимо отметить, что описанный способ терапии проводили на фоне продолжающегося «стандартного» медикаментозного лечения.
Он играет большую роль при стрессах самого разного происхождения — при повышении температуры, при ишемии, при травмах, высокой физической нагрузке, ультрафиолетовом облучении, бактериальной инфекции, воспалении. Исследователи из Института биофизики клетки Российской академии наук РАН , Института молекулярной биологии РАН, Института теоретической и экспериментальной биофизики РАН и больницы Пущинского научного центра предположили, что БТШ70 можно использовать для защиты клеток и организма в целом от действия бактериальных патогенов. Действительно, эксперименты показали, что если ввести БТШ70 животным, которым перед тем ввели эндотоксин, то их кровь, переполненная разнообразными воспалительными молекулами, приходит в норму, а смертность самих животных ощутимо снижается.
БТШ70 работает с иммунными клетками — то есть чтобы использовать его с наибольшей эффективностью, нужно как-то доставить его точно по адресу. Вводить его в кровь, как есть — не слишком удачная затея: часть его успеет разрушиться до того, как доберется до нужных клеток, часть вообще прилипнет куда-нибудь не туда. Поэтому исследователи решили сделать для белка особые полиэлектролитные капсулы, сделанные из полипептидов и полисахаридов. В статье в Cell Stress and Chaperones авторы пишут, что, во-первых, капсулы легко поглощаются иммунными клетками то есть теми, кто должен получать БТШ70 и сами по себе не оказывают на «адресатов» никакого токсического действия, во-вторых, БТШ70, который доставили в такой посылке, вполне успешно противостоит процессам, сопровождающим сепсис. Так, одна из задач белка — предотвращать гибель иммунных клеток нейтрофилов, у которых под действием бактериальных эндотоксинов запускается апоптоз — программа клеточного самоубийства.
Первых кроликов-продуцентов человеческого белка теплового шока планируют получить в 2022 году
Активные формы кислорода разрушают другие белки, ДНК и мембраны клеток. Это вызывает их апоптоз — самоуничтожение. В ходе следующего эксперимента ученые перерезали аксон нейрона, который соединяет нерв речного рака с мышцей и контролирует движения животного. В живой ткани нейрон окружен глиальными клетками, которые обеспечивают его правильную работу. Оказалось, что при повреждении аксона сначала умирают только глиальные клетки. Работа нейрона также нарушается, но он еще продолжает жить какое-то время. Восстановление глиальных клеток может спасти нейрон. Их апоптоз регулируется белком p53, а Hsp70 может снижать его концентрацию, тем самым препятствуя гибели клеток и восстанавливая работоспособность нейрона. Ученые уже придумали способ доставки белка Hsp70 к нейронам животных.
Также простая диффузия пептидов была бы слишком неэффективной. Также, когда HSP являются внеклеточными, они могут направлять связанные с ними пептиды в путь MHCII, хотя неизвестно, как они отличаются от представленных перекрестно см. Autophagy HSPs участвуют в классической макроаутофагии, когда белковые агрегаты заключены в двойную мембрану и впоследствии разрушаются. Они также участвуют в особом типе аутофагии, называемой «шаперон-опосредованная аутофагия», когда они позволяют цитозольным белкам проникать в лизосомы. Перекрестная презентация Когда HSP являются внеклеточными, они могут связываться к специфическим рецепторам на дендритных клетках DC и способствуют перекрестной презентации их переносимых пептидов. Но теперь его актуальность вызывает споры, поскольку большинство типов DC не экспрессируют CD91 в соответствующих количествах, а способность связывания многих HSP не доказана. Стимуляция некоторых рецепторов-скавенджеров может даже привести к иммуносупрессии, как в случае SRA. LOX-1 связывает в основном hsp60 и hsp70.
В настоящее время считается, что SRECI является общим рецептором белка теплового шока, поскольку он связывает hsp60 , hsp70 , hsp90 , hsp110, gp96 и GRP170. Актуальность для этого типа перекрестной презентации высока, особенно при иммунном надзоре за опухолью. Благодаря HSP связанный пептид защищен от деградации в компартментах дендритных клеток, и эффективность перекрестной презентации выше. Также интернализация комплекса HSP-пептид более эффективна, чем интернализация растворимых антигенов. Опухолевые клетки обычно экспрессируют только несколько неоантигенов, на которые может воздействовать иммунная система, а также не все опухолевые клетки их экспрессируют. Из-за этого количество опухолевых антигенов ограничено, и для создания сильного иммунного ответа необходима высокая эффективность перекрестной презентации. Hsp70 и hsp90 также участвуют внутриклеточно в цитозольном пути перекрестной презентации, где они помогают антигенам попасть из эндосомы в цитозоль. Белки теплового шока также могут передавать сигналы через рецепторы скавенджеров , которые могут либо связываться с TLR, либо активировать pro - воспалительные внутриклеточные пути, такие как MAPK или NF- kB.
За исключением SRA, который подавляет иммунный ответ. Как белки теплового шока попадают во внеклеточное пространство Белки теплового шока могут секретироваться иммунными клетками или опухолевыми клетками не- канонический путь секреции или путь без лидера, потому что они не имеют лидерного пептида, который направляет белки в эндоплазматический ретикулум. Неканоническая секреция может быть аналогична секреции, которая возникает для IL1 b , и вызывается стрессовыми условиями. Во время особых типов апоптотической гибели клеток например, вызванной некоторыми химиотерапевтическими препаратами HSP также могут появляться на внеклеточной стороне плазматической мембраны. Есть споры о том, как долго HSP может удерживать свой пептид во внеклеточном пространстве, по крайней мере, для hsp70 комплекс с пептидом достаточно стабилен. Роль внеклеточных HSP может быть различной. Во многом от контекста ткани зависит, будут ли HSP стимулировать иммунную систему или подавлять иммунитет. Они могут стимулировать ответы Th17 , Th1 , Th2 или Treg в зависимости от антигенпрезентирующих клеток.
Клиническая значимость Фактор теплового шока 1 HSF1 представляет собой фактор транскрипции, который участвует в общем поддержании и повышении экспрессии белка Hsp70. Недавно было обнаружено, что HSF1 является мощным многогранным модификатором канцерогенеза.
В связи с этим есть вероятность, что эти белки теплового шока и их повышенное введение в организм какими-то либо способами вызовет не только замедление процессов нейродегенерации, но и сведет их образование и развитие к минимальным значениям, что нивелирует полностью клинику нейродегенеративных заболеваний», — заявил эксперт. Геннадий Пьявченко рассказал, что в распоряжение им были предоставлены мыши, у которых развивается к определенному времени жизни та или иная нейродегенеративная патология. С ними мы скрещиваем других животных, у которых такая генетическая модель, которая приводит к повышенной выработке белков теплового шока. Их потомство будет иметь в себе и те или иные признаки.
Изменение окружающей среды при инфицировании создает стрессорную ситуацию как для вторгшегося патогена, так и для клеток хозяина, что проявляется в обоюдной интенсификации синтеза и функциональной активности белков теплового шока. Молекулярные шапероны бактерий выступают в роли лигандов для рецепторов на поверхности клеток хозяина. При взаимодействии TLR7 с HSP70, активно секретируемым, так и освобождаемым при некротической гибели клеток млекопитающих, усиливается фагоцитарная функция макрофагов. Данный эффект проявляется за несколько минут и выражается не только в стимуляции фагоцитоза, но также и функции представления антигена Т-клеткам через сигнальные пути, опосредуемые фосфоинозитид 3-киназой и р38 МАР-киназой. На сегодняшний день многие рецепторы, распознающие паттерны известных PAMPs прокариотов, грибков, вирусов, простейших патогенов остаются еще не охарактеризованными. Существует взаимосвязь между фагоцитозом и экспрессией TLRs, поскольку активация сигналов через TLR усиливает фагоцитарные процессы, а фагоцитоз модулирует последовательность активации TLR. Является очевидным, что еще неопределенные молекулярные паттерны могут искажать или направлять адаптивный имунный ответ по Тh-2 типу Возможно, что отсутствие сигналов например — PAMPs , подобно дефициту своих МНС I для NK-клеточной активации является стимулом для запуска иммунитета второго типа. Индукция сигналов через Toll-подобные рецепторы может обеспечивать не только защиту организма от различных инфекций. Нарушение функции проводимости данных сигналов приводит к развитию целого ряда патологических процессов в организме.